Genetic Variation and Complex Disease: the Examination of an X-Linked Disorder and a Multifactorial Disease

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Variation and Complex Disease: the Examination of an X-Linked Disorder and a Multifactorial Disease GENETIC VARIATION AND COMPLEX DISEASE: THE EXAMINATION OF AN X-LINKED DISORDER AND A MULTIFACTORIAL DISEASE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Catherine Elise Cottrell ***** The Ohio State University 2007 Dissertation Committee: Approved by Dr. Julie M. Gastier-Foster, Advisor Dr. John Bauer _________________________________ Dr. Gail Herman Advisor Graduate Program in Dr. Susan R. Mallery Integrated Biomedical Sciences ABSTRACT Two genetic studies are presented in this dissertation. The studies share a common theme of the influence of genetic variability in complex disease. The first study is entitled, “The Association of Antioxidant-Related Gene Polymorphisms and Second Primary Malignant Neoplasms in Pediatric Hodgkin Lymphoma.” Improved treatment strategies in pediatric Hodgkin Lymphoma (HL) have resulted in a cure rate approaching 95%, yet the development of a second primary malignant neoplasm (SMN) is a risk for long-term survivors. In a pediatric HL population, between 6-26% of patients will develop a SMN within 30 years following treatment. The etiology of HL is still largely unknown, as is the cause of certain types of SMNs. Oxidative stress has been linked to the development of cancer due to the damaging effects of reactive oxygen species (ROS) on DNA, lipids, and proteins. During periods of extended oxidative stress, the damaging effects of ROS are likely to increase which in turn raises the risk of genetic change. In a multi-stage model of tumorigenesis, genetic change is considered to be the initiating event of cancer development. Under normal circumstances, antioxidant enzymes within the cell mitigate the effects of ROS by converting reactive species into non-toxic molecules. Mechanisms within the cell maintain a steady state balance between ROS and antioxidant enzyme levels. We ii hypothesize that individuals predisposed to lower levels of antioxidant enzyme activity due to polymorphic variants within those genes may be at risk for increased damage caused by ROS. Although decreased amounts of antioxidant enzymes have been found in a variety of cancers, a correlation between polymorphisms in antioxidant genes and predisposition to secondary cancer has not been studied. The purpose this study was to assess the association of antioxidant gene alleles with the risk of developing a SMN in HL survivors. DNA samples were obtained from 768 HL patients enrolled in the Childhood Cancer Survivor Study (CCSS). The samples were genotyped for 90 polymorphisms in antioxidant related genes including SOD, GPX, NOS, CAT, and CYP2C9. Statistical analysis methods to determine risk of developing a SMN included association, haplotype, and multiple regression models. In our HL cohort, 131 patients developed a SMN. An additional 117 patients developed nonmelanoma skin cancer, and 34 patients developed 2 SMNs. Out of the 36 SNPs that were included in the final analysis, 4 SNPs in the GPX1, GPX3, GPX4, and SOD2 genes, were potentially suggestive (p<0.05) of an association between genotype and the development of a SMN. A general trend observed in the genotyping data suggested that an increased risk of SMN was conferred by the presence of the minor allele, while a decreased risk of SMN was conferred by the presence of the major allele in the population. Replication studies are necessary, though it is notable that polymorphisms within the GPX family may be associated with the development SMN in our cohort. Additionally, hazard ratios were only moderately increased in this population suggesting that the development of a SMN in a pediatric HL is likely multi-factorial in nature. The elucidation of critical genes involved in SMN development could influence iii patient follow-up and intervention strategies, and potentially aid in the prevention of SMN. The second study in this thesis is entitled, “Atypical X-Inactivation in an X;1 Translocation Patient Diagnosed with Otopalatodigital Syndrome.” X-chromosome inactivation (XCI) is an epigenetic process used to regulate gene dosage in mammalian females by silencing one X-chromosome. While the pattern of XCI is typically random in normal females, abnormalities of the X-chromosome may result in skewing due to disadvantaged cell growth. We describe a female