Species Composition and Utilization Patterns of Mangrove in the District of Jailolo West Halmahera Province of North Mollucas, Indonesia

Total Page:16

File Type:pdf, Size:1020Kb

Species Composition and Utilization Patterns of Mangrove in the District of Jailolo West Halmahera Province of North Mollucas, Indonesia id10555328 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com EEnnvviirroonnImSmSN : e0e97nn4 - 7tt45aa1 ll SSccVioilueemen n9 Isccsueee 10 An Indian Journal Current Research Paper ESAIJ, 9(10), 2014 [359-364] Species composition and utilization patterns of mangrove in the district of jailolo west halmahera province of north mollucas, indonesia A.R.Tolangara1, D.C.Aloysius2* 1Biology Education Program, Khairun University, Ternate, (INDONESIA) 2Departement of Biology, Faculty of Mathematic and Natural Science, State University of Malang, (INDONESIA) E-mail : [email protected]; [email protected] ABSTRACT KEYWORDS The purpose of this study was to determine the species composition of Mangrove forest; mangrove forest and the pattern of mangrove wood utilization by fishermen Vegetation parameters; communities in the coastal areas of Jailolo District, West Halmahera. The Coastal ecosystem; data collection had been carried out by observation and interviews. Data Xylocarpus moluccensis; analysis of the interview technique had been carried out by the percentage Osbornia octodonta; technique, while data analysis of mangrove forest observation had been Bruguiera gymnorrhiza. carried out based on the parameter of vegetation density, dominance, frequency, and importance value index (IVI). Research result showed that composition of mangrove forest of this area consists of: Rhizophora apiculata (IVI = 7.9), Bruguiera gymnorrhiza (IVI= 5,2), Xylocarpus moluccensis (IVI = 1,9), Osbornia octodonta (IVI = 3,7), Sonneratia caseolaris (IVI = 24.5), Avicennia lanata (IVI = 36.4), and Finlaysonia maritime (IVI = 20.4). The utilization patterns of those species will be described further. The species of mangrove forest most widely used as firewood are R. apiculata, while used as a building and house materials, and as poles at the ports are B. gymnorrhiza, as well as being used for boat constructing are X. moluccensis and O. octodonta. Based on IVI above, it is necessary to conduct conservation of the mangrove forest soonly. 2014 Trade Science Inc. - INDIA INTRODUCTION (BPS District Halmahera 2011). Most people of West Halmahera regency live in Jailolo is one district area located in Western coastal areas and some live in inland areas. Therefore Halmahera of North Mollucas Province. The total area the coastal zone is more widely utilized than the in the of North Mollucas is 2,755 km2, while its sea area is land zone. The people who live in the coastal areas are 11623.42 km2; this region faces directly to the Mollucas fishermen, and who live in inland areas are generally Sea in the north direction and the Pacific Ocean in the peasands (Halbar 2010). south direction. Jailolo is the capital of West Halmahera The coastal area of West Halmahera regency has regency; the total population of this regency is 94,645 great potency of mangrove. Data of the mangrove for- people, consisting of 48.979 men and 45.666 women est area had been obtained from Landsat 7 ETM + in 360 Species composition and utilization .patterns of mangrove in the district ESAIJ, 9(10) 2014 Current Research Paper 2010 conducted by the Center for Watershed Man- by observation and interview techniques. The survey agement (BP DAS) Ake Malamo. Based on the data supported by observation had been conducted to de- mangrove forest area amount to 12-20% of the total termine the species composition of mangrove forest areas of mangrove forest in the Province of North based on reference of the Handbook of Introduction to Mollucas. It is estimated that mangrove forest in the Mangrove in Indonesia[10], as well as to obtain data of District of Jailolo area is approximately 625 hectares[2]. vegetation parameters such as density, dominance, fre- Interview results conducted on some families who quency, and Importance Value Index (IVI) of each live as fishermen about the utilization patterns of man- mangrove species. The survey supported by interviews grove wood, showed that mangrove woods had been had been conducted to obtain the pattern of man- utilized as firewood, house construction materials, boat grove wood utilization by the local fishermen people. body, as well as other parts of it, and poles supporting Target population of this interviews was 116 fami- the harbor bridges. Such mangrove wood utilization had lies. Of these families, only about 40 families were ac- significantly reduced the density of mangrove vegeta- tive fishermen, while the others were farmers and en- tion in this area. trepreneur. This study then used 40 families of active Conversion of mangrove forests to other functions fishermen as the samples. Several questions asked in along the coastal area in the Province of North Mollucas the interviews including occupation, education level and