Functional Diversity in the Hyper-Diverse Mangrove Communities in Papua New Guinea Lawong Balun [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Functional Diversity in the Hyper-Diverse Mangrove Communities in Papua New Guinea Lawong Balun Lbalun@Utk.Edu University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2011 Functional Diversity in the Hyper-diverse Mangrove Communities in Papua New Guinea Lawong Balun [email protected] Recommended Citation Balun, Lawong, "Functional Diversity in the Hyper-diverse Mangrove Communities in Papua New Guinea. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/1166 This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lawong Balun entitled "Functional Diversity in the Hyper-diverse Mangrove Communities in Papua New Guinea." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Taylor Feild, Major Professor We have read this dissertation and recommend its acceptance: Edward Shilling, Joe Williams, Stan Wulschleger Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) Functional Diversity in Hyper-diverse Mangrove Communities in Papua New Guinea A Dissertation Presented For the Doctor of Philosophy Degree The University of Tennessee, Knoxville Lawong Balun December 2011 Copyright © 2011 by Lawong Balun All rights reserved ii DEDICATION To my father, mother, father in law, mother in law Balun Garap, Marawe Garap, Lalai Kulang Yam, and Nang Gamun Yam and my wife Laden Kulang Balun iii ACKNOWLEDGEMENTS I thank Professor Taylor Feild, my advisor, for accepting me as his student and integrating my research into his NSF grant and for providing scholarly advice and critically reading the chapters of my dissertation. I also wish to express my gratitude to the members of my committee, Ed Schilling, Joe Williams, and Stan Wullschleger for providing me academic guidance and positive feedback. I thank Professor Gary McCracken (Head of the Department of Ecology and Evolutionary Biology, EEB) for the EEB Department financial support during my PhD tenure. I thank the course instructors of the EEB Core course: Professors Nathan Sanders (Coordinator), Daniel Simberloff, Jame Fordyce, Susan Riechert, Randall Small, Daren Husley, Benjamin Fitzpatrick, and Michael Gilchrist for providing in-depth insights regarding the core science of ecology and evolutionary biology. I thank several of my colleagues for their friendship, encouragement, and intellectual stimulation: Dr. MacKenzie Taylor, Angela Patino, Steve Furches, Annie Becker, Matt Valente, Michelle Smith, and Lisa Cantwell. I especially thank the past members of the Feild Lab, Dr. David Chatelet, Patrick Hudson, and Angela Patino for their lending hands in the anatomical laboratory setups. Field experiments and in situ data collection in the difficult working environment of the mangrove forest would not have been possible without the assistance of the following individuals and organizations in Papua New Guinea: University of Papua New Guinea iv Biology Department, particularly Dr. Augustine Mungkaje (Director, Motupore Island Research Center); Roga Gabiobu, and the security personals of the Motupore Research Center; Papua New Guinea University of Technology Forestry Department, particularly, Eko Maiguo (Acting Head), Trevor Galgal, and Jimmy Nona; New Guinea Binatang Research Center, particulary, Dr. Vojtech Novitney and Sam Legi; PNG Forest Research Institute, particularly Robert Kiapranis (Biology program leader), Billy Bau, Kipro Damas; and members of the Kulang family (Kenneth Kulang, Jeremiah Kulang, and Dorothy Kulang), staff of WWF-PNG office (Olo Gebia, Saina Jeffrey, and Roy Banka). I would like to express my deep gratitude to the Bosimbi family, Bidang family, Dorothy Kulang, and Kiapranis family in Papua New Guinea whose logistical support eased my field work. I especially thank Netesha Kulang Bidang for preparing nourishing meals for my team in the field. The following sources provided funding for my dissertation work: The National Science Foundation; PNG University of Technology; the University of Tennessee (Department of Ecology and Evolutionary Biology Summer Research Award [2009, 2010]). Finally, I would like to thank my wife, my children, grandson, in-laws, sisters, brothers, nieces and nephews, for their love and encouragement, which pushed me through this long journey. v ABSTRACT Variation in plant functional traits reflect the differences in an environment a species occupies and the variation in the functional traits across an environmental gradient and growth form reflects the functional performance of the coexisting species. Therefore, detecting the differences in functional traits of species is important to our understanding of the performance of species. The leaf functional traits; Leaf mass per area (LMA) and vein density (DV) are key traits in the resource use strategies and photosynthetic gas exchange capacity (Amax, gsmax) of all plants. Mangroves occupy a hypersaline narrow ecological range and therefore are thought to have uniform functional performance. This view makes sense for low diversity mangrove communities, but what about the hyperdiversity communities such as those in New Guinea? A comprehensive review of the present understanding on the ecology and socio-ecological values of mangrove was undertaken to establish a good foundational understanding of my study on New Guinea mangroves (Chapter 1). It is widely held that mangroves thriving in a hypersaline environment experience high water constraints and as a result have high water use efficiency, therefore have narrow functional performance. I investigated the leaf and photosynthetic functional traits of 31 mangrove species among different zonation bands and growth from six mangrove communities in New Guinea to test the view that mangroves have a narrow functional performance (Chapter 2). I then investigated the differences in wood and stem hydraulic traits among different zonation bands and growth forms and the relationship between wood hydraulics and leaf photosynthetic gas assimilation functional performance to further test the long standing view that mangroves have a narrow functional performance (Chapter 3). I then summarized the major findings of my two studies and their implications vi on mangrove restoration and rehabilitation with particular reference to the recent mangrove rehabilitation initiatives in Papua New Guinea (Chapter 4). My studies on leaf and wood functional traits across different zonation bands, growth forms and root system types consistently revealed that mangroves have a wide functional performance, and different species exhibited different resource use strategies. vii TABLE OF CONTENTS Chapter Page CHAPTER I: MANGROVE AND MANGROVE FOREST ..................................................... 