patient with an X;1 translocation [46,X, t(X;1)(q28;q21)dn] and unusual pattern of XCI who was clinically diagnosed with Otopalatodigital syndrome (OPD) type 1. There was complete skewing of XCI in the patient, along with the atypical findings of an active normal X-chromosome and an inactive derivative X. An X-linked disorder, OPD1 is characterized by multiple congenital anomalies including skeletal abnormalities, craniofacial defects, and hearing loss. Mutations within the FLNA gene (Xq28) are known to cause OPD, though none were detected in our patient. Additionally, no abnormalities in FLNA mRNA or protein were detected in our patient. Characterization of the translocation revealed that the patient’s Xq28 breakpoint interrupts the DKC1 gene, located 400kB distal to FLNA. Molecular analysis of the breakpoint region revealed functional disomy of Xq28 genes distal to DKC1. No monosomy of 1q genes was detected. Possible explanations for the patient’s phenotype include a position effect due to the translocation breakpoint, an undetected FLNA-related mutation, or altered gene dosage due to consequences of atypical XCI. iv Dedicated to Andy Thank you for your love, constant support, and words of encouragement. & To my parents, Charles and Denise Thank you for inspiring me, fostering a sense of creativity, and for a lifetime of love and support. v ACKNOWLEDGMENTS It is with deepest gratitude that I would like to thank my advisor, Dr. Julie Gastier-Foster for her dedication and commitment to me on both a personal and professional level. You are a constant source of inspiration and an exceptional mentor. Thank you for your patience, guidance, and support over the years. Most of all, I thank you for your time, for the countless hours spent teaching me, and for the direction you provided so that I could mature on both a scientific and personal level. I would like to thank my committee members, Dr. Gail Herman, Dr. John Bauer, and Dr. Susan Mallery for your commitment to teaching, dedication to students, and exceptional guidance. I would like to express my sincere appreciation for Dr. Steve Qualman. Thank you for guiding me to choose a wonderful lab in which to complete my dissertation. Thank you for introducing me to Julie, because without her none of this would be possible. Finally, thank you most of all for your dedication, your commitment to research and teaching, and your passion in supporting Children’s Hospital. I would like to thank Dr. Allan Yates and Christine Kerr for your support of the IBGP program, for your devotion to the students, and for your sincere desire to see each of us succeed. vi I would especially like to thank all of the technologists and staff within the Molecular and Cytogenetics Laboratories at Children’s. Thank you for accepting me into the lab, and for sharing your time and resources with me. Thank you especially to Jessica who made me feel welcome when I first began and for your help along the way. Thanks to Beth and Morgan for teaching me the basics of FISH, cell harvests and for your expertise in taking wonderful photos on the scope. A special thank you goes to Eileen for your unwavering support, your friendship, and your sense of humor. I don’t think I could have made it through this without you. Finally, I would like to thank my family and friends for your support throughout this process. Thank you to Jen for understanding what I was going though when no one else did. Thank you for graduating ahead of me, so then I could ask you all sorts of questions on finishing up. Thank you for extended chats over coffee and for going to Buckeye football games with me. Thank you to Colleen for being a great sister. Thank you for your support and kind words, and for feeding the cats when I was working late or away on weekends. Thank you especially to Andy for your love and encouragement. Thank you for driving long hours to see me, for cheering me up during hard times, and for always making me laugh, especially when this day seemed very far away. Thank you to my parents for sparking my interest in science early on. Thank you for those kitchen science experiments, grade school science fair ideas, and for taking me to your lab when I was very young. Most of all, thank you for your love and guidance over the years. vii VITA August 3, 1979. Born – Columbus, OH June 2001. B.S. Molecular Genetics The Ohio State University 2001 – 2007. Graduate Fellow The Ohio State University. AWARDS 2004 . .Graduate Student Research Award Columbus Children’s Research