The Developing Human Connectome Project (Dhcp) Automated Resting-State Functional Processing Framework for Newborn Infants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conservation and Divergence of Related Neuronal Lineages in The
RESEARCH ARTICLE Conservation and divergence of related neuronal lineages in the Drosophila central brain Ying-Jou Lee, Ching-Po Yang, Rosa L Miyares, Yu-Fen Huang, Yisheng He, Qingzhong Ren, Hui-Min Chen, Takashi Kawase, Masayoshi Ito, Hideo Otsuna, Ken Sugino, Yoshi Aso, Kei Ito, Tzumin Lee* Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States Abstract Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms. *For correspondence: Introduction [email protected] In order to understand how the genome encodes behavior, we need to study the developmental mechanisms that build and wire complex centers in the brain. The fruit fly is an ideal model system Competing interests: The to research these mechanisms. The Drosophila field has extensive genetic tools. -
Data Mining in Genomics, Metagenomics and Connectomics
Csaba Kerepesi DATA MINING IN GENOMICS, METAGENOMICS AND CONNECTOMICS PhD Thesis Supervisor: Dr. Vince Grolmusz Department of Computer Science E¨otv¨osLor´andUniversity, Hungary PhD School of Computer Science E¨otv¨osLor´andUniversity, Hungary Dr. Erzs´ebet Csuhaj-Varj´u PhD Program of Information Systems Dr. Andr´as Bencz´ur Budapest, 2017 Acknowledgements I would like to thank my supervisor Dr. Vince Grolmusz for his tireless support with which he started my scientific career. I am very grateful to the PhD School of Computer Science and the Faculty of Informatics, ELTE for their inexhaustible support. I would like to thank my co-authors for their precious work and I also would like to thank all my colleagues, who helped me anything in my re- searches. Finally, I would like to thank my family for their everlasting support. 2 Contents 1 Introduction 6 2 Data Mining in Genomics and Metagenomics 14 2.1 AmphoraNet: The Webserver Implementation of the AM- PHORA2 Metagenomic Workflow Suite . 14 2.1.1 Introduction . 14 2.1.2 Results and Discussion . 15 2.2 Visual Analysis of the Quantitative Composition of Metage- nomic Communities: the AmphoraVizu Webserver . 17 2.2.1 Introduction . 17 2.2.2 Results and Discussion . 19 2.3 Evaluating the Quantitative Capabilities of Metagenomic Analysis Software . 21 2.3.1 Introduction . 21 2.3.2 Results and discussion . 22 2.3.3 Methods . 25 2.3.4 Availability . 29 2.4 The \Giant Virus Finder" Discovers an Abundance of Giant Viruses in the Antarctic Dry Valleys . 30 2.4.1 Introduction . 30 3 2.4.2 Results and discussion . -
Resting-State Fmri Reveals Network Disintegration During Delirium T ⁎ Simone J.T
NeuroImage: Clinical 20 (2018) 35–41 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Resting-state fMRI reveals network disintegration during delirium T ⁎ Simone J.T. van Montforta, , Edwin van Dellenb,c, Aletta M.R. van den Boscha,d, Willem M. Ottee,f, Maya J.L. Schutteb, Soo-Hee Choig, Tae-Sub Chungh, Sunghyon Kyeongi, Arjen J.C. Slootera, ⁎⁎ Jae-Jin Kimi, a Department of Intensive Care Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, The Netherlands b Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands c Melbourne Neuropsychiatry Center, Department of Psychiatry, University of Melbourne, Australia d Faculty of Science, University of Amsterdam, the Netherlands e Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, the Netherlands f Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands g Department of Psychiatry, Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea h Department of Radiology, Yonsei University Gangnam Severance Hospital, Seoul, Republic of Korea i Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. ARTICLE INFO ABSTRACT Keywords: Delirium is characterized by inattention and other cognitive deficits, symptoms that have been associated with Delirium disturbed interactions between remote brain regions. Recent EEG studies confirm that disturbed global network fMRI topology may underlie the syndrome, but lack an anatomical basis. The aim of this study was to increase our Resting-state understanding of the global organization of functional connectivity during delirium and to localize possible Brain networks alterations. -
Polygenic Evidence and Overlapped Brain Functional Connectivities For