1 INTRODUCTION ...................................................................................................................... 1 Mangrove global distribution and diversity ............................................................................ 6 The global significance of mangrove forests ...................................................................... 8 New Guinea mangroves ........................................................................................................ 18 Ecology of mangroves .......................................................................................................... 24 Mangrove zonation ........................................................................................................... 24 Forest structure.................................................................................................................. 29 Mangrove succession ........................................................................................................ 30 Salt Excretion .................................................................................................................... 33 Dissertation Focus: Understanding ecophysiological diversity in hyperdiverse mangrove communities in PNG ............................................................................................................. 42 LITERATURE CITED ............................................................................................................. 47 CHAPTER II: DIVERSITY OF LEAF PRODUCTIVITY FUNCTIONA FROM HYPERDIVERSE NEW GUINEA MANGROVE ECOSYSTEM ......................................... 75 Abstract ..................................................................................................................................... 76 INTRODUCTION .................................................................................................................... 78 LITERATURE CITED ........................................................................................................... 156 APPENDICES ........................................................................................................................ 172 CHAPTER III: WOOD MECHANICAL-HYDRAULIC FUNCTION ACROSS 31 SPECIES OF NEW GUINEA MANGROVES ......................................................................................
Recommended publications
  • Bruguiera Gymnorrhiza (Largeleaf Mangrove, Oriental Mangrove) Answer Score
    Bruguiera gymnorrhiza (Largeleaf mangrove, Oriental mangrove) Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to FL climates (USDA hardiness zones; 0-low, 1-intermediate, 2- 2 high) 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) y 1 2.04 Native or naturalized in regions with an average of 11-60 inches of annual y 1 precipitation 2.05 Does the species have a history of repeated introductions outside its natural n range? 3.01 Naturalized beyond native range n 0 3.02 Garden/amenity/disturbance weed n 0 3.03 Weed of agriculture n 0 3.04 Environmental weed ? 3.05 Congeneric weed 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic y 1 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens n 0 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems n 0 4.09 Is a shade tolerant plant at some stage of its life cycle y 1 4.10 Grows on infertile soils (oligotrophic, limerock, or excessively draining soils). n 0 North & Central Zones: infertile soils; South Zone: shallow limerock or Histisols. 4.11 Climbing or smothering growth habit n 0 4.12 Forms dense thickets n 0 5.01 Aquatic y 5 5.02 Grass n 0 5.03 Nitrogen fixing woody plant n 0 5.04 Geophyte n 0 6.01 Evidence of substantial reproductive failure in native habitat
    [Show full text]
  • A Comparison of the Water Quality Between the Mangrove Areas Mulyorejo and Wonorejo
    MATEC Web of Conferences 177, 01014 (2018) https://doi.org/10.1051/matecconf/201817701014 ISOCEEN 2017 A comparison of the water quality between the mangrove areas Mulyorejo and Wonorejo Luc Kauhl1,3 , Kayleigh Lambregts1,3,* , and Suntoyo2 1Exchange student, Ocean Engineering Department, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia (60111) 2Associate Professor, Ocean Engineering Department, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia (60111) 3Student, Delta Acadamy, HZ University of Applied Sciences, Edisonweg 4, 4382 NW Vlissingen, The Netherlands Abstract. The East Coast of Surabaya consists of large mangrove and fish pond areas. These areas are crucial for the ecosystem and for providing food and shelter for the local community. If the water quality decreases the mangroves will not be able to provide these functions. The water quality of these areas can be measured in two ways: by looking at the physico-chemical parameters or by looking at the biological parameters. Both offer a very good view of what state the area is in. The purpose of this study is to find out what the differences are between the Mulyorejo and the Wonorejo areas to see what differences there are within the East Coast of Surabaya and what could be the main cause of these differences. The data shows that the physico- chemical data does not comply with the limitation factors. The main problem are the nutrients which will have to be lowered to preserve the ecosystem. In terms of the biological state of the mangrove, there are few problems found. It is, however, unclear why the tree density in one of the Wonorejo areas is declining and it should be determined what the reason for this is.