Institute Annual Research Conference FELLOWSHIPS 2001 . .University Fellowship The Ohio State University 2001-2005 . Molecular Life Sciences Fellowship The Ohio State University 2002-2007 . General Mason Fellowship Columbus Children’s Hospital FIELD OF STUDY Major Field: Integrated Biomedical Sciences Specialization: Genetics viii TABLE OF CONTENTS P a g e Abstract. ii Dedication. v Acknowledgments . .vi Vita . viii List of Tables. xiv List of Figures . .xv Introduction . .1 Section I: The Association of Antioxidant Related Gene Polymorphisms and Second Primary Malignant Neoplasm in a Pediatric Hodgkin’s Lymphoma Population Chapters: 1. Hodgkin Lymphoma and the Childhood Cancer Survivor Study . 5 1.1 Introduction to Hodgkin Lymphoma . 5 1.2 Classification of Hodgkin Lymphoma . 6 1.3 Risk Factors and Causative Agents in Hodgkin Lymphoma . 6 1.4 Treatment of Hodgkin Lymphoma: Maximizing Efficacy while Minimizing Risk . .8 ix 1.5 The Childhood Cancer Survivor Study .
Recommended publications
  • A History of Closed Circuit O2 Underwater Breathing Apparatus
    Rubicon Research Repository (http://archive.rubicon-foundation.org) A HISTORY OF CLOSED CIRCUIT OXYGEN UNDEnWATER BRDA'1'HIllG AJ'PARATU'S, by , Dan Quiok Project 1/70 School of Underwater Medicine, H MAS PENGUIN, Naval P.O. Balmoral, IT S W .... 2091. May, 1970 Rubicon Research Repository (http://archive.rubicon-foundation.org) TABLE OF CONTENTS. Foreword. Page No. 1 Introduction. " 2 General History. " 3 History Il: Types of CCOUBA Used In 11 United Kingdom. " History & Types of CCOUBA Used In 46 Italy. " History & Types o:f CCOUBJl. Used In 54 Germany. " History & Types of CCOUEA Used In 67 Frr>.!1ce. " History·& Types of CeOUM Used In 76 United States of America. " Summary. " 83 References. " 89 Acknowledgements. " 91 Contributor. " 91 Alphabetical Index. " 92 Rubicon Research Repository (http://archive.rubicon-foundation.org) - 1 - FOREWORD I am very pleased to have the opportunity of introducing this history, having been responsible for the British development of the CCOt~ for special operations during World War II and afterwards. This is a unique and comprehensive summary of world wide development in this field. It is probably not realised what a vital part closed circuit breathing apparatus played in World War II. Apart from escapes from damaged and sunken submarines by means of the DSEA, and the special attacks on ships by human torpedoes and X-craft, including the mortal damage to the "Tirpitz", an important part of the invasion forces were the landing craft obstruction clearance units. These were special teams of frogmen in oxygen breathing sets who placed demolition charges on the formidable underwater obstructions along the north coast of France.
    [Show full text]
  • Hodgkin Lymphoma Treatment Regimens
    HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 5) Clinical Trials: The National Comprehensive Cancer Network recommends cancer patient participation in clinical trials as the gold standard for treatment. Cancer therapy selection, dosing, administration, and the management of related adverse events can be a complex process that should be handled by an experienced health care team. Clinicians must choose and verify treatment options based on the individual patient; drug dose modifications and supportive care interventions should be administered accordingly. The cancer treatment regimens below may include both U.S. Food and Drug Administration-approved and unapproved indications/regimens. These regimens are provided only to supplement the latest treatment strategies. These Guidelines are a work in progress that may be refined as often as new significant data become available. The NCCN Guidelines® are a consensus statement of its authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult any NCCN Guidelines® is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The NCCN makes no warranties of any kind whatsoever regarding their content, use, or application and disclaims any responsibility for their application or use in any way. Classical Hodgkin Lymphoma1 Note: All recommendations are Category 2A unless otherwise indicated. Primary Treatment Stage IA, IIA Favorable (No Bulky Disease, <3 Sites of Disease, ESR <50, and No E-lesions) REGIMEN DOSING Doxorubicin + Bleomycin + Days 1 and 15: Doxorubicin 25mg/m2 IV push + bleomycin 10units/m2 IV push + Vinblastine + Dacarbazine vinblastine 6mg/m2 IV over 5–10 minutes + dacarbazine 375mg/m2 IV over (ABVD) (Category 1)2-5 60 minutes.