Sun et al. Translational Psychiatry (2020) 10:252 https://doi.org/10.1038/s41398-020-00941-z Translational Psychiatry ARTICLE Open Access Polygenic evidence and overlapped brain functional connectivities for the association between chronic pain and sleep disturbance Jie Sun 1,2,3,WeiYan2,Xing-NanZhang2, Xiao Lin2,HuiLi2,Yi-MiaoGong2,Xi-MeiZhu2, Yong-Bo Zheng2, Xiang-Yang Guo3,Yun-DongMa2,Zeng-YiLiu2,LinLiu2,Jia-HongGao4, Michael V. Vitiello 5, Su-Hua Chang 2,6, Xiao-Guang Liu 1,7 and Lin Lu2,6 Abstract Chronic pain and sleep disturbance are highly comorbid disorders, which leads to barriers to treatment and significant healthcare costs. Understanding the underlying genetic and neural mechanisms of the interplay between sleep disturbance and chronic pain is likely to lead to better treatment. In this study, we combined 1206 participants with phenotype data, resting-state functional magnetic resonance imaging (rfMRI) data and genotype data from the Human Connectome Project and two large sample size genome-wide association studies (GWASs) summary data from published studies to identify the genetic and neural bases for the association between pain and sleep disturbance. Pittsburgh sleep quality index (PSQI) score was used for sleep disturbance, pain intensity was measured by Pain Intensity Survey. The result showed chronic pain was significantly correlated with sleep disturbance (r = 0.171, p-value < 0.001). Their genetic correlation was rg = 0.598 using linkage disequilibrium (LD) score regression analysis. Polygenic score (PGS) association analysis showed PGS of chronic pain was significantly associated with sleep and vice versa. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Nine shared functional connectivity (FCs) were identified involving prefrontal cortex, temporal cortex, precentral/ postcentral cortex, anterior cingulate cortex, fusiform gyrus and hippocampus. -
Electroencephalographic Resting-State Functional Connectivity of Benign Epilepsy with Centrotemporal Spikes
JCN Open Access ORIGINAL ARTICLE pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2019;15(2):211-220 / https://doi.org/10.3988/jcn.2019.15.2.211 Electroencephalographic Resting-State Functional Connectivity of Benign Epilepsy with Centrotemporal Spikes Hyun-Soo Choia* Background and Purpose We aimed to reveal resting-state functional connectivity char- Yoon Gi Chungb* c acteristics based on the spike-free waking electroencephalogram (EEG) of benign epilepsy Sun Ah Choi with centrotemporal spikes (BECTS) patients, which usually appears normal in routine visual d Soyeon Ahn inspection. c Hunmin Kim Methods Thirty BECTS patients and 30 disease-free and age- and sex-matched controls Sungroh Yoona were included. Eight-second EEG epochs without artifacts were sampled and then bandpass Hee Hwangc filtered into the delta, theta, lower alpha, upper alpha, and beta bands to construct the associa- Ki Joong Kime,f tion matrix. The weighted phase lag index (wPLI) was used as an association measure for EEG signals. The band-specific connectivity, which was represented as a matrix of wPLI values of a Department of Electrical and all edges, was compared for analyzing the connectivity itself. The global wPLI, characteristic Computer Engineering, path length (CPL), and mean clustering coefficient were compared. Seoul National University, Seoul, Korea Results The resting-state functional connectivity itself and the network topology differed in bHealthcare ICT Research Center, the BECTS patients. For the lower-alpha-band and beta-band connectivity, edges that showed Seoul National University significant differences had consistently lower wPLI values compared to the disease-free con- Bundang Hospital, Seongnam, Korea c trols. -
A Critical Look at Connectomics
EDITORIAL A critical look at connectomics There is a public perception that connectomics will translate directly into insights for disease. It is essential that scientists and funding institutions avoid misrepresentation and accurately communicate the scope of their work. onnectomes are generating interest and excitement, both among nervous system, dubbed the classic connectome because it is currently neuroscientists and the public. This September, the first grants the only wiring diagram for an animal’s entire nervous system at the level Cunder the Human Connectome Project, totaling $40 million of the synapse. Although major neurobiological insights have been made over 5 years, were awarded by the US National Institutes of Health using C. elegans and its known connectivity and genome, there are still (NIH). In the public arena, striking, colorful pictures of human brains many questions remaining that can only be answered by hypothesis-driven have accompanied claims that imply that understanding the complete experiments. For example, we still don’t completely understand the process connectivity of the human brain’s billions of neurons by a trillion synapses of axon regeneration, relevant to spinal cord injury in humans, in this is not only possible, but that this will also directly translate into insights comparatively simple system. Thus, a connectome, at any resolution, is for neurological and psychiatric disorders. Even a press release from only one of several complementary tools necessary to understand nervous the NIH touted that the Human Connectome Project would map the system disease and injury. wiring diagram of the entire living human brain and would link these There are substantial efforts aimed at generating connectomes for circuits to the full spectrum of brain function in health and disease. -
