Corazonin Signaling Integrates Energy Homeostasis and Lunar Phase to Regulate Aspects of Growth SEE COMMENTARY and Sexual Maturation in Platynereis

Total Page:16

File Type:pdf, Size:1020Kb

Corazonin Signaling Integrates Energy Homeostasis and Lunar Phase to Regulate Aspects of Growth SEE COMMENTARY and Sexual Maturation in Platynereis Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth SEE COMMENTARY and sexual maturation in Platynereis Gabriele Andreattaa,1, Caroline Broyarta,2, Charline Borghgraefb, Karim Vadiwalaa, Vitaly Kozina,3, Alessandra Poloa,4, Andrea Bileckc, Isabel Beetsb, Liliane Schoofsb, Christopher Gernerc, and Florian Raiblea,1 aMax Perutz Labs, University of Vienna, A-1030 Vienna, Austria; bAnimal Physiology and Neurobiology, Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and cDepartment of Analytical Chemistry, University of Vienna, A-1090 Vienna, Austria Edited by Lynn M. Riddiford, University of Washington, Friday Harbor, WA, and approved November 8, 2019 (received for review June 25, 2019) The molecular mechanisms by which animals integrate external and GnRH receptors. The GnRH receptors also cover the Adi- stimuli with internal energy balance to regulate major develop- pokinetic hormone (AKH) and AKH-CRZ–related peptide (ACP) mental and reproductive events still remain enigmatic. We in- receptors, diversifications of a single ancestral GnRH receptor vestigated this aspect in the marine bristleworm, Platynereis likely restricted to arthropods (13). dumerilii, a species where sexual maturation is tightly regulated In vertebrates, an increase in the activity of GnRH neurons in by both metabolic state and lunar cycle. Our specific focus was on the hypothalamus is the key event for the precise timing of sexual ligands and receptors of the gonadotropin-releasing hormone maturation (14). This occurs via enhanced release of 2 glycopro- (GnRH) superfamily. Members of this superfamily are key in trig- tein hormones, luteinizing hormone (LH) and follicle-stimulating gering sexual maturation in vertebrates but also regulate repro- hormone (FSH), from the anterior pituitary (15), promoting ste- ductive processes and energy homeostasis in invertebrates. Here roidogenesis and the maturation of gametes (16). Moreover, we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes the pulsatile secretion of GnRH is crucial for the timing of the are expressed in specific and distinct neuronal clusters in the Pla- monthly reproductive cycle in women (17, 18). The GnRH system tynereis brain. Moreover, ligand–receptor interaction analyses re- has repeatedly been suggested to play a role in the reproductive veal a single Platynereis corazonin receptor (CrzR) to be activated DEVELOPMENTAL BIOLOGY by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified Significance as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/ AKHR1 and GnRHR2/AKHR2) respond only to a single ligand Gonadotropin Releasing Hormone (GnRH) acts as a key reg- (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up- ulator of sexual maturation in vertebrates, and is required regulation in sexually mature animals, after feeding, and in spe- for the integration of environmental stimuli to orchestrate cific lunar phases. Homozygous crz1/gnrhl1 knockout animals ex- breeding cycles. Whether this integrative function is conserved hibit a significant delay in maturation, reduced growth, and across phyla remains unclear. We characterized GnRH-type attenuated regeneration. Through a combination of proteomics signaling systems in the marine worm Platynereis dumerilii, and gene expression analysis, we identify enzymes involved in in which both metabolic state and lunar cycle regulate re- carbohydrate metabolism as transcriptional targets of CRZ1/ production. We find gnrh-like (gnrhl) genes upregulated in sexu- GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 ally mature animals, after feeding, and in specific lunar phases. coordinates glycoprotein turnover and energy homeostasis with Animals in which the corazonin1/gnrhl1 gene has been disabled growth and sexual maturation, integrating both metabolic and de- exhibit delays in growth, regeneration, and maturation. Molecular velopmental demands with the worm’s monthly cycle. analyses reveal glycoprotein turnover/energy homeostasis as targets of CRZ1/GnRHL1. These findings point at an ancestral role corazonin | GnRH | reproduction | regeneration | lunar periodicity of GnRH superfamily signaling in coordinating energy demands dictated by environmental and developmental cues. nimals regulate development and reproduction according to Aenvironmental cues such as season, temperature, moon phase, Author contributions: G.A. and F.R. designed research; G.A., C. Broyart, C. Borghgraef, and food availability (1–5). Despite some advances on the mo- K.V., V.K., A.P., and A.B. performed research; G.A., C. Broyart, C. Borghgraef, K.V., V.K., lecular mechanisms, the integration of multiple environmental A.P., A.B., I.B., L.S., C.G., and F.R. analyzed data; and G.A. and F.R. wrote the paper. stimuli for the regulation of reproduction and growth is still poorly The authors declare no competing interest. understood. The marine bristleworm Platynereis dumerilii is well This article is a PNAS Direct Submission. suited to tackle the endocrine basis