had been occurent long time ago. Based on the results utilization patterns of mangrove forest. of direct field observation, there were indications that Data analysis related to vegetation parameters such the pressure on other mangrove areas in The Province as density, dominance, frequency, and Importance Value of North Mollucas would increase. There are some in- Index (IVI) refer to the formula of Krebs[9], will be in- dications related to the pressure increase is the increase dicated further. of society growth around this area, and the rate increase Relative density of urban development as well as housing; the other fac- tors such as high price of fuel will also increase the uti- = x 100 lization of firewood by the people, as well as there are Relative frequency low concern of the local government and people to the sustainability of mangrove forest. = x 100 Based on survey conducted in 2012 in the District of Relative dominance Jailolo, it had been uncovered that mangrove forests area had decreased to 533 hectares only. It is clearly seen = x 100 that during the 2 years, the mangrove forest area in this Importance Value Index of a species (x) = relative district had decreased up to 92 hectares. The reduction density + relative frequency + relative dominance of is caused by various factors especially by the increase of species x people activities around the mangrove forest area. Data analysis related to the patterns of mangrove Fishermen people utilize mangrove wood of vari- wood utilization had been conducted by percentage. ous species, as well as of various age, height of the trees and even of the tree trunk circles. Because of con- RESULTS & DISCUSSIONS tinuous use of this forest, there is certain type of man- grove such as X. moluccensis formerly found abun- Determination of species and parameter measure- dantly in this area, and also known as a typical man- ment of mangrove vegetation in the district of grove species in Mollucas, right now was going to de- jailolo, west halmahera crease in density and someday will run out. There are 7 species of mangrove that grow in man- MATERIALS & METHODS grove forests in this coastal area, as presented on TABLE 1. Results of data analysis of mangrove veg- The method used in this study was survey supported etation parameters are presented in TABLE 2. Environmental Science An Indian Journal ESAIJ, 9(10) 2014 A.R.Tolangara and D.C.Aloysius 361 Current Research Paper TABLE 1 : The 7 species of mangrove in district of jailolo, west halmahera Kingdom Class Order Family Genus Species Local name Plantae Angiospermae Malpighiales Rhizophoraceae Rhizophora Rhizophora apiculata Blume. Soki Angiospermae Malpighiales Rhizophoraceae Bruguiera Bruguiera gymnorrhiza (L.) Lam. Dao Angiospermae Sapindales Meliaceae Xylocarpus Xylocarpus moluccensis (Lam.) M.Roem. Buah Kira-Kira Angiospermae Myrtales Myrtaceae Osbornia Osbornia octodonta F.v.M. Baru-Baru Angiospermae Myrtales Lythraceae Sonneratia Sonneratia caseolaris (L.) Engl. Posi-Posi Angiospermae Lamiales Acanthacea Avicennia Avicennia lanata (Ridley) Sia-Sia Angiospermae Asclepiadales Asclepiadaceae Finlaysonia Finlaysonia maritima Backer ex Heyne Rurum Source: Tolangara 2011 TABLE 2 : Analysis results of mangrove parameters in the district of jailolo, west halmahera No. Species Relative density Relative dominance Relative frequency Important Value Index (IVI) 1. Rhizophora apiculata 5.3 14.4 9.7 7.9 2. Bruguiera gymnorrhyza 8.5 5.1 3.2 5.2 3. Xylocarpus moluccensis 3.6 2.8 3.2 1.9 4. Osbornia octodonta 3.4 4.1 12.9 3.7 5. Sonneratia caseolaris 21.7 17.5 19.4 24.5 6. Avicennia lanata 45.0 46.1 35.5 36.4 7. Finlaysonia maritima 12.5 10.0 16.1 20.4 Source: Tolangara 2011 Based on the mangrove parameter analysis in (soki) TABLE 2 it is seen that the Importance IVI of A. lanata R. apiculata Blume. (Soki) tree having a trunk di- was the highest one (36.4), while IVI of X. moluccensis ameter up to 50 cm reaches a height of 30 feet. The was the lowest (1.9). IVI is an accumulation of all three wood of R. apiculata used as firewood for self-need parameters measured. In this case, the Importance Value or to be sold, are cut into pieces about 50-60 cm long, Index describes the relative contribution of each plant tied up and then sold at a price of 15,000 IDR per species to the community. Hardjosuwarno[7] stated that bundle. if there were several species in a community having dif- TABLE 3 : The utilization patterns percentage of the man- ferent IVI, it could be said that the plant species having grove woods by the fishermen people the highest IVI would have the largest relative contri- Species of Utilization Percentage bution to the environment, and vice versa. mangrove patterns (%) 100 The utilization patterns of mangrove wood by fish- R. apiculata Blume. Firewood (soki) 5 ermen people in the district of jailolo, west Charcoal Making the fence of 87.5 halmahera houses Based on the interview result regarding the utiliza- Making the poles of 87.5 B. gymnorrhiza (L.) houses tion patterns of mangrove wood, it is uncovered that Lam.