Time-Resolved Resting-State Brain Networks
Time-resolved resting-state brain networks Andrew Zaleskya,b,1, Alex Fornitoa,c, Luca Cocchid, Leonardo L. Golloe, and Michael Breakspeare,f,g aMelbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC 3010, Australia; bMelbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; cMonash Clinical and Imaging Neuroscience, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC 3168, Australia; dQueensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; and eQIMR Berghofer Medical Research Institute, fThe Royal Brisbane and Women’s Hospital, and gMetro North Mental Health, Brisbane, QLD 4029, Australia Edited by Michael S. Gazzaniga, University of California, Santa Barbara, CA, and approved May 19, 2014 (received for review January 13, 2014) Neuronal dynamics display a complex spatiotemporal structure consistently revealed fluctuations in resting-state functional con- involving the precise, context-dependent coordination of acti- nectivity at timescales ranging from tens of seconds to a few vation patterns across a large number of spatially distributed minutes (19–24). Furthermore, the modular organization of func- regions. Functional magnetic resonance imaging (fMRI) has played tional brain networks appears to be time-dependent in the resting a central role in demonstrating the nontrivial spatial and topolog- state (25, 26) and modulated by learning (27) and cognitive effort ical structure of these interactions, but thus far has been limited in (28, 29). It is therefore apparent that reducing fluctuations in its capacity to study their temporal evolution. Here, using high- functional connectivity to time averages has led to a very useful but ’ resolution resting-state fMRI data obtained from the Human static and possibly oversimplified characterization of the brain s Connectome Project, we mapped time-resolved functional connec- functional networks. -
Psychedelic Resting-State Neuroimaging: a Review and Perspective on Balancing Replication and Novel Analyses
Psychedelic resting-state neuroimaging: a review and perspective on balancing replication and novel analyses Drummond E-Wen McCulloch1, Gitte Moos Knudsen1,2, Frederick Streeter Barrett3, Manoj Doss3, Robin Lester Carhart-Harris4,5, Fernando E. Rosas5,6,7, Gustavo Deco8,9,10,11,12, Katrin H. Preller13, Johannes G. Ramaekers14, Natasha L. Mason14, Felix Müller15, Patrick MacDonald Fisher1 1Neurobiology Research Unit, Rigshospitalet, 2100 Copenhagen, Denmark 2Institute of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark 3Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 4Neuroscape, Weill Institute for Neurosciences, University of California San Francisco, USA 5Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2DD, UK 6Data Science Institute, Imperial College London, London SW7 2AZ, UK 7Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK 8Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain, 9Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain, 10Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain, 11Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 12School of Psychological Sciences, Monash University, Melbourne, Australia 13Pharmaco-Neuroimaging -
Connectome Imaging for Mapping Human Brain Pathways
OPEN Molecular Psychiatry (2017) 22, 1230–1240 www.nature.com/mp EXPERT REVIEW Connectome imaging for mapping human brain pathways Y Shi and AW Toga With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. Molecular Psychiatry (2017) 22, 1230–1240; doi:10.1038/mp.2017.92; published online 2 May 2017 INTRODUCTION These rich resources in connectome imaging present great Mapping the connectivity of brain circuits is fundamentally opportunities to map human brain pathways at unprecedented 22,23 important for our understanding of the functions of human brain. accuracy. On the other hand, this avalanche of BIG DATA in 24,25 Various neurological and mental disorders have been linked to the connectomics also poses challenges for existing image disruption of brain connectivity in circuits such as the cortico– analysis algorithms. -
Ome Sweet Ome: What Can the Genome Tell Us About the Connectome? Jeff W Lichtman and Joshua R Sanes
