We Are Working with Cambridge International Towards Endorsement of This Title
Total Page:16
File Type:pdf, Size:1020Kb
We are working with Cambridge International towards endorsement of this title. DRAFT Original material © Cambridge University Press 2019. This material is not final and is subject to further changes prior to publication. ISBN_Marketing_Sample.indd 1 23-Jul-19 6:52:07 AM We are working with Cambridge International towards endorsement of this title. Contents Contents How to use this series 00 3.4 Mass and inertia 000 3.5 Moving through fluids 000 How to use this book 00 3.6 Newton’s third law of motion 000 3.7 Understanding SI units 000 Introduction 00 4 Forces 000 1 Kinematics 000 4.1 Combining forces 000 1.1 Speed 000 4.2 Components of vectors 000 1.2 Distance and displacement, scalar 4.3 Centre of gravity 000 and vector 000 4.4 The turning effect of a force 000 1.3 Speed and velocity 000 4.5 The torque of a couple 000 1.4 Displacement–time graphs 000 1.5 Combining displacements 000 5 Work, energy and power 000 1.6 Combining velocities 000 5.1 Doing work, transferring energy 000 1.7 Subtracting vectors 000 5.2 Gravitational potential energy 000 1.8 Other examples of scalar and 5.3 Kinetic energy 000 vector quantities 000 5.4 Gravitational potential to kinetic energy transformations 000 2 Accelerated motion 000 5.5 Down, up, down: energy changes 000 2.1 The meaning of acceleration 000 5.6 Energy transfers 000 2.2 Calculating acceleration 000 5.7 Power 000 2.3 Units of acceleration 000 2.4 Deducing acceleration 000 6 Momentum 000 2.5 Deducing displacement 000 6.1 The idea of momentum 000 2.6 Measuring velocity and acceleration 000 6.2 Modelling collisions 000 2.7 Determining velocity and acceleration 6.3 Understanding collisions 000 in the laboratory 000 6.4 Explosions and crash-landings 000 2.8 The equations of motion 000 6.5 Collisions in two dimensions 000 2.9 Deriving the equations of motion 000 6.6 Momentum and Newton’s laws 000 2.10 Uniform and non-uniform acceleration 000 6.7 Understanding motion 000 2.11 Acceleration caused by gravity 000 2.12 Determining g 000 7 Matter and materials 000 2.13 Motion in two dimensions: projectiles 000 7.1 Density 000 2.14 UnderstandingDRAFT projectiles 000 7.2 Pressure 000 7.3 Archimedes’ principle 000 3 Dynamics 000 7.4 Compressive and tensile forces 000 3.1 Force, mass and acceleration 000 7.5 Stretching materials 000 3.2 Identifying forces 000 7.6 Elastic potential energy 000 3.3 Weight, friction and gravity 000 iii Original material © Cambridge University Press 2019. This material is not final and is subject to further changes prior to publication. ISBNpre_i-xii.indd 3 29-Jul-19 3:39:37 PM We are working with Cambridge International towards endorsement of this title. CAMBRIDGE INTERNATIONAL AS & A LEVEL PHYSICS: COURSEBOOK 8 Electric current 000 13.3 Interference 000 8.1 Circuit symbols and diagrams 000 13.4 The Young double-slit experiment 000 8.2 Electric current 000 13.5 Diffraction gratings 000 8.3 An equation for current 000 14 Stationary waves 000 8.4 The meaning of voltage 000 14.1 From moving to stationary 000 8.5 Electrical resistance 000 14.2 Nodes and antinodes 000 8.6 Electrical power 000 14.3 Formation of stationary waves 000 9 Kirchhoff’s laws 000 14.4 Determining the wavelength and speed of sound 000 9.1 Kirchhoff’s first law 000 9.2 Kirchhoff’s second law 000 15 Atomic structure 000 9.3 Applying Kirchhoff’s laws 000 15.1 Looking inside the atom 000 9.4 Resistor combinations 000 15.2 Alpha-particle scattering and the nucleus 000 10 Resistance and resistivity 000 15.3 A simple model of the atom 000 10.1 The I–V characteristic for a 15.4 Nucleons and electrons 000 metallic conductor 000 15.5 Forces in the nucleus 000 10.2 Ohm’s law 000 15.6 Discovering radioactivity 000 10.3 Resistance and temperature 000 15.7 Radiation from radioactive substances 000 10.4 Resistivity 000 15.8 Energies in a and β decay 000 11 Practical circuits 000 15.9 Equations of radioactive decay 000 11.1 Internal resistance 000 15.10 Fundamental particles 000 11.2 Potential dividers 000 15.11 Families of particles 000 11.3 Sensors 000 15.12 Another look at β decay 000 11.4 Potentiometer circuits 000 15.13 Another nuclear force 000 12 Waves 000 P1 Practical skills for AS 000 12.1 Describing waves 000 P1.1 Practical work in physics 000 12.2 Longitudinal and transverse waves 000 P1.2 Using apparatus and following instructions 000 12.3 Wave energy 000 P1.3 Gathering evidence 000 12.4 Wave speed 000 P1.4 Precision, accuracy, errors and 12.5 The Doppler effect for sound waves 000 uncertainties 000 12.6 Electromagnetic waves 000 P1.5 Finding the value of an uncertainty 000 12.7 Electromagnetic waves 000 P1.6 Percentage uncertainty 000 12.8 Orders of magnitude 000 P1.7 Recording results 000 12.9 The nature of electromagnetic waves 000 P1.8 Analysing results 000 12.10 Polarisation 000 DRAFTP1.9 Testing a relationship 000 13 Superposition of waves 000 P1.10 Combining uncertainties 000 13.1 The principle of superposition P1.11 Identifying limitations