Lecture 17 (Geometric Optics I Plane and Spherical Optics)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
The Diffuse Reflecting Power of Various Substances 1
. THE DIFFUSE REFLECTING POWER OF VARIOUS SUBSTANCES 1 By W. W. Coblentz CONTENTS Page I. Introduction . 283 II. Summary of previous investigations 288 III. Apparatus and methods 291 1 The thermopile 292 2. The hemispherical mirror 292 3. The optical system 294 4. Regions of the spectrum examined 297 '. 5. Corrections to observations 298 IV. Reflecting power of lampblack 301 V. Reflecting power of platinum black 305 VI. Reflecting power of green leaves 308 VII. Reflecting power of pigments 311 VIII. Reflecting power of miscellaneous substances 313 IX. Selective reflection and emission of white paints 315 X. Summary 318 Note I. —Variation of the specular reflecting power of silver with angle 319 of incidence I. INTRODUCTION In all radiometric work involving the measurement of radiant energy in absolute value it is necessary to use an instrument that intercepts or absorbs all the incident radiations; or if that is impracticable, it is necessary to know the amount that is not absorbed. The instruments used for intercepting and absorbing radiant energy are usually constructed in the form of conical- shaped cavities which are blackened with lampblack, the expecta- tion being that, after successive reflections within the cavity, the amount of energy lost by passing out through the opening is reduced to a negligible value. 1 This title is used in order to distinguish the reflection of matte surfaces from the (regular) reflection of polished surfaces. The paper gives also data on the specular reflection of polished silver for different angles of incidence, but it seemed unnecessary to include it in the title. -
Molecular Materials for Nonlinear Optics
RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal molecular solids mere aggregations of molecules held to line fIlms, and amorphous compositions. In these materi gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic. -
EMT UNIT 1 (Laws of Reflection and Refraction, Total Internal Reflection).Pdf
Electromagnetic Theory II (EMT II); Online Unit 1. REFLECTION AND TRANSMISSION AT OBLIQUE INCIDENCE (Laws of Reflection and Refraction and Total Internal Reflection) (Introduction to Electrodynamics Chap 9) Instructor: Shah Haidar Khan University of Peshawar. Suppose an incident wave makes an angle θI with the normal to the xy-plane at z=0 (in medium 1) as shown in Figure 1. Suppose the wave splits into parts partially reflecting back in medium 1 and partially transmitting into medium 2 making angles θR and θT, respectively, with the normal. Figure 1. To understand the phenomenon at the boundary at z=0, we should apply the appropriate boundary conditions as discussed in the earlier lectures. Let us first write the equations of the waves in terms of electric and magnetic fields depending upon the wave vector κ and the frequency ω. MEDIUM 1: Where EI and BI is the instantaneous magnitudes of the electric and magnetic vector, respectively, of the incident wave. Other symbols have their usual meanings. For the reflected wave, Similarly, MEDIUM 2: Where ET and BT are the electric and magnetic instantaneous vectors of the transmitted part in medium 2. BOUNDARY CONDITIONS (at z=0) As the free charge on the surface is zero, the perpendicular component of the displacement vector is continuous across the surface. (DIꓕ + DRꓕ ) (In Medium 1) = DTꓕ (In Medium 2) Where Ds represent the perpendicular components of the displacement vector in both the media. Converting D to E, we get, ε1 EIꓕ + ε1 ERꓕ = ε2 ETꓕ ε1 ꓕ +ε1 ꓕ= ε2 ꓕ Since the equation is valid for all x and y at z=0, and the coefficients of the exponentials are constants, only the exponentials will determine any change that is occurring. -
Object-Image Real Image Virtual Image