    [Show full text]
  • Vincristine (Conventional): Drug Information
    Official reprint from UpToDate® www.uptodate.com ©2017 UpToDate® Vincristine (conventional): Drug information Copyright 1978-2017 Lexicomp, Inc. All rights reserved. (For additional information see "Vincristine (conventional): Patient drug information" and see "Vincristine (conventional): Pediatric drug information") For abbreviations and symbols that may be used in Lexicomp (show table) Special Alerts Vincristine Sulfate Safety Alert October 2015 Health Canada is notifying health care providers that certain lots of Hospira’s vincristine sulfate 1 mg/mL injection (DIN 02183013: 2 mL vial, list #7077A001; 5 mL vial, list #7082A001) have incorrect or outdated safety information on the inner/outer labels and package insert, which may increase the risk to patients and may result in significant patient harm requiring medical intervention. These warnings include: - Vincristine should only be administered by the intravenous (IV) route. Administration of vincristine by any other route can be fatal. - Syringes containing this product should be labeled “Warning - for IV use only.” - Extemporaneously prepared syringes containing this product must be packaged in an overwrap which is labeled “Do not remove covering until moment of injection. For IV use only - fatal if given by other routes.” - Contraindication of vincristine in patients with demyelinating Charcot-Marie-Tooth syndrome. - Potential risk of acute shortness of breath when vincristine is coadministered with mitomycin-C and GI toxicities including necrosis with administration of vincristine. Health care providers are requested to consult with the approved Canadian product monograph for vincristine sulfate 1 mg/mL for the most updated information. Consumers with questions should contact their health care provider for more information. ALERT: US Boxed Warning Experienced physician: Vincristine should be administered by individuals experienced in the administration of the drug.
    [Show full text]
  • HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 2)
    HODGKIN LYMPHOMA TREATMENT REGIMENS (Part 1 of 2) The selection, dosing, and administration of anticancer agents and the management of associated toxicities are complex. Drug dose modifications and schedule and initiation of supportive care interventions are often necessary because of expected toxicities and because of individual patient variability, prior treatment, and comorbidities. Thus, the optimal delivery of anticancer agents requires a healthcare delivery team experienced in the use of such agents and the management of associated toxicities in patients with cancer. The cancer treatment regimens below may include both FDA-approved and unapproved uses/regimens and are provided as references only to the latest treatment strategies. Clinicians must choose and verify treatment options based on the individual patient. NOTE: GREY SHADED BOXES CONTAIN UPDATED REGIMENS. REGIMEN DOSING Classical Hodgkin Lymphoma—First-Line Treatment General treatment note: Routine use of growth factors is not recommended. Leukopenia is not a factor for treatment delay or dose reduction (except for escalated BEACOPP).1 CR=complete response IPS=International Prognostic Score PD=progressive disease PFTs=pulmonary function tests PR=partial response RT=radiation therapy SD=stable disease Stage IA, IIA Favorable ABVD (doxorubicin [Adriamycin] Days 1 and 15: Doxorubicin 25mg/m2 IV + bleomycin 10mg/m2 IV + vinblastine + bleomycin + vinblastine + 6mg/m2 IV + dacarbazine 375mg/m2 IV. dacarbazine [DTIC-Dome]) + Repeat cycle every 4 weeks for 2–4 cycles. involved-field radiotherapy (IFRT)1–4 Follow with IFRT after completion of chemotherapy. Abbreviated Stanford V Weeks 1, 3, 5 and 7: Vinblastine 6mg/m2 IV + doxorubicin 25mg/m2 IV. (doxorubicin + vinblastine + Weeks 1 and 5: Mechlorethamine 6mg/m2.