    [Show full text]
  • 261 Comparative Morphology and Anatomy of Few Mangrove Species
    261 International Journal of Bio-resource and Stress Management 2012, 3(1):001-017 Comparative Morphology and Anatomy of Few Mangrove Species in Sundarbans, West Bengal, India and its Adaptation to Saline Habitat Humberto Gonzalez Rodriguez1, Bholanath Mondal2, N. C. Sarkar3, A. Ramaswamy4, D. Rajkumar4 and R. K. Maiti4 1Facultad de Ciencias Forestales, Universidad Autonoma de Nuevo Leon, Carr. Nac. No. 85, Km 145, Linares, N.L. Mexico 2Department of Plant Protection, Palli Siksha Bhavana, Visva-Bharati, Sriniketan (731 236), West Bengal, India 3Department of Agronomy, SASRD, Nagaland University, Medziphema campus, Medziphema (PO), DImapur (797 106), India 4Vibha Seeds, Inspire, Plot#21, Sector 1, Huda Techno Enclave, High Tech City Road, Madhapur, Hyderabad, Andhra Pradesh (500 081), India Article History Abstract Manuscript No. 261 Mangroves cover large areas of shoreline in the tropics and subtropics where they Received in 30th January, 2012 are important components in the productivity and integrity of their ecosystems. High Received in revised form 9th February, 2012 variability is observed among the families of mangroves. Structural adaptations include Accepted in final form th4 March, 2012 pneumatophores, thick leaves, aerenhyma in root helps in surviving under flooded saline conditions. There is major inter- and intraspecific variability among mangroves. In this paper described morpho-anatomical characters helps in identification of family Correspondence to and genus and species of mangroves. Most of the genus have special type of roots which include Support roots of Rhizophora, Pnematophores of Avicennia, Sonneratia, Knee *E-mail: [email protected] roots of Bruguiera, Ceriops, Buttress roots of Xylocarpus. Morpho-anatomically the leaves show xerophytic characteristics.
    [Show full text]
  • Colonization Success of Common Thai Mangrove Species As a Function of Shelter from Water Movement
    MARINE ECOLOGY PROGRESS SERIES Vol. 237: 111–120, 2002 Published July 18 Mar Ecol Prog Ser Colonization success of common Thai mangrove species as a function of shelter from water movement Udomluck Thampanya1, Jan E. Vermaat2,*, Carlos M. Duarte3 1Coastal Resources Institute, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand 2International Institute for Infrastructural, Hydraulic and Environmental Engineering, Delft, The Netherlands 3IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, CSIC-Universidad, Illes Balears, C/Miguel Margués 21, 07190 Esporles, Mallorca, Spain ABSTRACT: Seedling survival and growth of the 3 common SE Asian mangrove species Avicennia alba, Rhizophora mucronata and Sonneratia caseolaris were quantified experimentally along 2 spatial gradients of shelter: (1) between 2 stations, at the inner and outer end of the sheltered Pak Phanang Bay (SW Thailand); and (2) for each station, among plots across a gradient of vegetation density from the mangrove forest edge inwards. Exposure to water movement, quantified as gypsum clod card weight loss, was found to vary more than 5-fold between seasons, which contributed most of the variance accounted for (73%). Variation between plots was higher than that between the 2 sta- tions: clod card loss ranged between 3.0 and 4.6 g d–1 in the plots, whereas the grand means of the 2 stations were 3.4 and 3.7 g d–1, respectively. These differences between stations and plots were com- parable to the patterns found for mangrove seedling survival. Survival was high (80 to 93%) in most treatments in R. mucronata, with the exception of the most exposed plot (30%).