of this integration. Worms This open access article is distributed under Creative Commons Attribution License 4.0 exhibit a complex life cycle where food availability, circalunar cy- (CC BY). cle, and season regulate development and sexual maturation (6–8). Data deposition: The sequences reported in this paper have been deposited in the GenBank repository, https://www.ncbi.nlm.nih.gov/genbank/ (accession nos. MN537870– Moreover, this species is molecularly accessible, and various ge- MN537874 and MN545476–MN545481). netic toolkits allow functional studies (9–11). See Commentary on page 805. Several lines of evidence suggest that Gonadotropin-releasing 1To whom correspondence may be addressed. Email: [email protected] or hormone (GnRH)-like signaling has relevant functions in the [email protected]. interplay between reproduction and development, integrating 2Present address: The Plant Signaling Mechanisms Laboratory, Department of Plant Mo- both intrinsic and extrinsic factors in this balance. All bilaterians lecular Biology, University of Lausanne, 1015 Lausanne, Switzerland. possess GnRH-like preprohormones (12, 13). This GnRH-like 3Present address: Department of Embryology, St. Petersburg State University, St. Petersburg preprohormone superfamily is subdivided into different sub- 199034, Russia. families, based on the phylogenetic grouping of their receptors 4Present address: Reef Renewal Foundation Bonaire, Kralendijk, Bonaire, Caribbean and the historical names by which GnRH-like peptides were Netherlands. referred to in different animal phyla. Supported by evolutionary This article contains supporting information online at https://www.pnas.org/lookup/suppl/ arguments, a recently suggested unified nomenclature (13) dis- doi:10.1073/pnas.1910262116/-/DCSupplemental. tinguishes 2 main receptor categories: Corazonin receptors (CrzR) First published December 16, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1910262116 PNAS | January 14, 2020 | vol. 117 | no. 2 | 1097–1106 Downloaded by guest on September 30, 2021 timing of semilunar/lunar synchronized spawners (19–23). How- lecular phylogenetic analyses based on their amino acid sequence ever, this evidence is at present correlational. It could be linked to alone do not provide sufficient support for a decisive split into the spawning event per se and thus only indirectly to lunar/semi- CRZ and AKH/GnRH subgroups (SI Appendix, Figs. S1 and lunar rhythmicity. Additional evidence for the involvement of the S2A). To faithfully reflect this lack of unambiguous phylogenetic GnRH system in the timing of reproductive events comes pri- classification, we here adopt a dual nomenclature for these li- marily from studies in birds and mammals. During seasonal gands, combining a general GnRH-like name (GnRHL1-4) with changes, nonphotosensitive (photorefractory or reproductively an additional name reflecting reliable deorphanization-based as- inactive) birds show a reduction in both the number and the size of signment to one of the established receptor orthology groups (13). GnRH immunoreactive cells (24), a condition reversed in breed- This nomenclature reassigns the ligand previously called AKH1 ing photosensitive animals (25). In mammals, the pulsatile secre- (53) to GnRHL3 (see below) and renames AKH2 (53) to Platy- tion of GnRH is reduced in the nonbreeding (anestrous) season, nereis GnRH2/GnRHL4 (please see SI Appendix,TableS1,fora and the reactivation of the hypothalamic–pituitary–gonadal axis is synopsis of nomenclature and alternative proposals). In our se- dictated by a seasonal-dependent increase in kisspeptin expression quence analysis, we found no conservation at the level of the and a concomitant reduction in Gonadotropin-inhibitory hormone C-terminal portion of propeptides, which in vertebrates contains the (GnIH) production (26–28). GnRH-associated peptide (GAP) (55, 56) (SI Appendix,Fig.S1). Also in several invertebrate groups, preprohormones of the As a first assessment if the GnRH superfamily system could be GnRH superfamily are involved in the regulation of different involved in adult biology, we performed whole-mount RNA in aspects of reproduction. For instance, CRZ signaling coordi- situ hybridization with the respective riboprobes on head sam- nates aspects of copulation and fecundity in Drosophila (29, 30) ples of mature male and female individuals. These experiments and steroid synthesis in Octopus gonads (31). Interestingly, the allowed us
Recommended publications
  • Conservation and Divergence of Related Neuronal Lineages in The
    RESEARCH ARTICLE Conservation and divergence of related neuronal lineages in the Drosophila central brain Ying-Jou Lee, Ching-Po Yang, Rosa L Miyares, Yu-Fen Huang, Yisheng He, Qingzhong Ren, Hui-Min Chen, Takashi Kawase, Masayoshi Ito, Hideo Otsuna, Ken Sugino, Yoshi Aso, Kei Ito, Tzumin Lee* Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States Abstract Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms. *For correspondence: Introduction [email protected] In order to understand how the genome encodes behavior, we need to study the developmental mechanisms that build and wire complex centers in the brain. The fruit fly is an ideal model system Competing interests: The to research these mechanisms. The Drosophila field has extensive genetic tools.