Recommended publications
  • 261 Comparative Morphology and Anatomy of Few Mangrove Species
    261 International Journal of Bio-resource and Stress Management 2012, 3(1):001-017 Comparative Morphology and Anatomy of Few Mangrove Species in Sundarbans, West Bengal, India and its Adaptation to Saline Habitat Humberto Gonzalez Rodriguez1, Bholanath Mondal2, N. C. Sarkar3, A. Ramaswamy4, D. Rajkumar4 and R. K. Maiti4 1Facultad de Ciencias Forestales, Universidad Autonoma de Nuevo Leon, Carr. Nac. No. 85, Km 145, Linares, N.L. Mexico 2Department of Plant Protection, Palli Siksha Bhavana, Visva-Bharati, Sriniketan (731 236), West Bengal, India 3Department of Agronomy, SASRD, Nagaland University, Medziphema campus, Medziphema (PO), DImapur (797 106), India 4Vibha Seeds, Inspire, Plot#21, Sector 1, Huda Techno Enclave, High Tech City Road, Madhapur, Hyderabad, Andhra Pradesh (500 081), India Article History Abstract Manuscript No. 261 Mangroves cover large areas of shoreline in the tropics and subtropics where they Received in 30th January, 2012 are important components in the productivity and integrity of their ecosystems. High Received in revised form 9th February, 2012 variability is observed among the families of mangroves. Structural adaptations include Accepted in final form th4 March, 2012 pneumatophores, thick leaves, aerenhyma in root helps in surviving under flooded saline conditions. There is major inter- and intraspecific variability among mangroves. In this paper described morpho-anatomical characters helps in identification of family Correspondence to and genus and species of mangroves. Most of the genus have special type of roots which include Support roots of Rhizophora, Pnematophores of Avicennia, Sonneratia, Knee *E-mail: [email protected] roots of Bruguiera, Ceriops, Buttress roots of Xylocarpus. Morpho-anatomically the leaves show xerophytic characteristics.
    [Show full text]
  • Pests, Diseases, and Aridity Have Shaped the Genome of Corymbia Citriodora
    Lawrence Berkeley National Laboratory Recent Work Title Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Permalink https://escholarship.org/uc/item/5t51515k Journal Communications biology, 4(1) ISSN 2399-3642 Authors Healey, Adam L Shepherd, Mervyn King, Graham J et al. Publication Date 2021-05-10 DOI 10.1038/s42003-021-02009-0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s42003-021-02009-0 OPEN Pests, diseases, and aridity have shaped the genome of Corymbia citriodora ✉ Adam L. Healey 1,2 , Mervyn Shepherd 3, Graham J. King 3, Jakob B. Butler 4, Jules S. Freeman 4,5,6, David J. Lee 7, Brad M. Potts4,5, Orzenil B. Silva-Junior8, Abdul Baten 3,9, Jerry Jenkins 1, Shengqiang Shu 10, John T. Lovell 1, Avinash Sreedasyam1, Jane Grimwood 1, Agnelo Furtado2, Dario Grattapaglia8,11, Kerrie W. Barry10, Hope Hundley10, Blake A. Simmons 2,12, Jeremy Schmutz 1,10, René E. Vaillancourt4,5 & Robert J. Henry 2 Corymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species). 1234567890():,; Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa, Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought, poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we sequenced and assembled the 408 Mb genome of Corymbia citriodora, anchored into eleven chromosomes. Comparative analysis with Eucalyptus grandis reveals high synteny, although the two diverged approximately 60 million years ago and have different genome sizes (408 vs 641 Mb), with few large intra-chromosomal rearrangements.