    [Show full text]
  • Personal Protective Equipment Solutions for the Oil & Gas Industry Safety Solutions for the Oil & Gas Workforce
    Honeywell Safety Products Personal Protective Equipment Solutions for the Oil & Gas Industry Safety Solutions for the Oil & Gas Workforce Safety first Comprehensive head-to-toe safety solutions Honeywell has united the most respected safety brands in the world to deliver best-in-class safety, quality, and performance to all those who work in hazardous environments. The combined strengths of our leading brands in personal protective equipment (PPE) create a unique set of solutions unmatched in the safety industry. Our ongoing commitment to innovation, combined with our global technology centers, has transformed the industry and created a single, premier source for the most comprehensive solutions available. We are united not only by name, but by our singular focus on being the best safety partner, today and into the future. We are dedicated to more than providing a product or a service: we are committed to protecting human lives. We are Honeywell Safety Products. Solutions for every challenge. From hard hats and eyewear to safety footwear, many workers wear Honeywell Safety Products solutions from head to toe. We incorporate comfort and style in an ergonomic approach to product design that, coupled with our behavior- based education and safety expertise, fosters a workplace culture where workers truly embrace safety. We are where you are. Our network of manufacturing, support and safety specialists includes more than 10,000 people in 30 countries. These committed individuals work in manufacturing plants, research centers, distribution facilities and offices worldwide so local support from our safety specialists is just around the corner at sales and service locations spanning six continents.
    [Show full text]
  • Based on a Review of the NOAA Diving Manual, 4
    conditions, polluted water, rebreathers, Nitrox, mixed- gas diving, saturated diving, hyperbaric chambers, hazardous aquatic life, emergency medical care, and accident management. But wait, there's more: the appendices also cover field neurological assessment, various dive tables including saturation and Nitrox, a complete glossary, a very good list of references, and a useful index. If you want to complete your library, then also get: • U.S. Navy Diving Manual, available as a free but large 46MB pdf file on-line (www.supsalv.org/ divingpubs.html#Download) • Scientific Diving Techniques; A Practical Guide for the Research Diver, by John Heine (reviewed in Oceanography, 14(1), by Alice Alldredge) • Scientific Diving: A General Code of Practice, by Nick Flemming and Michael Max • The Encyclopedia of Recreational Diving, 2 °a edi- Comments on Technology Transfer in Diving: tion, Professional Association of diving Instructors, 1996, softcover and CD-ROM [some Based on a Review of the NOAA Diving redundancy with the NOAA Diving Manual, but Manual, 4 'h Edition a good chapter on the Aquatic Realm] Review by Part Two--Tech Transfer Melbourne G. Briscoe What this review is really about is a short essay on Office of Naval Research, Arlington, Virginia USA where the information comes from that goes into books Ronald B. Carmichael like the NOAA Diving Manual, and where it goes. Naval Sea Systems Command, Washington, D.C USA There are five major branches in the world of div- ing: commercial, public safety, military, scientific and Part One- Review recreational. In the United States the Occupational This is nominally a review of a 2001 publication, Safety and Health Administration (OSHA) either regu- the NOAA Diving Manual, Diving for Science and lates these activities or gives waivers if an alternative Technology, 4" edition, NTIS Order Number PB99- regulatory process exists.