    [Show full text]
  • 1 Creating a Species Inventory for a Marine Protected Area: the Missing
    Katherine R. Rice NOAA Species Inventory Project Spring 2018 Creating a Species Inventory for a Marine Protected Area: The Missing Piece for Effective Ecosystem-Based Marine Management Katherine R. Rice ABSTRACT Over the past decade, ecosystem-based management has been incorporated into many marine- management administrations as a marine-conservation tool, driven with the objective to predict, evaluate and possibly mitigate the impacts of a warming and acidifying ocean, and a coastline increasingly subject to anthropogenic control. The NOAA Office of National Marine Sanctuaries (ONMS) is one such administration, and was instituted “to serve as the trustee for a network of 13 underwater parks encompassing more than 600,000 square miles of marine and Great Lakes waters from Washington state to the Florida Keys, and from Lake Huron to American Samoa” (NOAA, 2015). The management regimes for nearly all national marine sanctuaries, as well as other marine protected areas, have the goal of managing and maintaining biodiversity within the sanctuary. Yet none of those sanctuaries have an inventory of their known species nor a standardized protocol for measuring or monitoring species biodiversity. Here, I outline the steps required to compile a species inventory for an MPA, but also describe some of stumbling blocks that one might encounter along the way and offer suggestions on how to handle these issues (see Appendix A: Process for Developing the MBNMS Species Inventory (PD-MBNMS)). This project consists of three research objectives: 1. Determining what species inventory efforts exist, how they operate, and their advantages and disadvantages 2. Determining the process of creating a species inventory 3.
    [Show full text]
  • Data Mining in Genomics, Metagenomics and Connectomics
    Csaba Kerepesi DATA MINING IN GENOMICS, METAGENOMICS AND CONNECTOMICS PhD Thesis Supervisor: Dr. Vince Grolmusz Department of Computer Science E¨otv¨osLor´andUniversity, Hungary PhD School of Computer Science E¨otv¨osLor´andUniversity, Hungary Dr. Erzs´ebet Csuhaj-Varj´u PhD Program of Information Systems Dr. Andr´as Bencz´ur Budapest, 2017 Acknowledgements I would like to thank my supervisor Dr. Vince Grolmusz for his tireless support with which he started my scientific career. I am very grateful to the PhD School of Computer Science and the Faculty of Informatics, ELTE for their inexhaustible support. I would like to thank my co-authors for their precious work and I also would like to thank all my colleagues, who helped me anything in my re- searches. Finally, I would like to thank my family for their everlasting support. 2 Contents 1 Introduction 6 2 Data Mining in Genomics and Metagenomics 14 2.1 AmphoraNet: The Webserver Implementation of the AM- PHORA2 Metagenomic Workflow Suite . 14 2.1.1 Introduction . 14 2.1.2 Results and Discussion . 15 2.2 Visual Analysis of the Quantitative Composition of Metage- nomic Communities: the AmphoraVizu Webserver . 17 2.2.1 Introduction . 17 2.2.2 Results and Discussion . 19 2.3 Evaluating the Quantitative Capabilities of Metagenomic Analysis Software . 21 2.3.1 Introduction . 21 2.3.2 Results and discussion . 22 2.3.3 Methods . 25 2.3.4 Availability . 29 2.4 The \Giant Virus Finder" Discovers an Abundance of Giant Viruses in the Antarctic Dry Valleys . 30 2.4.1 Introduction . 30 3 2.4.2 Results and discussion .
