World Bank Document

Total Page:16

File Type:pdf, Size:1020Kb

World Bank Document f Public Disclosure Authorized Appendix Ill ENVIRONMENTAL IMPACT STATEMENT FOR THE CHINA QINBA MOUNTAINS POVERTY REDUCTION PROJECT NINGXIA HUI AUTONOMOUSREGION Public Disclosure Authorized Public Disclosure Authorized Ningxia Research Institute of Environmental Protection September 1996,Yinchuan Public Disclosure Authorized * Table of Contets 1. Preface 1.1 The Project Background . I -..-.... --. *----.(1) 1. 2 The Requirement for theAssessment .-- (2) 1. 3 The Category ofAssessment .. .. .. .. .. .. .. .. (2) * 1. 4 Basis for the Report .-.-.-...---.. (2) 1. 6 Applicable National Standards ...........................*-- -)(......4...... 1. 6 Basic Objcetive of Environmental Control and Protection .................................................................... (4) 1. 7 Principles and Methcds of Assessment -.---. -... (4) 1. 8 Process of the Assessment Work ................................................................................................ (5) * 1. 9 Brief Introduction of the Units and Personnels Participating in the Environmental Protection Impact Assessment (5) 2. Project Summnary . -..........I i.-.---.---... (8) 2. 1 The project Characteristics .. (8) 2. 2 The Objective of the Project ... (8) * 2. 3 The Deterrmination of the Project Areas. -................................ ....................................... (8) 2. 4 The Project ConstructionContents I'....................................... ''''''''''''''''''''''''''''''..'''''''.'t'''''''.(10) 2. 5 The project Technical Design .- (12) 2. 6 Progress of the Project Implementation.. (13) 2. 7 Investment Estimate . (13) e 2. 8 The project Organization and Management .. (13) 3. The General Situation of the Environmnentin the Project Area. .(15) 3. 1 Natural Environment .. (15) 3. 2 Natural Disasters ........ (16) * 3. 3 The Social and Economic Situation -........ X..............................(16) 3. 4 The Development Condition and Resources Evaluation .. (18) 4. Analysis of Environmental Influence and the Countermeasures . (21) 4. 1 Analysis of the Project Influence on Natural Conditions, Social/Economic Development and Environment System as Well * as the Countermeasures . I...... (21) 4. 2 Analysis and Countermeasures of the Influence from Agricultural Development Component on the Environment. .......................................................................... ..............................................- - ---....--. (23) 4. 3 Analysis of the Influence of Rural Enterprises Development on Environment . .. (33) 4. 4 Analysis of the Influence from Infrastructure Construction Project on the Environment . .(47) 5. Participation of the Public ----..-..--..-..---.................................................... (49) 5. 1 'The Purposes and Way of Survey ..............--.-.................................................... (49) 5. 2 The Objects and Contents of the Survey .................................................. (49) 5. 3 Survey Results and its Analysis .---.--. ....................... ................. (50) * 5. 4 Survey Results and Comprehensive Assessment .(51) 6. The Analysis of the Profit and Lanssof Environ mentalEconomy .......................................................... (54) 6. 1 The Principles of the Analysis .......................................................... (54) 0 . 6. 2 The Method of the Analysis .............................................................. (54) 6. 3 The Project Investment. -54,(54)..................................................................................................... 6. 4 The Project Benefits. ........................................................................................................-.... (55) 6. 5 The Investment of the Environmental Protection ...................................................................... (58) 6. 6 Conclusion .................................................................................................... (58) 7. Analysis of Environrnental Risks ............................................................................................... (59) 7. 1 EnvironnmentalRisks ............................................................................................................ (60) 7. 2 Countermeasures ................................................................................................... (60) 8. Substitue Scheme . (61) 9. Environment Policies and Monitoring ......... "... .............. (63) 9. 