    [Show full text]
  • Highlights from the Pan Pacific Lymphoma Conference
    October 2011 A SPECIAL MEETING REVIEW EDITION Volume 9, Issue 10, Supplement 24 Highlights From the Pan Pacific Lymphoma Conference August 15–19, 2011 Kauai, Hawaii Special Reporting on: • Aggressive T-Cell Lymphomas • Novel Agents With Activity in CLL/SLL • PTCL—Update on Novel Therapies • Agents Targeting the Stromal Elements of the Lymph Node • Inducing Apoptosis in Lymphoma Cells Through Novel Agents With Expert Commentary by: Bruce D. Cheson, MD Deputy Chief Division of Hematology-Oncology Head of Hematology Lombardi Comprehensive Cancer Center Georgetown University Hospital Washington, DC Eb: E W Th O N www.clinicaladvances.com ENGINEERING T H E N E X T GENERATION OF ANTIBODY-DRUG CONJUGATES 003203_sgncor_adcadvcaho_fa4.indd 2 8/25/11 11:13 AM An innovative approach to improving outcomes in patients with cancer Antibody-drug conjugates (ADCs) use a conditionally stable linker to combine the targeting specificity of monoclonal antibodies with the tumor-killing power of potent cytotoxic agents.1,2 This could allow potent drugs to be delivered directly to tumor cells with minimal systemic toxicity. Optimizing the parameters for clinical success Scientists at Seattle Genetics are focused on parameters critical to the effective performance of ADCs, including target antigen selection,3,4 linker stability5-7 and potent cytotoxic agents.4,7,8 Elements of an antibody-drug conjugate Linker ADCs link precision and Antibody attaches the cytotoxic agent to specific for a tumor-associated the antibody. Newer linker potency for greater activity
    [Show full text]
  • Organization of Bacou-Dalloz 88 1.4
    Reference document 2004 Reference document 2004 This is a free translation of the Reference document (Document de référence) that was filed with the French Market Authority (Autorité des Marchés Financiers) on April 19, 2005, in accordance with Articles 211 to 211-42 of the AMF’s general regulations. Copies of this reference document are available on request, at no charge, from the Investor Relations department of Bacou-Dalloz at the following address: Paris Nord II, Immeuble Edison, 33 rue des Vanesses, BP 55288 Villepinte, 95958 Roissy CDG Cedex, France; and by telephone at +33 (0)1.49.90.79.74; by fax at +33 (0)1.49.90.79.78; or by email at [email protected]; or on the website of the Autorité des Marchés Financiers (www.amf-france.org). Bacou-Dalloz Reference document 2004 1 2 Reference document 2004 Bacou-Dalloz Contents Chapter Page Chapter Page 1 Financial Report 5 4 Corporate Governance 77 1.1. Management report on the financial year 7 4.1. Board of Directors 79 1.2. Risk management report 11 4.2. Shareholdings by senior executives 84 1.3. Recent developments and future perspectives 15 4.3. Organization of Bacou-Dalloz 88 1.4. Summary financial information 16 4.4. Chairman’s report 91 1.5. Consolidated financial statements 19 4.5. Auditors and audits 99 1.6. Summary of Company financial statements 40 1.7. Liquidity & capital resources 43 5 Shareholder Information 101 5.1. General information about the Company 103 2 Business Overview 45 5.2. Information concerning capital issued 108 2.1.