    [Show full text]
  • Species Composition and Zonal Distribution of Mangrove Plants in the Myeik Coastal Areas of Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access Species composition and zonal distribution of mangrove plants in the Myeik coastal areas of Myanmar Abstract Volume 9 Issue 2 - 2020 The species composition and zonal distribution of mangroves in five research sites viz., Tin-Zar-Ni-Win,1 U Soe-Win2 Kapa, Masanpa, Panadoung, Kywe Ka Yan and Kyauk Phyar from Myeik coastal areas 1Marine Biologist, Fauna & Flora International (FFI), Myanmar were studied from December 2017 to July 2018. Transect lines in landward, seaward 2Department of Marine Science, Mawlamyine University, and shoreline, and plots based on Point Center Quarter Method (PCQM) were used. Myanmar A total of 21 species of true mangrove were recorded. Rhizophora apiculata and R. Mucronata were the most dominant species in the study sites, especially in the seaward Correspondence: Tin-Zar-Ni-Win, Marine Biologist, Fauna & areas. Among the recorded species, Aegiceras corniculatum, Avicennia officinalis, R. Flora International (FFI), Myanmar apiculata, R. mucronata, Sonneratia alba and Nypa fruticans were distributed in all study Email sites. Bruguiera gymnorhiza and B.cylindrica, were recorded only in shoreline areas and Heritiera littoralisis was found only in landward areas in all study sites. Among the Received: April 07, 2020 | Published: April 28, 2020 study sites, Kapa has been designated as the highest species composition, representing 17 species, whereas Kyauk Phyar, representing 12 species as the lowest species composition. The environmental parameters of mangrove forests were also provided in all study sites. The various salinity and temperature ranges of seawater (25.0-30.0‰ and 28.0-32.0ºC) and soil (25.0-33.0‰ and 27.6-31.4ºC) significantly controlled the distribution of mangrove species of mangroves.
    [Show full text]
  • Original Research Article
    E-ISSN: 2378-654X Recent Advances in Biology and Medicine Original Research Article Identification of Flavonoids from the Leaves Extract of Mangrove (Rhizophora apiculata) HATASO, USA Recent Advances in Biology and Medicine 1 Identification of Flavonoids from the Leaves Extract of Mangrove (Rhizophora apiculata) Asma Nisar1*, Awang Bono1, Hina Ahmad2, Ambreen Lateef3, Maham Mushtaq4 1Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia. 2Jinnah University for Women Karachi, Karachi, Pakistan. 3College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan. 4Lahore College of Pharmaceutical Sciences, Lahore, Pakistan. *Correspondence: [email protected] Received: Apr 30, 2019; Accepted: May 27, 2019 Copyright: Nisar et al. This is an open-access article published under the terms of Creative Commons Attribution License (CC BY). This permits anyone to copy, distribute, transmit, and adapt the work provided the original work and source is appropriately cited. Citation: Nisar A, Bono A, Ahmad H, Lateef A, Mushtaq M. Identification of flavonoids from the leaves extract of mangrove (Rhizophora apiculata). Recent Adv Biol Med. 2019; Vol. 5, Article ID 869903, 7 pages. https://doi.org/10.18639/RABM.2019.869903 Abstract A fast and specific reversed-phase high-performance liquid chromatography (HPLC) method was used for the immediate identification of flavonoids (gallic acid, rutin, quercetin, ascorbic acid, and kaempferol) in the leaves extract of Mangrove (Rhizophora apiculata). The R.
    [Show full text]
  • Kimberley Marine Biota. Historical Data: Marine Plants
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 84 045–067 (2014) DOI: 10.18195/issn.0313-122x.84.2014.045-067 SUPPLEMENT Kimberley marine biota. Historical data: marine plants John M. Huisman1,2* and Alison Sampey3 1 Western Australian Herbarium, Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley DC, Western Australian 6983, Australia. 2 School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australian 6150, Australia. 3 Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australian 6986, Australia. * Email: [email protected] ABSTRACT – Here, we document 308 species of marine flora from the Kimberley region of Western Australia based on collections held in the Western Australian Herbarium and on reports on marine biodiversity surveys to the region. Included are 12 species of seagrasses, 18 species of mangrove and 278 species of marine algae. Seagrasses and mangroves in the region have been comparatively well surveyed and their taxonomy is stable, so it is unlikely that further species will be recorded. However, the marine algae have been collected and documented only more recently and it is estimated that further surveys will increase the number of recorded species to over 400. The bulk of the marine flora comprised widespread Indo-West Pacific species, but there were also many endemic species with more endemics reported from the inshore areas than the offshore atolls. This number also will increase with the description of new species from the region. Collecting across the region has been highly variable due to the remote location, logistical difficulties and resource limitations.