in of waves 000 procedures and suggesting improvements 000 13.2 Diffraction of waves 000 iv Original material © Cambridge University Press 2019. This material is not final and is subject to further changes prior to publication. ISBNpre_i-xii.indd 4 29-Jul-19 3:39:37 PM We are working with Cambridge International towards endorsement of this title. Contents 16 Circular motion 000 20.5 Changing temperature 000 16.1 Describing circular motion 000 20.6 Ideal gas equation 000 16.2 Angles in radians 000 20.7 Modelling gases: the kinetic model 000 16.3 Steady speed, changing velocity 000 20.8 Temperature and molecular kinetic energy 000 16.4 Angular speed 000 16.5 Centripetal forces 000 21 Uniform electric fields 000 16.6 Calculating acceleration and force 000 21.1 Attraction and repulsion 000 16.7 The origins of centripetal forces 000 21.2 The concept of an electric field 000 17 Gravitational fields 000 21.3 Electric field strength 000 21.4 Force on a charge 000 17.1 Representing a gravitational field 000 17.2 Gravitational field strengthg 000 22 Coulomb’s law 000 17.3 Energy in a gravitational field 000 22.1 Electric fields 000 17.4 Gravitational potential 000 22.2 Coulomb’s law 000 17.5 Orbiting under gravity 000 22.3 Electric field strength for a radial field 000 17.6 The orbital period 000 22.4 Electric potential 000 17.7 Orbiting the Earth 000 22.5 Gravitational and electric fields 000 18 Oscillations 23 Capacitance 000 18.1 Free and forced oscillations 000 23.1 Capacitors in use 000 18.2 Observing oscillations 000 23.2 Energy stored in a capacitor 000 18.3 Describing oscillations 000 23.3 Capacitors in parallel 000 18.4 Simple harmonic motion 000 23.4 Capacitors in series 000 18.5 Representing s.h.m. graphically 000 23.5 Comparing capacitors and resistors 000 18.6 Frequency and angular frequency 000 23.6 Capacitor networks 000 18.7 Equations of s.h.m. 000 23.7 Charge and discharge of capacitors 000 18.8 Energy changes in s.h.m. 000 18.9 Damped oscillations 000 24 Magnetic fields and 18.10 Resonance 000 electromagnetism 000 24.1 Producing and representing magnetic fields 19 Thermal physics 000 000 19.1 Changes of state 000 24.2 Magnetic force 000 19.2 Energy changes 000 24.3 Magnetic flux density 000 19.3 Internal energy 000 24.4 Measuring magnetic flux density 000 19.4 The meaning of temperature 000 24.5 Currents crossing fields 000 19.5 Thermometers 000 24.6 Forces between currents 000 19.6 Calculating energy changes 000 24.7 Relating SI units 000 DRAFT24.8 Comparing forces in magnetic, electric 20 Ideal gases 000 and gravitational fields 000 20.1 Particles of a gas 000 20.2 Explaining pressure 000 25 Motion of charged particles 000 20.3 Measuring gases 000 25.1 Observing the force 000 20.4 Boyle's law 000 25.2 Orbiting charged particles 000 v Original material © Cambridge University Press 2019. This material is not final and is subject to further changes prior to publication. ISBNpre_i-xii.indd 5 29-Jul-19 3:39:37 PM We are working with Cambridge International towards endorsement of this title. CAMBRIDGE INTERNATIONAL AS & A LEVEL PHYSICS: COURSEBOOK 25.3 Electric and magnetic fields 000 30 Medical imaging 000 25.4 The Hall effect 000 30.1 The nature and production of X-rays 000 25.5 Discovering the electron 000 30.2 X-ray attenuation 000 26 Electromagnetic induction 000 30.3 Improving X-ray images 000 30.4 Computerised axial tomography 000 26.1 Observing induction 000 30.5 Using ultrasound in medicine 000 26.2 Explaining electromagnetic induction 000 30.6 Echo sounding 000 26.3 Faraday’s law of electromagnetic induction 000 30.7 Ultrasound scanning 000 26.4 Lenz’s law 000 30.8 Positron Emission Tomography 000 26.5 Everyday examples of electromagnetic 31 Astronomy and cosmology 000 induction 000 31.1 Standard candles 000 27 Alternating currents 000 31.2 Luminosity and radiant flux intensity 000 27.1 Sinusoidal current 000 31.3 Stellar radii 000 27.2 Alternating voltages 000 31.4 The expanding Universe 000 27.3 Power and alternating current 000 P2 Planning, analysis 27.4 Rectification 000 and evaluation 000 28 Quantum physics 000 P2.1 Planning and analysis 000 28.1 Modelling with particles and waves 000 P2.2 Planning 000 28.2 Particulate nature of light 000 P2.3 Analysis of the data 000 28.3 The photoelectric effect 000 P2.4 Treatment of uncertainties 000 28.4 Threshold frequency and wavelength 000 P2.5 Conclusions and evaluation 28.5 Photons have momentum too 000 of results 000 28.6 Line spectra 000 Glossary 000 28.7 Explaining the origin of line spectra 000 28.8 Photon energies 000 Index 000 28.9 The nature of light: waves or particles? 000 28.10 Electron waves 000 28.11 Revisiting photons 000 29 Nuclear physics 000 29.1 Balanced equations 000 29.2 Mass and energy 000 29.3 Energy released in radioactive decay 000 29.4 Binding energy and stability 000 29.5 Randomness and radioactive decay 000 29.6 The mathematicsDRAFT of radioactive decay 000 29.7 Decay graphs and equations 000 29.8 Decay constant λ and half-life t1 000 2 vi Original material © Cambridge University Press 2019.