    [Show full text]
  • The Coastal Scrub and Chaparral Bird Conservation Plan
    The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego).
    [Show full text]
  • Influence of Propagule Flotation Longevity and Light
    Influence of Propagule Flotation Longevity and Light Availability on Establishment of Introduced Mangrove Species in Hawai‘i1 James A. Allen2,3 and Ken W. Krauss2,4,5 Abstract: Although no mangrove species are native to the Hawaiian Archipel- ago, both Rhizophora mangle and Bruguiera sexangula were introduced and have become naturalized. Rhizophora mangle has spread to almost every major Ha- waiian island, but B. sexangula has established only on O‘ahu, where it was inten- tionally introduced. To examine the possibility that differences in propagule characteristics maintain these patterns of distribution, we first reviewed the lit- erature on surface currents around the Hawaiian Islands, which suggest that propagules ought to disperse frequently from one island to another within 60 days. We then tested the ability of propagules of the two species to float for pe- riods of up to 63 days and to establish under two light intensities. On average, R. mangle propagules floated for longer periods than those of B. sexangula, but at least some propagules of both species floated for a full 60 days and then rooted and grew for 4 months under relatively dense shade. A large percentage (@83%) of R. mangle propagules would be expected to float beyond 60 days, and approx- imately 10% of B. sexangula propagules also would have remained afloat. There- fore, it seems likely that factors other than flotation ability are responsible for the failure of B. sexangula to become established on other Hawaiian islands. The Hawaiian Archipelago, located in Mangrove species were first introduced to the central Pacific Ocean between 18 and Hawai‘i in 1902, when Rhizophora mangle L.
    [Show full text]
  • Leaflet No.25. Kyaw Win Maung.Pdf
    1 Leaflet No. 25/2015 The Republic of the Union of Myanmar Ministry of Environmental Conservation and Forestry Forest Department Comparison on Morphological and Anatomical Characteristics of Byu Species Found in Bogalay Township, Ayeyawady Region Kyaw Win Maung, Assistant Research Officer Dr. Kyu Kyu Thin, Assistant lecturer University of Forestry December, 2015 2 ဧရာဝတီတိုင်းေဒသကီး၊ ဘိုကေလးမို ့နယ်နှင့် ပုသိမ်မို ့နယ်များတွင်ေပါက်ေရာက်ေသာြဗူးအုပ်စုဝင်အပင်များ၏ြပင်ပရုပ်သွင်နှင့်သစ်အဂါေဗဒ လက္ခဏာများအားနင်းယှဉ်ေလ့လာြခင်း ေကျာ်ဝင်းေမာင်၊ လက်ေထာက်သုေတသနအရာရှိ၊ သစ်ေတာသုေတသနဌာန ေဒါက်တာကူကူသင်း၊ လက်ေထာက်ကထိက၊ သစ်ေတာတက္ကသိုလ် စာတမ်းအကျဉ်း ဤစာတမ်းတွင်ြမန်မာအမည်ြဗူးြဖင့်စတင်ေသာအပင်(၅)ပင်၏ြပင်ပရုပ်သွင်နှင့်သစ်အဂါေဗဒ လက္ခဏာရပ်များကိုနင်းယှဉ်ေလ့လာထားပါသည်။၎င်းအပင်များမှာြဗူးအုပ်ေဆာင်း(Bruguieragym norhiza) ြဗူးေရဝါ( Bruguierasexangula) ြဗူးဘိုင်းေဒါင့် (Kandelia candle) ြဗူးေချေထာက်အဖို(Rhizophoraapiculata)နှင့် ြဗူးေချေထာက်အမ(Rhizophoramucronata) တို့ြဖစ်ပါသည်။ ၎င်းအပင်များကို အလွယ်တကူခွဲြခားနိုင်ေသာ အဓိကြပင်ပရုပ်သွင် လက္ခဏာများမှာ ေလရှူြမစ်အမျိုးအစား၊ အြမစ်ေလာင်း၏ အရွယ်အစားနှင့် ပုံသာန်တို့ြဖစ်ပါသည်။ ေလရှူြမစ်နှင့် ကိုင်းေထာက်ြမစ်များကို ြဗူးဘိုင်းေဒါင့်နှင့် ြဗူးေချေထာက်မျိုးစိတ်နှစ်ပင်တွင် ေတွ ့ရှိရပါသည်။ ဒူးပုံသာန်ေလရှူြမစ်နှင့် ပါးပျဉ်းြမစ်တို့ကို Bruguiera မျိုးစိတ်နှစ်ခုတွင် ေတွ ့ရှိရပါသည်။ Bruguiera မျိုးစိတ်နှစ်ခု၏ အြမစ်ေလာင်းများမှာ ေဆးေပါ့လိပ်ပုံေတွ ့ရပီး ကျန်အပင်များမှာ ရှည်လျားသည့် ဆလင်ဒါပုံကိုေတွ ့ရပါသည်။ Vessels ေခေရေကာဆဲလ်များ၏ perforation plate ေခထိပ်ဝအကန် ့နံရံများမှာ အပင်အားလုံးတွင် Scalariform ြဖစ်ပါသည်။ ေလ့လာခဲ့ေသာ အပင်အားလုံး၏