    [Show full text]
  • Mangroves: Unusual Forests at the Seas Edge
    Tropical Forestry Handbook DOI 10.1007/978-3-642-41554-8_129-1 # Springer-Verlag Berlin Heidelberg 2015 Mangroves: Unusual Forests at the Seas Edge Norman C. Dukea* and Klaus Schmittb aTropWATER – Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia bDepartment of Environment and Natural Resources, Deutsche Gesellschaft fur€ Internationale Zusammenarbeit (GIZ) GmbH, Quezon City, Philippines Abstract Mangroves form distinct sea-edge forested habitat of dense, undulating canopies in both wet and arid tropic regions of the world. These highly adapted, forest wetland ecosystems have many remarkable features, making them a constant source of wonder and inquiry. This chapter introduces mangrove forests, the factors that influence them, and some of their key benefits and functions. This knowledge is considered essential for those who propose to manage them sustainably. We describe key and currently recommended strategies in an accompanying article on mangrove forest management (Schmitt and Duke 2015). Keywords Mangroves; Tidal wetlands; Tidal forests; Biodiversity; Structure; Biomass; Ecology; Forest growth and development; Recruitment; Influencing factors; Human pressures; Replacement and damage Mangroves: Forested Tidal Wetlands Introduction Mangroves are trees and shrubs, uniquely adapted for tidal sea verges of mostly warmer latitudes of the world (Tomlinson 1994). Of primary significance, the tidal wetland forests they form thrive in saline and saturated soils, a domain where few other plants survive (Fig. 1). Mangrove species have been indepen- dently derived from a diverse assemblage of higher taxa. The habitat and structure created by these species are correspondingly complex, and their features vary from place to place. For instance, in temperate areas of southern Australia, forests of Avicennia mangrove species often form accessible parkland stands, notable for their openness under closed canopies (Duke 2006).
    [Show full text]
  • Unearthing Belowground Bud Banks in Fire-Prone Ecosystems
    Unearthing belowground bud banks in fire-prone ecosystems 1 2 3 Author for correspondence: Juli G. Pausas , Byron B. Lamont , Susana Paula , Beatriz Appezzato-da- Juli G. Pausas 4 5 Glo'ria and Alessandra Fidelis Tel: +34 963 424124 1CIDE-CSIC, C. Naquera Km 4.5, Montcada, Valencia 46113, Spain; 2Department of Environment and Agriculture, Curtin Email [email protected] University, PO Box U1987, Perth, WA 6845, Australia; 3ICAEV, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile; 4Depto Ci^encias Biologicas,' Universidade de Sao Paulo, Av P'adua Dias 11., CEP 13418-900, Piracicaba, SP, Brazil; 5Instituto de Bioci^encias, Vegetation Ecology Lab, Universidade Estadual Paulista (UNESP), Av. 24-A 1515, 13506-900 Rio Claro, Brazil Summary To be published in New Phytologist (2018) Despite long-time awareness of the importance of the location of buds in plant biology, research doi: 10.1111/nph.14982 on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Key words: bud bank, fire-prone ecosystems, Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground lignotuber, resprouting, rhizome, xylopodium. provides fitness benefits in fire-prone ecosystems. Thus, in these ecosystems, there is a remarkable diversity of bud-bearing structures. There are at least six locations where belowground buds are stored: roots, root crown, rhizomes, woody burls, fleshy
    [Show full text]
  • World Journal of Pharmaceutical Sciences a Complete Profile On
    World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Published by Atom and Cell Publishers © All Rights Reserved Available online at: http://www.wjpsonline.org/ Review Article A complete profile on Xylocarpus moluccensis: traditional uses, pharmacological activities and phytoconstituents Raja S and Ravindranadh K GITAM Institute of Pharmacy, GITAM University, Visakhapatnam- Andhra Pradesh, India-Pincode-530 045 Received: 31-10-2014 / Revised: 14-11-2014 / Accepted: 17-11-2014 ABSTRACT The present work offers a review addressing the ethnomedical, active constituents and pharmacological activity of Xylocarpus moluccensis (belonging to Meliaceae family) regarded as one of the most significant plant species in traditional system of medicine. The plant is used in different parts of the world for the treatment of several ailments like diarrhea, fever, dysentery, candidacies, scabies, baby rash, stomach pains, and constipation joint pains, chest pains, and relapsing sickness etc., Xylocarpus moluccensis is the source of a diverse kind of chemical constituents such as swietemahonolide, febrifugin, khayasin T, febrifugin A, gedunin, isolariciresinol, phaseic acid, aromadendrin, 4-hydroxy cinnamic acid, 4-hydroxybenzoic acid, 4-hydroxyphenylaceticacid, and xylogranatinin. The isolated phytochemicals as well as different extracts exhibited significant biological activities such as antibacterial, anti diabetic, antioxidant activity, antifilarial, anti diarrheal, CNS depressant and cytotoxic activities. Exhaustive research regarding isolation of more phytochemicals and pharmacology study on this medicinal plant is still necessary so as to explore the plant regarding its medicinal importance. Therefore, the aim of this review is to boost up present day researchers in this direction to undertake further investigations of this plant. Key words: Xylocarpus moluccensis, Swietemahonolide, Febrifugin, Khayasin T.