1 Enviromnent Management ....................................................................................... I........(63) 9. 2 Organization of Environment of Monitoring ................................................................. (63) 10. Conclusion and Recommendation .............................................................. I....................(65) 10. 1 Feasibility Analysis of the Project Construction .............................................................. (65) 10. 2 Conclusion ........................................................................................... I ....... I.......(65) 10. 3 Recommendations .. (65) Attached Tables. 1. Basic Date of the Project Area 2. Outline of the Project 3. Survey for the Public Participation Attached Maps: The Activities In Qinba Mountanious Area Poverty Reduction Would Band Loan Ningxia Project Area In Coina The Soil Map Of Qinba Mountanious Area Poverty Reduction World Bank Loan Ningxia Project Area In China The Map Of Qinba Mountanious Area Poverty Reduction World Bank Loan Ningxia Project Area In Cl-ina . 0 a.~~~~~~~~~~~~ . 1. Preface 1.1 The Project Backgrournd Xiji, Haiyuan, Tongxin, Jingyuan, Guyuan, Pengyang, Longde and Yanchi counties in Ningxia southern mountainous area are located at the transitional zone of arid and semi-arid zones of northwest of Chinma.The average annual rainfall in most part of the area is less than 400 mm. However, over 70% falls during July to September, the natural rainfall could not meet the basic demand of the crops growing. The drought fiequency is over 70% and the area is suffering from little precipitation and intensive evaporationi. The natural conditions are bad and the economic basis is weak. People are living in dire poverty. Now the population density had already been 54%/sq. krn, which was 2.7 timnes of the international critical umdicator used in the arid and semi-arid areas. The land is overloaded with population and the contradiction between people and natural environment is very big. The area is one of the poorest areas in our country. * In 1983, the Central Government began to calTy out a special agricultural program and the.strategy of poverty ahleviation in the " Three West" area. Through over the ten years' development and execution of poverty alleviation, the passive situation of the agricultural production has been turned round initially and also the poverty situation has been eased up. The Government action has laid a foundation for the farmers in Southern Ningxia to alleviate poverty and bring about prosperity. However, as the production condition has not been improved completely in most parts of 8 counties, in addition, the natural calamities there are frequent and there are still about 700,000 people with income below 320 yuan. The proportion of the area and population in poverty are 5 8% and 44% of the Regional total. This is the only case in China. The economic development in Ningxia is slow and the local financial income is low. It is difficult for Ningxia to support e those farmers to alleviate the poverty as fast as possible. In order to change the situation of these poor areas in southern Ningxia quickly and achieve the goals of the "National 87 poverty alleviation program" as scheduled, the State Council Poverty Alleviation Office, National Planning Commission and the Mimistry of Finance exchanged views with the World Bank and agreed to list Qinba Poverty Reduction project into the World Bank loan plan, and decided to select Xiji, Haiyuan, Tongxin, Jingyuan counties which are the poverty-striken area with more Hui nationality needed to be supported greatly in * southem Ningxia as the project area. : X_ *%MapI-I Distribution of Povcrty -stricken Area of Ninigiia 1 0 1.2 The Requiremenitfor the Assessment According to the requirements of " the EnvironmentalProtection Law of the People's Republic of China" , " the Law of Water and Soil Conservation " and other documents issued by the Envirorcnental Protection Bureau of China, State Planning Coninission, Ministry of Finance and People's Bank of China, Ningxia QB Project Management office entrusted Ningxia Environmental Protection Research Institute with the work of the environmental impact assessment of the project. After that, the qualified expeits have been organizedto carry out the execution of the work. 1.3. The Category of Assessmenit The overall environmental impact assessment of China Qinba Mountains Poverty ReductioniWorld Bank Loan Project has been detennined as " Category B " . InNingxia Project area, there are five components consisting of 67 subprojects. As the different environmental impacts created by different sub-projects, the category of enviromnental assessment are as follows through careful selection carried out by the vork team of the environmental assessment and decided by the Ningxia EnvironmentalProtection Bureau: A. The projects in Category B: (1). Agricultural developmenit,includilng food crops, cash crops, fruit trees and breeding. (2).Rural enterprises development, including the extension of refined starch factory, the extension