    [Show full text]
  • Polygenic Evidence and Overlapped Brain Functional Connectivities For
    Sun et al. Translational Psychiatry (2020) 10:252 https://doi.org/10.1038/s41398-020-00941-z Translational Psychiatry ARTICLE Open Access Polygenic evidence and overlapped brain functional connectivities for the association between chronic pain and sleep disturbance Jie Sun 1,2,3,WeiYan2,Xing-NanZhang2, Xiao Lin2,HuiLi2,Yi-MiaoGong2,Xi-MeiZhu2, Yong-Bo Zheng2, Xiang-Yang Guo3,Yun-DongMa2,Zeng-YiLiu2,LinLiu2,Jia-HongGao4, Michael V. Vitiello 5, Su-Hua Chang 2,6, Xiao-Guang Liu 1,7 and Lin Lu2,6 Abstract Chronic pain and sleep disturbance are highly comorbid disorders, which leads to barriers to treatment and significant healthcare costs. Understanding the underlying genetic and neural mechanisms of the interplay between sleep disturbance and chronic pain is likely to lead to better treatment. In this study, we combined 1206 participants with phenotype data, resting-state functional magnetic resonance imaging (rfMRI) data and genotype data from the Human Connectome Project and two large sample size genome-wide association studies (GWASs) summary data from published studies to identify the genetic and neural bases for the association between pain and sleep disturbance. Pittsburgh sleep quality index (PSQI) score was used for sleep disturbance, pain intensity was measured by Pain Intensity Survey. The result showed chronic pain was significantly correlated with sleep disturbance (r = 0.171, p-value < 0.001). Their genetic correlation was rg = 0.598 using linkage disequilibrium (LD) score regression analysis. Polygenic score (PGS) association analysis showed PGS of chronic pain was significantly associated with sleep and vice versa. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Nine shared functional connectivity (FCs) were identified involving prefrontal cortex, temporal cortex, precentral/ postcentral cortex, anterior cingulate cortex, fusiform gyrus and hippocampus.
    [Show full text]
  • Six3 Demarcates the Anterior-Most Developing Brain Region In
    Steinmetz et al. EvoDevo 2010, 1:14 http://www.evodevojournal.com/content/1/1/14 RESEARCH Open Access Six3 demarcates the anterior-most developing brain region in bilaterian animals Patrick RH Steinmetz1,6†, Rolf Urbach2†, Nico Posnien3,7, Joakim Eriksson4,8, Roman P Kostyuchenko5, Carlo Brena4, Keren Guy1, Michael Akam4*, Gregor Bucher3*, Detlev Arendt1* Abstract Background: The heads of annelids (earthworms, polychaetes, and others) and arthropods (insects, myriapods, spiders, and others) and the arthropod-related onychophorans (velvet worms) show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the ‘new phylogeny’ placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals into molecular regions and can be used to align head regions between remote animal phyla. Results: We find that in the marine annelid Platynereis dumerilii, expression of the homeobox gene six3 defines the apical region of the larval body, peripherally overlapping the equatorial otx+ expression. The six3+ and otx+ regions thus define the developing head in anterior-to-posterior sequence. In another annelid, the earthworm Pristina, as well as in the onychophoran Euperipatoides, the centipede Strigamia and the insects Tribolium and Drosophila,asix3/optix+ region likewise demarcates the tip of the developing animal, followed by a more posterior otx/otd+ region. Identification of six3+ head neuroectoderm in Drosophila reveals that this region gives rise to median neurosecretory brain parts, as is also the case in annelids.
    [Show full text]
  • Pdumbase: a Transcriptome Database and Research Tool for Platynereis
    Chou et al. BMC Genomics (2018) 19:618 https://doi.org/10.1186/s12864-018-4987-0 DATABASE Open Access PdumBase: a transcriptome database and research tool for Platynereis dumerilii and early development of other metazoans Hsien-Chao Chou1,2†, Natalia Acevedo-Luna1†, Julie A. Kuhlman1 and Stephan Q. Schneider1* Abstract Background: The marine polychaete annelid Platynereis dumerilii has recently emerged as a prominent organism for the study of development, evolution, stem cells, regeneration, marine ecology, chronobiology and neurobiology within metazoans. Its phylogenetic position within the spiralian/ lophotrochozoan clade, the comparatively high conservation of ancestral features in the Platynereis genome, and experimental access to any stage within its life cycle, make Platynereis an important model for elucidating the complex regulatory and functional molecular mechanisms governing early development, later organogenesis, and various features of its larval and adult life. High resolution RNA- seq gene expression data obtained from specific developmental stages can be used to dissect early developmental mechanisms. However, the potential for discovery of these mechanisms relies on tools to search, retrieve, and compare genome-wide information within Platynereis, and across other metazoan taxa. Results: To facilitate exploration and discovery by the broader scientific community, we have developed a web-based, searchable online research tool, PdumBase, featuring the first comprehensive transcriptome database for Platynereis dumerilii during early stages of development (2 h ~ 14 h). Our database also includes additional stages over the P. dumerilii life cycle and provides access to the expression data of 17,213 genes (31,806 transcripts) along with annotation information sourced from Swiss-Prot, Gene Ontology, KEGG pathways, Pfam domains, TmHMM, SingleP, and EggNOG orthology.