    [Show full text]
  • Frontline Paid New York, Ny a Lymphoma Rounds Publication Permit #370
    Lymphoma Rounds Leadership Chicago - Loyola University Chicago New England - Baystate Medical MD, PhD; Francesca Montanari, Anna Niewiarowska, MD - Scott Smith, MD, PhD, FACP; Center - Armen Asik, MD; Beth MD; Hackensack University Medical Patrick Stiff, MD; Northwestern Israel Deaconess Medical Center Center - Andre Goy, MD, MS; Icahn Seattle - Kaiser Permanente University - Leo Gordon, MD, - Jon Arnason, MD; Robin Joyce, School of Medicine at Mount Sinai - Washington - Eric Chen, MD, PhD; FACP; Reem Karmali, MD, MS MD; Boston University School of Joshua Brody, MD; Memorial Sloan The Polyclinic - Sherry Hu, MD, (chair); Jane Winter, MD; Rush Medicine - J. Mark Sloan, MD; Kettering Cancer Center - Anthony PhD; Swedish Medical Center - University Medical Center - Jerome Brown University School of Medicine Mato, MD, MSCE; David Straus, Hank Kaplan, MD; John Pagel, Loew, MD; Sunita Nathan, MD; - Adam Olszewski, MD; Dana- MD (chair); NYU Langone Medical MD, PhD, DSc (chair); University of Parameswaran Venugopal, MD; Farber Cancer Institute - Jorge Center - Catherine Diefenbach, Washington - Paul S. Martin, MD; The University of Chicago - Sonali Castillo, MD; Ann LaCasce, MD, MD; Rutgers Cancer Institute of The University of Washington/Fred Smith, MD; Girish Venkataraman, MSc; Dartmouth-Hitchcock Medical New Jersey - Joseph Bertino, MD; Hutchinson Cancer Research Center MD; University of Illinois at Chicago Center - Elizabeth Bengtson, Andrew Evens, DO, MSc, FACP; - Stephen Smith, MD; Virginia - Frederick Behm, MD; David MD; Erick Lansigan, MD; Lahey Weill Cornell Medicine - Koen van Mason Medical Center - David Peace, MD Hospital and Medical Center - Tarun Besien, MD, PhD; Ethel Cesarman, Aboulafia, MD Kewalramani, MD; Massachusetts MD, PhD; Amy Chadburn, MD; Los Angeles - Cedars-Sinai Medical General Hospital Cancer Center- Morton Coleman, MD Washington, D.C.
    [Show full text]
  • Adcetris, INN-Brentuximab Vedotin
    19 July 2012 EMA/702390/2012 Committee for Medicinal Products for Human Use (CHMP) Assessment report Adcetris International non-proprietary name: brentuximab vedotin Procedure No. EMEA/H/C/002455 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7455 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union Product information Name of the medicinal product: Adcetris Applicant: Takeda Global Research and Development Centre (Europe) Ltd. 61 Aldwych London WC2B 4AE United Kingdom Active substance: brentuximab vedotin International Nonproprietary Name/Common Name: brentuximab vedotin Pharmaco-therapeutic group Monoclonal antibodies (ATC Code): (L01XC12) ADCETRIS is indicated for the treatment of adult Therapeutic indication(s): patients with relapsed or refractory CD30+ Hodgkin lymphoma (HL): 1. following autologous stem cell transplant (ASCT) or 2. following at least two prior therapies when ASCT or multi-agent chemotherpay are not a treatment option ADCETRIS is indicated for the treatment of adult patients with relapsed or refractory systemic anaplastic large cell lymphoma (sALCL). Pharmaceutical form(s): Powder for concentrate for solution for infusion Strength(s): 50 mg Route(s) of administration: Intravenous use Packaging: vial (glass) Package size(s): 1 vial Adcetris CHMP assessment report Page 2/102 Rev10.11 Table of contents 1. Background information on the procedure .............................................. 9 1.1. Submission of the dossier ...................................................................................... 9 1.2. Steps taken for the assessment of the product ....................................................... 10 2. Scientific discussion .............................................................................