Recommended publications
  • Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: a Case of the Ningxia Hui Autonomous Region, China
    sustainability Article Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China Rong Li 1, Rui Han 1, Qianru Yu 1, Shuang Qi 2 and Luo Guo 1,* 1 College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China; [email protected] (R.L.); [email protected] (R.H.); [email protected] (Q.Y.) 2 Department of Geography, National University of Singapore; Singapore 117570, Singapore; [email protected] * Correspondence: [email protected] Received: 25 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Ecological vulnerability, as an important evaluation method reflecting regional ecological status and the degree of stability, is the key content in global change and sustainable development. Most studies mainly focus on changes of ecological vulnerability concerning the temporal trend, but rarely take arid and semi-arid areas into consideration to explore the spatial heterogeneity of the ecological vulnerability index (EVI) there. In this study, we selected the Ningxia Hui Autonomous Region on the Loess Plateau of China, a typical arid and semi-arid area, as a case to investigate the spatial heterogeneity of the EVI every five years, from 1990 to 2015. Based on remote sensing data, meteorological data, and economic statistical data, this study first evaluated the temporal-spatial change of ecological vulnerability in the study area by Geo-information Tupu. Further, we explored the spatial heterogeneity of the ecological vulnerability using Getis-Ord Gi*. Results show that: (1) the regions with high ecological vulnerability are mainly concentrated in the north of the study area, which has high levels of economic growth, while the regions with low ecological vulnerability are mainly distributed in the relatively poor regions in the south of the study area.
    [Show full text]
  • Appendix 1: Rank of China's 338 Prefecture-Level Cities
    Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan
    [Show full text]
  • The Opposition of a Leading Akhund to Shi'a and Sufi
    The Opposition of a Leading Akhund to Shi’a and Sufi Shaykhs in Mid-Nineteenth- Century China Wang Jianping, Shanghai Normal University Abstract This article traces the activities of Ma Dexin, a preeminent Hui Muslim scholar and grand imam (akhund) who played a leading role in the Muslim uprising in Yunnan (1856–1873). Ma harshly criticized Shi’ism and its followers, the shaykhs, in the Sufi orders in China. The intolerance of orthodox Sunnis toward Shi’ism can be explained in part by the marginalization of Hui Muslims in China and their attempts to unite and defend themselves in a society dominated by Han Chinese. An analysis of the Sunni opposition to Shi’ism that was led by Akhund Ma Dexin and the Shi’a sect’s influence among the Sufis in China help us understand the ways in which global debates in Islam were articulated on Chinese soil. Keywords: Ma Dexin, Shi’a, shaykh, Chinese Islam, Hui Muslims Most of the more than twenty-three million Muslims in China are Sunnis who follow Hanafi jurisprudence when applying Islamic law (shariʿa). Presently, only a very small percentage (less than 1 percent) of Chinese Muslims are Shi’a.1 The historian Raphael Israeli explicitly analyzes the profound impact of Persian Shi’ism on the Sufi orders in China based on the historical development and doctrinal teachings of Chinese Muslims (2002, 147–167). The question of Shi’a influence explored in this article concerns why Ma Dexin, a preeminent Chinese Muslim scholar, a great imam, and one of the key leaders of the Muslim uprising in the nineteenth century, so harshly criticized Shi’ism and its accomplices, the shaykhs, in certain Sufi orders in China, even though Shi’a Islam was nearly invisible at that time.