Available online at www.sciencedirect.com Ome sweet ome: what can the genome tell us about the connectome? Jeff W Lichtman and Joshua R Sanes Some neuroscientists argue that detailed maps of synaptic however, the idea of applying an ‘omics-scale’ approach to connectivity – wiring diagrams – will be needed if we are to neural circuit tracing will require considerable vetting. understand how the brain underlies behavior and how brain Here, in contrast to common practice in this journal, we malfunctions underlie behavioral disorders. Such large-scale take the charge of providing our current opinion seriously. circuit reconstruction, which has been called connectomics, We compare and contrast connectomics with genomics to may soon be possible, owing to numerous advances in ask whether mapping neural connections could ulti- technologies for image acquisition and processing. Yet, the mately have the same kind of value as sequencing genes. community is divided on the feasibility and value of the enterprise. Remarkably similar objections were voiced when A (very) short history of connectomics the Human Genome Project, now widely viewed as a success, As with almost everything in neuroscience, the idea of was first proposed. We revisit that controversy to ask if it holds mapping circuits can be traced back to Cajal. He enun- any lessons for proposals to map the connectome. ciated both the neuron doctrine and the law of dynamic polarization [1]. These two ideas, along with Sherrington’s Address electrophysiological analysis of reflexes, provided the Department of Molecular and Cellular Biology and Center for Brain rationale for thinking about brain mechanisms in terms Science, Harvard University, Cambridge, MA 02138, USA of circuits: Neurons were nodes that were electrically Corresponding author: Lichtman, Jeff W ([email protected]) and connected to each other via two types of wires, axons Sanes, Joshua R ([email protected]) and dendrites. -
Scarcity of Scale-Free Topology Is Universal Across Biochemical
www.nature.com/scientificreports OPEN Scarcity of scale‑free topology is universal across biochemical networks Harrison B. Smith1,5, Hyunju Kim1,2,3 & Sara I. Walker1,2,3,4* Biochemical reactions underlie the functioning of all life. Like many examples of biology or technology, the complex set of interactions among molecules within cells and ecosystems poses a challenge for quantifcation within simple mathematical objects. A large body of research has indicated many real‑world biological and technological systems, including biochemistry, can be described by power‑law relationships between the numbers of nodes and edges, often described as “scale‑free”. Recently, new statistical analyses have revealed true scale‑free networks are rare. We provide a frst application of these methods to data sampled from across two distinct levels of biological organization: individuals and ecosystems. We analyze a large ensemble of biochemical networks including networks generated from data of 785 metagenomes and 1082 genomes (sampled from the three domains of life). The results confrm no more than a few biochemical networks are any more than super‑weakly scale‑free. Additionally, we test the distinguishability of individual and ecosystem‑level biochemical networks and show there is no sharp transition in the structure of biochemical networks across these levels of organization moving from individuals to ecosystems. This result holds across diferent network projections. Our results indicate that while biochemical networks are not scale‑free, they nonetheless exhibit common structure across diferent levels of organization, independent of the projection chosen, suggestive of shared organizing principles across all biochemical networks. Statistical mechanics was developed in the nineteenth century for studying and predicting the behavior of systems with many components. -
DIFFUSION TENSOR IMAGING (DTI) – Microstructural Brain Abnormalities SAGES Study / MRI Measures
Neuroimaging and Delirium 5th Annual Delirium Boot Camp November 2017 Michele Cavallari, M.D., Ph.D. Center for Neurological Imaging, Department of Radiology, BWH, HMS MRI : What Do We Measure? Historical Perspective ventriculography and pneumoencephalagraphy (Walter Dandy) “delirium phrenesis cerebral arteriogram caused by (Moniz) disease of the brain and its membranes” (Bartholomeus Anglicus) CT applied to clinical diagnosis “delirium” (Hounsfield) (Celsus) “phrenitis” first MRI (Hippocrates) (Lauterbur) 1st CENTURY 13th 500 BC 1918 1927 1973 MID 1970s AD CENTURY Role of Neuroimaging DELIRIUM (syndrome) Predisposing Factors What Happens Long-term Effect Vulnerability During Delirium (Methodologically Challenging) 1. QUANTIFY 1. LOCALIZE Acquisition Analysis Safety Image Analysts PMK, metal, kidney function Supervised postdoc/RA for contrast-MRI Motion Computer Scientist ≥30 min exam Non-conventional analyses, $$$ improve workflows Price/hour Physicist Time-consuming Non-conventional sequences Human-interactive tools, quality control Is MRI the Right Tool to Answer Your Scientific Question? Successful AGing after Elective Surgery Study Participants • Older Individuals ≥70 years • Dementia-free • Non-cardiac Elective Surgery Successful AGing after Elective Surgery Study Design and Aims 2 1 DELIRIUM N=146 N=126 (32 with delirium) (28 with delirium) PREDISPOSING SUBSTRATES LONG TERM EFFECT Analysis controlled for Age, Sex, Vascular Comorbidity, Baseline Cognitive Performance time T0 (surgery) T1 (1 year) Successful AGing after Elective