Object-Image • A physical object is usually observed by reflected light that diverges from the object. • An optical system (mirrors or lenses) can 3.1 Images formed by Mirrors and Lenses produce an image of the object by redirecting the light. • Images – Real Image • Image formation by mirrors – Virtual Image • Images formed by lenses Real Image Virtual Image Optical System ing diverging erg converging diverging diverging div Object Object real Image Optical System virtual Image Light appears to come from the virtual image but does not Light passes through the real image pass through the virtual image Film at the position of the real image is exposed. Film at the position of the virtual image is not exposed. Each point on the image can be determined Image formed by a plane mirror. by tracing 2 rays from the object. B p q B’ Object Image The virtual image is formed directly behind the object image mirror. Light does not A pass through A’ the image mirror A virtual image is formed by a plane mirror at a distance q behind the mirror. q = -p 1 Parabolic Mirrors Parabolic Reflector Optic Axis Parallel rays reflected by a parabolic mirror are focused at a point, called the Parabolic mirrors can be used to focus incoming parallel rays to a small area Focal Point located on the optic axis. or to direct rays diverging from a small area into parallel rays. Spherical mirrors Parallel beams focus at the focal point of a Concave Mirror. •Spherical mirrors are much easier to fabricate than parabolic mirrors • A spherical mirror is an approximation of a parabolic Focal point mirror for small curvatures. -
Curriculum Overview Physics/Pre-AP 2018-2019 1St Nine Weeks
Curriculum Overview Physics/Pre-AP 2018-2019 1st Nine Weeks RESOURCES: Essential Physics (Ergopedia – online book) Physics Classroom http://www.physicsclassroom.com/ PHET Simulations https://phet.colorado.edu/ ONGOING TEKS: 1A, 1B, 2A, 2B, 2C, 2D, 2F, 2G, 2H, 2I, 2J,3E 1) SAFETY TEKS 1A, 1B Vocabulary Fume hood, fire blanket, fire extinguisher, goggle sanitizer, eye wash, safety shower, impact goggles, chemical safety goggles, fire exit, electrical safety cut off, apron, broken glass container, disposal alert, biological hazard, open flame alert, thermal safety, sharp object safety, fume safety, electrical safety, plant safety, animal safety, radioactive safety, clothing protection safety, fire safety, explosion safety, eye safety, poison safety, chemical safety Key Concepts The student will be able to determine if a situation in the physics lab is a safe practice and what appropriate safety equipment and safety warning signs may be needed in a physics lab. The student will be able to determine the proper disposal or recycling of materials in the physics lab. Essential Questions 1. How are safe practices in school, home or job applied? 2. What are the consequences for not using safety equipment or following safe practices? 2) SCIENCE OF PHYSICS: Glossary, Pages 35, 39 TEKS 2B, 2C Vocabulary Matter, energy, hypothesis, theory, objectivity, reproducibility, experiment, qualitative, quantitative, engineering, technology, science, pseudo-science, non-science Key Concepts The student will know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. The student will know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. -
25 Geometric Optics
CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light. -
Antireflective Coatings
materials Review Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review Mehdi Keshavarz Hedayati 1,* and Mady Elbahri 1,2,3,* 1 Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-Universität zu Kiel, Kiel 24143, Germany 2 Nanochemistry and Nanoengineering, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany 3 Nanochemistry and Nanoengineering, School of Chemical Technology, Aalto University, Kemistintie 1, Aalto 00076, Finland * Correspondence: [email protected] (M.K.H.); mady.elbahri@aalto.fi (M.E.); Tel.: +49-431-880-6148 (M.K.H.); +49-431-880-6230 (M.E.) Academic Editor: Lioz Etgar Received: 2 May 2016; Accepted: 15 June 2016; Published: 21 June 2016 Abstract: Reduction of unwanted light reflection from a surface of a substance is very essential for improvement of the performance of optical and photonic devices. Antireflective coatings (ARCs) made of single or stacking layers of dielectrics, nano/microstructures or a mixture of both are the conventional design geometry for suppression of reflection. Recent progress in theoretical nanophotonics and nanofabrication has enabled more flexibility in design and fabrication of miniaturized coatings which has in turn advanced the field of ARCs considerably. In particular, the emergence of plasmonic and metasurfaces allows for the realization of broadband and angular-insensitive ARC coatings at an order of magnitude thinner than the operational wavelengths. In this review, a short overview of the development of ARCs, with particular attention paid to the state-of-the-art plasmonic- and metasurface-based antireflective surfaces, is presented. Keywords: antireflective coating; plasmonic metasurface; absorbing antireflective coating; antireflection 1. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
9.2 Refraction and Total Internal Reflection