    [Show full text]
  • Medical Aspects of Harsh Environments, Volume 2, Chapter
    Military Diving Operations and Medical Support Chapter 31 MILITARY DIVING OPERATIONS AND MEDICAL SUPPORT † RICHARD D. VANN, PHD*; AND JAMES VOROSMARTI, JR, MD INTRODUCTION BREATH-HOLD DIVING CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN COMBAT DIVERS UNDERWATER BREATHING APPARATUS Open-Circuit Self-Contained Underwater Breathing Apparatus: The Aqualung Surface-Supplied Diving Closed-Circuit Oxygen Scuba Semiclosed Mixed-Gas Scuba Closed-Circuit, Mixed-Gas Scuba THE ROLE OF RESPIRATION IN DIVING INJURIES Carbon Dioxide Retention and Dyspnea Interactions Between Gases and Impaired Consciousness Individual Susceptibility to Impaired Consciousness DECOMPRESSION PROCEDURES No-Stop (No-Decompression) Dives In-Water Decompression Stops Surface Decompression Repetitive and Multilevel Diving Dive Computers Nitrogen–Oxygen Diving Helium–Oxygen and Trimix Diving Omitted Decompression Flying After Diving and Diving at Altitude The Safety of Decompression Practice SATURATION DIVING Atmospheric Control Infection Hyperbaric Arthralgia Depth Limits Decompression THERMAL PROTECTION AND BUOYANCY TREATMENT OF DECOMPRESSION SICKNESS AND ARTERIAL GAS EMBOLISM Therapy According to US Navy Treatment Tables Decompression Sickness in Saturation Diving MEDICAL STANDARDS FOR DIVING SUBMARINE RESCUE AND ESCAPE SUMMARY *Captain, US Navy Reserve (Ret); Divers Alert Network, Center for Hyperbaric Medicine and Environmental Physiology, Box 3823, Duke University Medical Center, Durham, North Carolina 27710 †Captain, Medical Corps, US Navy (Ret); Consultant in Occupational, Environmental, and Undersea Medicine, 16 Orchard Way South, Rockville, Maryland 20854 955 Military Preventive Medicine: Mobilization and Deployment INTRODUCTION Divers breathe gases and experience pressure land) teams and two SEAL delivery vehicle (SDV) changes that can cause different injuries from those teams. SEALs are trained for reconnaissance and encountered by most combatant or noncombatant direct action missions at rivers, harbors, shipping, military personnel.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,545.449 B2 Krantz (45) Date of Patent: Jan
    USOO9545449B2 (12) United States Patent (10) Patent No.: US 9,545.449 B2 Krantz (45) Date of Patent: Jan. 17, 2017 (54) SITE-SPECIFIC LABELING AND TARGETED 8,030.459 B2 10/2011 Papisov et al. DELIVERY OF PROTEINS FOR THE 8,927.485 B2 1/2015 Krantz et al. 2003/0215877 A1 11/2003 Love et al. TREATMENT OF CANCER 2005, 00792O8 A1 4/2005 Albani 2007, 0123465 A1 5/2007 Adermann et al. (71) Applicant: Advanced Proteome Therapeutics 2010.0099649 A1* 4/2010 Krantz et al. ................. 514f131 Inc., Boston, MA (US) 2011 0002978 A1 1/2011 Harrison 2011/0263832 A1 10/2011 Krantz et al. (72) Inventor: Alexander Krantz, Boston, MA (US) 2013,0165382 A1 6/2013 Krantz et al. (73) Assignee: Advanced Proteone Therapeutics Inc., FOREIGN PATENT DOCUMENTS Boston, MA (US) WO WO-89/11867 A1 12/1989 WO WO-02/42427 A2 5, 2002 (*) Notice: Subject to any disclaimer, the term of this WO WO-O2/O87497 A2 11/2002 patent is extended or adjusted under 35 WO WO-03/093478 A1 11, 2003 U.S.C. 154(b) by 0 days. WO WO-2007 112362 A2 10, 2007 WO WO-2010, 140886 A1 12/2010 (21) Appl. No.: 14/400,190 WO WO-2011, 153250 A2 12/2011 (22) PCT Filed: May 13, 2013 OTHER PUBLICATIONS (86). PCT No.: PCT/US2O13/040823 Yu et al. Site-specific crosslinking of annexin proteins by 1.4- benzoquinone: a novel crosslinker for the formation of protein S 371 (c)(1), dimers and diverse protein conjugates (Org. Biomol. Chem..., 2012, (2) Date: Nov.
    [Show full text]