    [Show full text]
  • Ÿþm Icrosoft W
    第 26 卷 第 9 期 农 业 工 程 学 报 Vol.26 No.9 72 2010 年 9 月 Transactions of the CSAE Sep. 2010 Models of soil and water conservation and ecological restoration in the loess hilly region of China Dang Xiaohu1,2,Liu Guobin2※,Xue Sha2,3 (1. School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; 2. Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; 3. Institute of Water Resources and Hydro-electric, Xi’an University of Technology, Xi’an 710048, China) Abstract: Ecological degradation characterized by severe soil erosion and water loss is the most imposing ecological-economic issue in the Loess Hilly Region; the soil and water conservation (SWC) and ecological restoration are crucial solutions to this issue. It is of importance to explore SWC models for ecological reconstruction compatible with local socioeconomic and environmental conditions. The paper reviewed on SWC and ecological rehabilitation researches and practices and mainly concerned on eight small-scale (small catchments) models and Yan’an Meso-scale model in the Loess Hilly Region. To evaluate the environmental and socioeconomic impacts of these models, their validities were examined using the participatory rural appraisal. The results indicated that SWC and ecological restoration at different scales have played important roles both in local economic development and environmental improvement and provided an insight into sustainable economic development on the Loess plateau in the future. Furthermore, this paper strengthens our belief that, under improved socioeconomic conditions, SWC and ecological reconstruction can be made sustainable, leading to a reversal of the present ecological degradation.
    [Show full text]
  • Effects of Land Use Change on Ecosystem Services in Arid Area Eco- Logical Migration
    Chin. Geogra. Sci. 2018 Vol. 28 No. 5 pp. 894–906 Springer Science Press https://doi.org/10.1007/s11769-018-0971-5 www.springerlink.com/content/1002-0063 Effects of Land Use Change on Ecosystem Services in Arid Area Eco- logical Migration LIU Xiaopeng1, 2, CHEN Xiao1, 2, HUA Kaiping1, 3, WANG Yajuan1, 2, WANG Peng1, 2, HAN Xiaojia1, 2, YE Junyan1, 2, 1, 2 WEN Shengqiang (1. School of Resources and Environment, Ningxia University, Yinchuan 750021, China; 2. Key Laboratory (China-Arab) of Resource Evaluation and Environmental Regulation of Arid Region in Ningxia, Yinchuan 750021, China; 3. School of Tourism and Environment, Shaanxi Normal University, Xi’an 710062, China) Abstract: Ecological migration is the process of increasing the population density in the immigration area and transferring the ecologi- cal pressure from emigration area to immigration area. This process may result in significant changes in land use and land cover in the area of immigration and have an important effect on ecosystem services. Therefore, scientifically revealing the effects and differentia- tion mechanisms of ecological migration on ecosystem services is becoming an important issue related to the implementation of the national ecological migration strategy in China. This study employed the Hongsibu District as a typical example of ecological migration. Hongsibu District is located in the central Ningxia steppe and desert steppe areas. Remote sensing data covering five periods from the period before ecological migration in 1995 and after migration in 2000, 2005, 2010, and 2015 was used to measure the value of ecosys- tem services (ESV). A geographical detector model and the value of ecosystem services model were used to diagnose the dynamic mechanism of the effects of land use change on ecosystem services.
    [Show full text]
  • Analysis of Traditional Fur Processing Technology of Hui Nationality and Its Inheritance
    Advances in Economics, Business and Management Research, volume 110 5th International Conference on Economics, Management, Law and Education (EMLE 2019) Analysis of Traditional Fur Processing Technology of Hui Nationality and Its Inheritance Jianjun Ma Institute of Hui Studies Ningxia University Yinchuan, China 750021 Abstract—The Hui people are good at business, which is an important part of their economic life. As a kind of business II. A COMMERCIAL SYMBOL HIGHLIGHTING THE that Hui people are good at, the fur processing industry is a UNIQUENESS OF HUI ECONOMY AND CULTURE traditional craft that Hui people hold for thousands of years. It According to the origin of fur and the nationality it not only has a long history, a large number of employees and belongs to, the fur processing technology should be the exquisite craftsmanship, but also plays an important role in the livelihood and patent that nomads are good at, which not economic life of the Hui nationality, highlighting the Hui characteristics of business operation. only conforms to the production and life reality of the nomads who mainly produce livestock products, but also Keywords—Hui nationality; creative cultural industry; accords with the cultural practice of the nomads' economic development; Yinchuan and cultural types. The fact is not so. Driven by commercial and economic interests, the Hui nationality has replaced the nomads who should be good at fur processing industry and I. INTRODUCTION continuously developed this industry into a highly developed With a long history, the Hui fur processing industry is fur processing industry. They thus rank the first among the long-standing and well-established and has various forms minorities in northwest China in terms of fur processing, and and distinct national characteristics.