9.2 refraction and total internal reflection When a light wave strikes a transparent material such as glass or water, some of the light is reflected from the surface (as described in Section 9.1). The rest of the light passes through (transmits) the material. Figure 1 shows a ray that has entered a glass block that has two parallel sides. The part of the original ray that travels into the glass is called the refracted ray, and the part of the original ray that is reflected is called the reflected ray. normal incident ray reflected ray i r r ϭ i air glass 2 refracted ray Figure 1 A light ray that strikes a glass surface is both reflected and refracted. Refracted and reflected rays of light account for many things that we encounter in our everyday lives. For example, the water in a pool can look shallower than it really is. A stick can look as if it bends at the point where it enters the water. On a hot day, the road ahead can appear to have a puddle of water, which turns out to be a mirage. These effects are all caused by the refraction and reflection of light. refraction The direction of the refracted ray is different from the direction of the incident refraction the bending of light as it ray, an effect called refraction. As with reflection, you can measure the direction of travels at an angle from one medium the refracted ray using the angle that it makes with the normal. In Figure 1, this to another angle is labelled θ2. -
Descartes' Optics
Descartes’ Optics Jeffrey K. McDonough Descartes’ work on optics spanned his entire career and represents a fascinating area of inquiry. His interest in the study of light is already on display in an intriguing study of refraction from his early notebook, known as the Cogitationes privatae, dating from 1619 to 1621 (AT X 242-3). Optics figures centrally in Descartes’ The World, or Treatise on Light, written between 1629 and 1633, as well as, of course, in his Dioptrics published in 1637. It also, however, plays important roles in the three essays published together with the Dioptrics, namely, the Discourse on Method, the Geometry, and the Meteorology, and many of Descartes’ conclusions concerning light from these earlier works persist with little substantive modification into the Principles of Philosophy published in 1644. In what follows, we will look in a brief and general way at Descartes’ understanding of light, his derivations of the two central laws of geometrical optics, and a sampling of the optical phenomena he sought to explain. We will conclude by noting a few of the many ways in which Descartes’ efforts in optics prompted – both through agreement and dissent – further developments in the history of optics. Descartes was a famously systematic philosopher and his thinking about optics is deeply enmeshed with his more general mechanistic physics and cosmology. In the sixth chapter of The Treatise on Light, he asks his readers to imagine a new world “very easy to know, but nevertheless similar to ours” consisting of an indefinite space filled everywhere with “real, perfectly solid” matter, divisible “into as many parts and shapes as we can imagine” (AT XI ix; G 21, fn 40) (AT XI 33-34; G 22-23). -
Laboratory 7: Properties of Lenses and Mirrors
Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes through the lens and converges to a real image at the focal point on the other side of the lens. A diverging lens is thinner at the center than at the periphery and light from an object at infinity appears to diverge from a virtual focus point on the same side of the lens as the object. The principal axis of a lens is a line drawn through the center of the lens perpendicular to the face of the lens. The principal focus is a point on the principal axis through which incident rays parallel to the principal axis pass, or appear to pass, after refraction by the lens. There are principle focus points on either side of the lens equidistant from the center (See Figure 1a). Figure 1a: Converging Lens, f>0 Figure 1b: Diverging Lens, f<0 In Fig. 1 the object and image are represented by arrows. Two rays are drawn from the top of the object. One ray is parallel to the principal axis which bends at the lens to pass through the principle focus. The second ray passes through the center of the lens and undeflected. The intersection of these two rays determines the image position. The focal length, f, of a lens is the distance from the optical center of the lens to the principal focus. It is positive for a converging lens, negative for a diverging lens.