    [Show full text]
  • Impacts of Climate Change on Australian Marine Life Part C
    Impacts of Climate Change on Australian Marine Life Part C: Literature Review Editors: Alistair J. Hobday, Thomas A. Okey, Elvira S. Poloczanska, Thomas J. Kunz, Anthony J. Richardson CSIRO Marine and Atmospheric Research report to the Australian Greenhouse Office , Department of the Environment and Heritage September 2006 Published by the Australian Greenhouse Office, in the Department of the Environment and Heritage ISBN: 978-1-921297-07-6 © Commonwealth of Australia 2006 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth, available from the Department of the Environment and Heritage. Requests and inquiries concerning reproduction and rights should be addressed to: Assistant Secretary Land Management and Science Branch Department of the Environment and Heritage GPO Box 787 CANBERRA ACT 2601 This report is in 3 parts: Part A. Executive Summary Part B. Technical Report Part C. Literature Review Please cite this report section as: Hobday, A.J., Okey, T.A., Poloczanska, E.S., Kunz, T.J. & Richardson, A.J. (eds) 2006. Impacts of climate change on Australian marine life: Part C. Literature Review. Report to the Australian Greenhouse Office, Canberra, Australia. September 2006. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment and Heritage. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.
    [Show full text]
  • SHORT NOTES Status of Mangroves in Naawan, Misamis Oriental And
    doi: 10.48031/msunjear.2015.03.10 SHORT NOTES Status of Mangroves in Naawan, Misamis Oriental and Prospects for Vegetative Expansion Jeanette J. Samson¹ and Ermelinda G. Tobias² ¹Instituteof Fisheries Research and Development MindanaoStateUniversity at Naawan, Naawan, Misamis Oriental, Philippines ²Department of Biological Sciences MindanaoStateUniversity – Iligan Institute of Technology, Iligan City, Philippines Email: [email protected] ABSTRACT An assessment of the plant community structure of mangroves in Naawan, Misamis Oriental was conducted to evaluate its status and potential for vegetative expansion. The survey was carried out in three coastal barangays, namely: Linangkayan, Poblacion, and Maputi using a transect-plot survey technique. Results show that the mangrove stands of Naawan are already degraded due to fishpond development, human settlement and other resource-use activities. A highly diverse mangrove vegetation still exists with 30 species identified belonging to 22 families. At least 11 species are true mangroves while the rest are associates. The dominant mangrove species are Nypa fruticans (Nipa), Avicennia rumphiana (Miyapi), and Lumnitzera racemosa (Kulasi). N. fruticans dominates in terms of stem density while A. rumphiana largely contributes to the total basal area (13.7 m2 ha-1) of measured woody plants. The Naawan mangroves have low regenerative capacity in terms of production of saplings and seedlings except for L. racemosa and A. rumphiana, thus, planting is needed to rehabilitate them. Three sites were identified with a potential area of 5.2 ha for vegetation expansion through multispecies reforestation. Keywords: mangroves, assessment, basal area, vegetative expansion, Naawan. INTRODUCTION Mangroves are a diverse group of woody plants that thrive between the terrestrial and tidal interspace in sheltered shores, estuaries, tidal creeks, lagoons, marshes and mud flats in tropical and sub-tropical regions of the world (Tomlinson, 1986; Field 1995).
