The Sustainability of Thailand's Protected Area System Under
Total Page:16
File Type:pdf, Size:1020Kb
The Sustainability of Thailand’s Protected Area System under Climate Change: Supplementary Materials . Figure S1. Change in mean annual temperature as projected for the year 2050 for three different earth system models under RCP2.6 and RCP8.5 Figure S2. Change in mean annual temperature as projected for the year 2070 for three different earth system models under RCP2.6 and RCP8.5 Figure S3. Change in maximum temperature of the warmest month as projected for the year 2050 for three different earth system models under RCP2.6 and RCP8.5 Figure S4. Change in maximum temperature of the warmest month as projected for the year 2070 for three different earth system models under RCP2.6 and RCP8.5 Figure S5. Change in mean annual precipitation as projected for the year 2050 for three different earth system models under RCP2.6 and RCP8.5 Figure S6. Change in mean annual precipitation as projected for the year 2070 for three different earth system models under RCP2.6 and RCP8.5 Figure S7. Bioclimatic stratification of Thailand based on spatially interpolated weather station data average from 1960 to 2000, and as projected by three earth system models under two RCPs for 2050. Figure S8. Bioclimatic strata within Thailand based on spatially interpolated weather station data average from 1960 to 2000, and as projected by three earth system models under two RCPs for 2050. Figure S9. Bioclimatic stratification of Thailand based on spatially interpolated weather station data averages from 1960 to 2000 and as projected by three earth system models under two RCPs for 2070. Figure S10. Bioclimatic strata within Thailand based on spatially interpolated weather station data average from 1960 to 2000 and as projected by three earth system models under two RCPs for 2070. Figure S11. Bioclimatic zones within protected areas in Thailand based on spatially interpolated weather station data average from 1960 to 2000 and as projected by three earth system models under two RCPs for 2050. Figure S12. Bioclimatic strata within protected areas in Thailand based on spatially interpolated weather station data average from 1960 to 2000 and as projected by three earth system models under two RCPs for 2050. Figure S13. Bioclimatic zones of protected areas in Thailand based on spatially interpolated weather station data average from 1960 to 2000 and as projected by three earth system models under two RCPs for 2070. Figure S14. Bioclimatic strata of Protected Areas in Thailand based on spatially interpolated weather station data average from 1960 to 2000 and as projected by three earth system models under two RCPs for 2070. Figure S15. Percentage of each individual protected area shifting to a different bioclimatic stratum by the year 2050 for three earth system models and two RCPs. Figure S16. Percentage of each individual protected area shifting to a different bioclimatic stratum by the year 2070 for three earth system models and two RCPs. (a) (b) Figure S17. Percentage of each bioclimatic zone within each of the forest types found in the protected areas in Thailand as projected for the year 2050. (a) Percentage of each bioclimatic