    [Show full text]
  • Occurrence of Trichophyton Verrucosum in Cattle in the Ningxia
    Guo et al. BMC Veterinary Research (2020) 16:187 https://doi.org/10.1186/s12917-020-02403-6 RESEARCH ARTICLE Open Access Occurrence of Trichophyton verrucosum in cattle in the Ningxia Hui autonomous region, China Yanan Guo1, Song Ge1, Haifeng Luo1, Atif Rehman1, Yong Li2 and Shenghu He1* Abstract Background: Ningxia Hui Autonomous Region is an important cattle breeding area in China, and cattle breeding bases are located in this area. In Ningxia, dermatophytes have not been paid attention to, so dermatophytosis is becoming more and more serious. For effective control measures, it is important to determine the disease prevalence and isolate and identify the pathogenic microorganism. Results: The study showed the prevalence of dermatophytes was 15.35% (74/482). The prevalence in calf was higher than adult cattle (p < 0.05). The morbidity was the highest in winter compared with autumn (p < 0.0001), summer (p < 0.05) and spring (p < 0.0001). The prevalence in Guyuan was the highest compared with Yinchuan (p < 0.05) and Shizuishan (p < 0.05). The incidence of lesions on the face, head, neck, trunk and whole body was 20.43, 38.71, 20.43, 10.75 and 9.68%, respectively. From all samples, the isolation rate of Trichophyton was highest (61.1%). The phylogenetic tree constructed showed that the 11 pathogenic fungi were on the same branch as Trichophyton verrucosum. Conclusions: This study reports, for the first time, the presence of Trichophyton verrucosum in cattle in Ningxia and showed that the incidence of dermatophytosis is related to different regions, ages and seasons.
    [Show full text]
  • See Front Matter © 2006 Published by Elsevier B.V
    Tectonophysics 420 (2006) 253–266 www.elsevier.com/locate/tecto Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin ⁎ Mingjun Liu a,b, Walter D. Mooney b, , Songlin Li a,b, Nihal Okaya b, Shane Detweiler b a Geophysical Exploration Center, China Earthquake Administration, 104 Wenhua Road, Zhengzhou, Henan 450002, China b U. S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA Received 19 January 2005; received in revised form 17 October 2005; accepted 4 January 2006 Available online 5 May 2006 Abstract The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s.
    [Show full text]
  • Allocation of Maize Varieties According to Temperature for Use in Mechanical Kernel Harvesting in Ningxia, China
    20 January, 2021 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 14 No.1 Allocation of maize varieties according to temperature for use in mechanical kernel harvesting in Ningxia, China Hongyan Li1,2, Yonghong Wang3, Jun Xue1,2, Ruizhi Xie1,2, Keru Wang1,2, Rulang Zhao3, Wanmao Liu1,2, Bo Ming1,2, Peng Hou1,2, Zhentao Zhang1,2, Wenjie Zhang3, Shaokun Li1,2* (1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; 3. Crop Research Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750105, China) Abstract: The reasonable assessment of maize varieties in different ecological regions can allow temperature resources to be fully exploited and reach the goal of high yield and efficiency and is thus an important direction of modern maize development in China. In this study, a logistic power nonlinear growth model was used to simulate the accumulated temperature required for kernel dehydration to moisture contents of 25%, 20%, and 16% for various maize cultivar, which were divided into six types based on the accumulated temperature required for kernel dehydration to a moisture content of 25%. The relationship between the yield of maize cultivars and the accumulated temperature required for kernel dehydration to a moisture content of 25% was found to follow a unary function model. Changing the planted maize variety was found to increase economic returns by more than 7000 RMB/hm2 in Ningxia, Northwest China. Under the conditions of mechanical grain harvesting, economic benefits can be further increased by means of selecting high yields and fast-dehydrating varieties, selling when the grain dehydration is below 16%.