    [Show full text]
  • Species Composition and Zonal Distribution of Mangrove Plants in the Myeik Coastal Areas of Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access Species composition and zonal distribution of mangrove plants in the Myeik coastal areas of Myanmar Abstract Volume 9 Issue 2 - 2020 The species composition and zonal distribution of mangroves in five research sites viz., Tin-Zar-Ni-Win,1 U Soe-Win2 Kapa, Masanpa, Panadoung, Kywe Ka Yan and Kyauk Phyar from Myeik coastal areas 1Marine Biologist, Fauna & Flora International (FFI), Myanmar were studied from December 2017 to July 2018. Transect lines in landward, seaward 2Department of Marine Science, Mawlamyine University, and shoreline, and plots based on Point Center Quarter Method (PCQM) were used. Myanmar A total of 21 species of true mangrove were recorded. Rhizophora apiculata and R. Mucronata were the most dominant species in the study sites, especially in the seaward Correspondence: Tin-Zar-Ni-Win, Marine Biologist, Fauna & areas. Among the recorded species, Aegiceras corniculatum, Avicennia officinalis, R. Flora International (FFI), Myanmar apiculata, R. mucronata, Sonneratia alba and Nypa fruticans were distributed in all study Email sites. Bruguiera gymnorhiza and B.cylindrica, were recorded only in shoreline areas and Heritiera littoralisis was found only in landward areas in all study sites. Among the Received: April 07, 2020 | Published: April 28, 2020 study sites, Kapa has been designated as the highest species composition, representing 17 species, whereas Kyauk Phyar, representing 12 species as the lowest species composition. The environmental parameters of mangrove forests were also provided in all study sites. The various salinity and temperature ranges of seawater (25.0-30.0‰ and 28.0-32.0ºC) and soil (25.0-33.0‰ and 27.6-31.4ºC) significantly controlled the distribution of mangrove species of mangroves.
    [Show full text]
  • Phylogenetic Relationships Among the Mangrove Species of Acanthaceae Found in Indian Sundarban, As Revealed by RAPD Analysis
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2015, 6(3):179-184 ISSN: 0976-8610 CODEN (USA): AASRFC Phylogenetic relationships among the mangrove species of Acanthaceae found in Indian Sundarban, as revealed by RAPD analysis Surya Shekhar Das 1, Swati Das (Sur) 2 and Parthadeb Ghosh* 1Department of Botany, Bolpur College, Birbhum, West Bengal, India 2Department of Botany, Nabadwip Vidyasagar College, Nadia, West Bengal, India _____________________________________________________________________________________________ ABSTRACT RAPD markers were successfully used to identify and differentiate all the five species of Acanthaceae found in the mangrove forest of Indian Sundarban, to assess the extent of interspecific genetic diversity among them, to reveal their molecular phylogeny and to throw some light on the systematic position of Avicennia. The dendrogram reveals that the five species under study exhibits an overall similarity of 60.7%. Avicennia alba and A. officinalis (cluster C1) have very close relationship between them and share a common node in the dendrogram at a 73.3% level of similarity. Avicennia marina and Acanthus ilicifolius (cluster C2) also have close relationship between them as evident by a common node in the dendrogram at 71.8% level of similarity. Acanthus volubilis showed 68.1% similarity with cluster C1 and 60.7% similarity with cluster C2. Our study also supported the view of placing Avicennia under Acanthaceae. Regarding the relative position of Avicennia within Acanthaceae, it was shown to be very close to Acanthoideae. In comparison to other species, A. marina showed most genetic variability, suggesting utilization of this species over others for breeding programme and as source material in in situ conservation programmes.
    [Show full text]
  • Australian Mangrove and Saltmarsh Stralian Mangrove and Saltmarsh
    AuAuAustralianAu stralian Mangrove and Saltmarsh Network Conference WorkWorkinging with Mangrove and Saltmarsh for Sustainable Outcomes 232323-23 ---2525 February 2015 University of Wollongong CONTENTS Welcome ................................................................ 3 About AMSN ......................................................... 3 Opening presentation ........................................4 Conference host: Keynote presentation ........................................4 Venue ...................................................................... 5 Transport ............................................................... 5 Parking ................................................................... 5 Maps ........................................................................ 6 Program ................................................................. 8 Field trip program ............................................ 10 Conference sponsor: Poster session ................................................... 10 Oral abstracts .................................................... 11 Poster abstracts ............................................... 33 Image cover page: Oblique aerial image of Minnamurra River. Source: DLWC 2000 (http://www.environment.nsw.gov.au/ estuaries/stats/MinnamurraRiver.htm) 1 WELCOME Welcome to the 1 st Australian Mangrove and Saltmarsh Network Conference. With a theme of Working with mangrove and saltmarsh for sustainable outcomes , this conference will bring together coastal wetland and estuarine researchers,
    [Show full text]