zone within each of the forest types by 2050 under RCP2.6; (b) Percentage of each bioclimatic zone within each of the forest types by 2050 under RCP8.5 (a) (b) Figure S18. Percentage of each bioclimatic zone within each of the forest types found in the protected areas in Thailand as projected for the year 2070. (a) Percentage of each bioclimatic zone within each of the forest types by 2070 under RCP2.6; (b) Percentage of each bioclimatic zone within each of the forest types by 2070 under RCP8.5 Table S1. Characteristics of the bioclimatic strata based on climate data from 1960 to 2000, showing the area, mean elevation, mean annual temperature, maximum temperature of the warmest month, and mean annual precipitation within Thailand Bioclimate Area Mean Mean annual Maximum Mean annual zone stratum (km2) Elevation (m) temperature (oC) temperature (oC) precipitation (mm) K10 8 2390.5 15.4 25.6 1190.6 Warm Temperate K12 2 1481.0 18.3 24.6 2178.5 and Mesic K13 72 1929.6 17.0 27.1 1315.7 N3 214 1552.4 18.8 28.6 1385.0 N4 114 1749.3 18.7 29.1 1165.6 Hot and Dry N8 77 1278.2 20.5 29.9 1592.3 N9 1722 1448.5 19.9 30.0 1258.8 N11 3643 1267.8 21.0 31.3 1203.4 M1 392 1056.8 21.3 27.7 2430.0 M2 694 1061.8 21.6 30.5 1698.5 M4 12,143 1046.8 22.2 32.4 1224.1 Hot and Mesic M5 92 619.3 23.6 30.7 2962.7 M6 648 1101.1 22.8 34.0 970.0 M7 23,497 831.5 23.3 33.3 1265.8 M8 6187 600.6 23.9 31.5 2287.4 R1 31,044 595.5 24.3 34.1 1368.9 R2 3741 847.7 24.2 35.3 993.1 R3 6797 262.4 25.3 32.8 2844.7 R4 4062 446.1 25.0 32.6 1743.9 Extremely Hot and R5 42,295 467.4 25.2 35.2 1232.0 Moist R6 24,230 225.4 25.8 33.7 2219.1 R7 2161 41.8 27.3 34.4 2778.0 R8 10,196 86.5 26.7 33.1 2853.3 R9 86,025 254.9 26.2 35.4 1411.3 R10 51,940 55.4 27.1 33.7 2071.0 Q1 904 546.6 26.3 37.9 910.7 Extremely Hot and Q3 188,660 122.7 27.2 36.0 1281.9 Xeric Q4 11,027 24.7 28.1 37.1 1191.6 Table 2. Projected change in areal extent and mean elevation of bioclimatic strata in Thailand and their upward shifts by 2050. Bioclimate Area (km²) Area Change (km²) Mean elevation (m) Upward shift (m) Model zone stratum Current RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 Current RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 CNRM−CM5 0 0 −8 −8 − − − − K10 GFDL−CM3 8 0 0 −8 −8 2390.5 − − − − HadGEM2−ES 0 0 −8 −8 − − − − CNRM−CM5 0 0 −2 −2 − − − − Warm Temperate and K12 GFDL−CM3 2 0 0 −2 −2 1481.0 − − − − Mesic HadGEM2−ES 0 0 −2 −2 − − − − CNRM−CM5 25 12 −47 −60 2197.4 2279.6 267.8 350.0 K13 GFDL−CM3 72 4 0 −68 −72 1929.6 2374.0 − 444.4 − HadGEM2−ES 8 0 −64 −72 2245.3 − 315.7 − CNRM−CM5 67 47 −147 −167 1785.0 1875.1 232.6 322.7 N3 GFDL−CM3 214 41 6 −173 −208 1552.4 1914.6 2061.5 362.2 509.1 HadGEM2−ES 29 4 −185 −185 1918.2 2057.8 365.8 505.4 CNRM−CM5 16 13 −98 −101 1956.2 2141.9 206.9 392.6 N4 GFDL−CM3 114 17 8 −97 −106 1749.3 2201.6 2390.5 452.3 641.2 HadGEM2−ES 17 8 −97 −106 2184.0 2390.5 434.7 641.2 CNRM−CM5 31 41 −46 −36 1516.6 1496.0 238.4 217.8 Hot and Dry N8 GFDL−CM3 77 107 16 30 −61 1278.2 1621.3 1820.9 343.1 542.7 HadGEM2−ES 0 0 −77 −77 − − − − CNRM−CM5 438 148 −1284 −1574 1602.5 1725.2 154.0 276.7 N9 GFDL−CM3 1722 45 38 −1677 −1684 1448.5 1818.7 1986.7 370.2 538.2 HadGEM2−ES 146 42 −1576 −1680 1721.6 2000.8 273.1 552.3 CNRM−CM5 1121 500 −2522 −3143 1468.1 1562.5 200.3 294.7 N11 GFDL−CM3 3643 216 59 −3427 −3584 1267.8 1659.9 1778.5 392.1 510.7 HadGEM2−ES 522 88 −3121 −3555 1557.1 1758.9 289.3 491.1 CNRM−CM5 182 101 −210 −291 1173.5 1218.3 116.7 161.5 M1 GFDL−CM3 392 67 11 −325 −381 1056.8 1234.9 1356.2 178.1 299.4 HadGEM2−ES 103 15 −289 −377 1221.2 1344.1 164.4 287.3 Hot and Mesic CNRM−CM5 361 345 −333 −349 1278.8 1388.7 217.0 236.9 M2 GFDL−CM3 694 608 76 −86 −618 1061.8 1379.4 1571.8 317.6 510.0 HadGEM2−ES 20 2 −674 −692 1532.9 1088.5 471.1 26.7 CNRM−CM5 4746 2581 −7397 −9562 1256.8 1358.2 210 311.4 M4 GFDL−CM3 12143 1672 630 −10,471 11,513 1046.8 1423.4 1559.2 376.6 512.4 HadGEM2−ES 2475 633 −9668 11,510 1372.9 1566.4 326.1 519.6 CNRM−CM5 105 32 13 −60 842.8 869.7 223.5 250.4 M5 GFDL−CM3 92 11 3 −81 −89 619.3 927.4 1171.0 308.1 551.7 HadGEM2−ES 33 0 −59 −92 878.8 − 259.5 − CNRM−CM5 0 0 −648 −648 − − − − M6 GFDL−CM3 648 0 1 −648 −647 1101.1 − 1524.0 − 422.9 HadGEM2−ES 0 37 −648 −611 − 1576.4 − 475.3 CNRM−CM5 10,188 6239 −13,309 −17,258 1054.3 1173.3 222.8 341.8 M7 GFDL−CM3 23497 4901 1992 −18,596 −21,505 831.5 1222.5 1386.8 391.0 555.3 HadGEM2−ES 5519 1828 −17,978 −21,669 1185.9 1394.5 354.4 563.0 CNRM−CM5 2454 1311 −3733 −4876 781.4 873.3 180.8 272.7 M8 GFDL−CM3 6187 1746 336 −4441 −5851 600.6 842.9 1077.0 242.3 476.4 HadGEM2−ES 1200 441 −4987 −5746 872.5 1039.3 271.9 438.7 CNRM−CM5 18,296 12,554 −12,748 −18,490 848.2 968.2 252.7 372.7 R1 GFDL−CM3 31044 8714 3435 −22,330 −27,609 595.5 1003.6 1196.6 408.1 601.1 HadGEM2−ES 9006 2801 −22,038 −28,243 976.1 1204.1 380.6 608.6 CNRM−CM5 1468 359 −2273 −3382 1064.0 1213.0 216.3 365.3 R2 GFDL−CM3 3741 1003 542 −2738 −3199 847.7 1242.3 1397.9 394.6 550.2 HadGEM2−ES 1653 1049 −2088 −2692 1178.6 1335.8 330.9 488.1 CNRM−CM5 6797 4761 1323 −2036 −5474 322.0 580.6 59.6 318.2 R3 GFDL−CM3 762 349 −6035 −6448 262.4 615.9 835.7 353.5 573.3 Extremely Hot and HadGEM2−ES 888 255 −5909 −6542 587.5 810.5 325.1 548.1 Moist CNRM−CM5 4125 4283 63 221 669.7 775.2 223.6 329.1 R4 GFDL−CM3 4062 2507 719 −1555 −3343 446.1 782.5 974.8 336.4 528.7 HadGEM2−ES 3970 993 −92 −3069 759.4 911.4 313.3 465.3 CNRM−CM5 23,699 17,572 −18,596 −24,723 706.5 829.1 239.1 361.7 R5 GFDL−CM3 42,295 17,570 9300 −24,725 −32,995 467.4 887.9 1065.2 420.5 597.8 HadGEM2−ES 18,618 9108 −23,677 −33,187 852.8 1073.9 385.4 606.5 CNRM−CM5 8492 5227 −15,738 −19,003 431.3 588.5 205.9 363.1 R6 24,230 225.4 GFDL−CM3 4594 1496 −19,636 −22,734 598.8 780.7 373.4 555.3 HadGEM2−ES 4060 1615 −20,170 −22,615 560.6 725.8 335.2 500.4 CNRM−CM5 82,930 156,778 80,769 154,617 61.7 76.4 19.9 34.6 R7 GFDL−CM3 2161 158,368 303,104 156,207 300,943 41.8 77.0 115.7 35.2 73.9 HadGEM2−ES 144,777 282,694 142,616 280,533 65.2 110.8 23.4 69 CNRM−CM5 5997 4788 −4199 −5408 255.3 353.2 168.8 266.7 R8 GFDL−CM3 10,196 3872 2035 −6324 −8161 86.5 384.1 551.9 297.6 465.4 HadGEM2−ES 3514 1641 −6682 −8555 346.1 497.8 259.6 411.3 CNRM−CM5 48,655 40,262 −37,370 −45,763 478.7 580.3 223.8 325.4 R9 GFDL−CM3 86,025 30,647 16,299 −55,378 −69,726 254.9 626.2 842.9 371.3 588 HadGEM2−ES 31,798 14,228 −54,227 −71,797 619.1 855.3 364.2 600.4 CNRM−CM5 28,958 15,136 −22,982 −36,804 133.9 250.7 78.5 195.3 R10 GFDL−CM3 51,940 12,545 6653 −39,395 −45,287 55.4 269.5 470.6 214.1 415.2 HadGEM2−ES