    [Show full text]
  • The Case of Ningxia Autonomous Region, China
    IZA DP No. 8595 Mapping and Understanding Ethnic Disparities in Length of Schooling: The Case of Ningxia Autonomous Region, China Björn Gustafsson Ding Sai October 2014 DISCUSSION PAPER SERIES Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor Mapping and Understanding Ethnic Disparities in Length of Schooling: The Case of Ningxia Autonomous Region, China Björn Gustafsson Göteborg University and IZA Ding Sai Chinese Academy of Social Sciences Discussion Paper No. 8595 October 2014 IZA P.O. Box 7240 53072 Bonn Germany Phone: +49-228-3894-0 Fax: +49-228-3894-180 E-mail: [email protected] Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion.
    [Show full text]
  • Ningxia Road Development Project
    Resettlement Planning Document Supplementary Resettlement Plan Document Stage: Final Project Number: 33469-01 February 2009 Realigned Section of PRC: Ningxia Road Development Project Prepared by Ningxia Highway Construction Administration Bureau The Supplementary resettlement is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. BREVIATIONS AND ACRONYMS Note: While all acronyms and abbreviations are defined in the text, this list is presented to highlight the most important ones ADB Asian Development Bank AV Administrative Village CNY PRC Currency, the Yuan HH Household CRO County Resettlement Office mu Chinese land area unit of measure: 1 mu = 0.0667 ha PAH Project Affected Household NHSDI Ningxia Highway Survey Design Institute NHCAB Ningxia Highway Construction Administration Bureau NCD Ningxia Communications Department PAP Project Affected Person PRO Project Resettlement Office RMB Renminbi—another word for the PRC Currency, the Yuan RP Resettlement Plan SES Socioeconomic Survey Twp. Township ¥ Abbreviation for Yuan, PRC’s currency Supplementary RP of Ningxia Expressway TABLE OF CONTENTS I OBJECTIVES OF RESETTLEMENT PLAN AND DEFINITION OF RESETTLEMENT TERMINOLOGY II EXECUTIVE SUMMARY III THE RESETTLEMENT PLAN A. Status of the Resettlement Plan 4 B. Scope of Land Acquisition and Resettlement 4 C. Policy Framework and Entitlements 4 D. Resettlement Strategy 5 E. Institutional Arrangements 5 F. Vulnerable Groups 5 G. Consultation and Grievance Redress 5 H. Monitoring and Reporting 6 I. Resettlement Cost and Implementation Schedule 6 1. GENERAL 10 1.1. Project Background 10 1.2. Project description 10 1.3.
    [Show full text]
  • Spatial–Temporal Matching Characteristics Between Agricultural Water and Land Resources in Ningxia, Northwest China
    water Article Spatial–Temporal Matching Characteristics between Agricultural Water and Land Resources in Ningxia, Northwest China Jie Du 1,2, Zhaohui Yang 2,*, Hao Wang 1,2,*, Guiyu Yang 2 and Shuoyang Li 2 1 Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Engineering Research Center of Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China * Correspondence: [email protected] (Z.Y.); [email protected] (H.W.); Tel.: +86-10-6878-5708 (Z.Y. & H.W.) Received: 11 June 2019; Accepted: 13 July 2019; Published: 14 July 2019 Abstract: Agricultural water and land resources are key elements of human production and their unbalanced distribution has threatened the sustainable development of agriculture and regional food security. This study is aiming to investigate the spatial–temporal changes of matching characteristics between agricultural water and land resources in Ningxia during 2007 to 2017. The agricultural irrigation water (AIW), farmland area (FA) and effective irrigated area (EIA) were selected as quantity parameters for agricultural water and land resource. Results show that the gravity centers of AIW and EIA both moved in the southeast direction, while the gravity center of FA moved northwestward, which indicated a better spatial matching degree between AIW and EIA. According to the Gini coefficient and total spatial mismatch index, the spatial mismatch between AIW and FA of Ningxia was remedied and that of AIW and EIA was worse.
    [Show full text]