    [Show full text]
  • Genetic Structure and Population Demographic History of a Widespread Mangrove Plant Xylocarpus Granatum (Meliaceae) Across the Indo-West Pacific Region
    Article Genetic Structure and Population Demographic History of a Widespread Mangrove Plant Xylocarpus granatum (Meliaceae) across the Indo-West Pacific Region Yuki Tomizawa 1,†,‡, Yoshiaki Tsuda 2,†, Mohd Nazre Saleh 3,† ID , Alison K. S. Wee 4,5 ID , Koji Takayama 6, Takashi Yamamoto 4,7, Orlex Baylen Yllano 8, Severino G. Salmo III 9 ID , Sarawood Sungkaew 10, Bayu Adjie 11, Erwin Ardli 12, Monica Suleiman 13 ID , Nguyen Xuan Tung 14, Khin Khin Soe 15, Kathiresan Kandasamy 16, Takeshi Asakawa 1, Yasuyuki Watano 1 ID , Shigeyuki Baba 4 and Tadashi Kajita 4,7,* ID 1 Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; [email protected] (Y.T.); [email protected] (T.A.); [email protected] (Y.W.) 2 Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadairakogen, Ueda, Nagano 386-2204, Japan; [email protected] 3 Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; [email protected] 4 Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan; [email protected] (A.K.S.W.); [email protected] (T.Y.); [email protected] (S.B.) 5 Guangxi Key Laboratory of Forest Ecology and Coservation, College of Forestry, Guangxi University, Nanning 530000, China 6 Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga-ku, Shizuoka 422-8017, Japan; [email protected] 7 United Graduate School
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • Bioinsecticide Test of Crude Stem Bark Extracts of Some
    G.J.B.A.H.S.,Vol.2(3):28-31 (July – September, 2013) ISSN: 2319 – 5584 BIOINSECTICIDE TEST OF CRUDE STEM BARK EXTRACTS OF SOME MELIACEOUS PLANTS AGAINST SPODOPTERA LITURA Tukiran Chemistry Department, Faculty of Mathematics and Natural Sciences, State University of Surabaya Jl. Ketintang, Surabaya, 60231, East Java, Indonesia. Abstract In the study of screening for bioinsecticides from plants, the activity of the stem bark extracts of some Meliaceous plants growth in Indonesia, namely Aglaia odorata Lour, Aglaia odoratissima Blume, Aglaia elaeagnoidea A.Juss, Sandoricum koetjape Merr. and Xylocarpus moluccensis (Lamk.) M.Roem was investigated. Solvent residues of these stem bark of plants were obtained from different solvent extracts (hexane, chloroform and methanolic extracts). All extracts dissolved in distilled water and added tween 80 (a few drops) as emulsifying agent were separately tested at various concentration (mg/L) continuously for 1, 2 and 3 days on the third instar larvae of the armyworm, Spodoptera litura. The results indicated the presence of bioinsecticide effect which was maximum of Sandoricum koetjape. This plant extracts (hexane and methanolic extracts) gave enough sensitive effects to the third instar larvae with LC50s of 104.24 and 170.23 mg/L, respectively after 3 days of application. Meanwhile, other plant extracts showed much less sensitive and relatively insensitive after 3 days of application because their LC50 values were more than 200 and 1500 mg/L, respectively. Keywords: Bioinsecticide, Lethal Concentration (LC50), Meliaceae, Spodoptera litura. 1. Introduction Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is a polyphagous insect pest (Holloway, 1989). It is an indigenous pest of a variety of crops in South Asia and was found to cause more than 26-100% yield loss in groundnut (Dhir et al., 1992 as stated by Muthusamy et al., 2011).
    [Show full text]
  • Mangrove Guidebook for Southeast Asia
    RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat.
    [Show full text]