    [Show full text]
  • A Transcriptional Blueprint for a Spiral-Cleaving Embryo Hsien-Chao Chou1,2, Margaret M
    Chou et al. BMC Genomics (2016) 17:552 DOI 10.1186/s12864-016-2860-6 RESEARCH ARTICLE Open Access A transcriptional blueprint for a spiral-cleaving embryo Hsien-Chao Chou1,2, Margaret M. Pruitt1,3, Benjamin R. Bastin1 and Stephan Q. Schneider1* Abstract Background: The spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To addressthisgapweuseRNA-sequencingonthespiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage. Results: RNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species. Conclusions: Our comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos.
    [Show full text]
  • A Critical Look at Connectomics
    EDITORIAL A critical look at connectomics There is a public perception that connectomics will translate directly into insights for disease. It is essential that scientists and funding institutions avoid misrepresentation and accurately communicate the scope of their work. onnectomes are generating interest and excitement, both among ­nervous ­system, dubbed the classic connectome because it is ­currently neuroscientists and the public. This September, the first grants the only wiring diagram for an animal’s entire nervous system at the level Cunder the Human Connectome Project, totaling $40 ­million of the synapse. Although major neurobiological insights have been made over 5 years, were awarded by the US National Institutes of Health using C. elegans and its known connectivity and genome, there are still (NIH). In the public arena, striking, colorful pictures of human brains many questions remaining that can only be answered by hypothesis-driven have ­accompanied claims that imply that understanding the complete experiments. For example, we still don’t completely understand the process ­connectivity of the human brain’s billions of neurons by a trillion ­synapses of axon regeneration, relevant to spinal cord injury in humans, in this is not only ­possible, but that this will also directly translate into insights comparatively simple system. Thus, a connectome, at any resolution, is for neurological and psychiatric disorders. Even a press release from only one of several complementary tools necessary to understand nervous the NIH touted that the Human Connectome Project would map the system disease and injury. ­wiring diagram of the entire living human brain and would link these There are substantial efforts aimed at generating connectomes for circuits to the full spectrum of brain function in health and disease.
    [Show full text]
  • No 158, December 2018
    FROGCALL No 158, December 2018 THE FROG AND TADPOLE STUDY GROUP NSW Inc. Facebook: https://www.facebook.com/groups/FATSNSW/ Email: [email protected] Frogwatch Helpline 0419 249 728 Website: www.fats.org.au ABN: 34 282 154 794 MEETING FORMAT President’s Page Friday 7th December 2018 Arthur White 6.30 pm: Lost frogs: 2 Green Tree Frogs Litoria caerulea, seeking forever homes. Priority to new pet frog owners. Please bring your membership card and cash $50 donation. Sorry, we don’t have EFTPOS. Your current NSW NPWS amphibian licence must be sighted on the night. Rescued and adopted frogs can 2017 –2018 was another strong year for FATS. FATS is one of the few conservation groups that is man- never be released. aging to maintain its membership numbers and still be active in the community. Other societies have seen numbers fall mainly because the general public seems to prefer to look up information on the web 7.00 pm: Welcome and announcements. and not to attend meetings or seek information firsthand. It is getting harder for FATS to get people to 7.45 pm: The main speaker is John Cann, talking about turtles. be active in frog conservation but we will continue to do so for as long as we can. Last year we made the decision to start sending out four issues of FrogCall per year electronically. 8.30 pm: Frog-O-Graphic Competition Prizes Awarded. This saves FATS a lot of postage fees. Our members have informed us that when FrogCall arrives as an email attachment it is often not read, or simply ignored.
    [Show full text]
  • A New Cryptic Species of Neanthes (Annelida: Phyllodocida: Nereididae)
    RAFFLES BULLETIN OF ZOOLOGY 2015 RAFFLES BULLETIN OF ZOOLOGY Supplement No. 31: 75–95 Date of publication: 10 July 2015 http://zoobank.org/urn:lsid:zoobank.org:pub:A039A3A6-C05B-4F36-8D7F-D295FA236C6B A new cryptic species of Neanthes (Annelida: Phyllodocida: Nereididae) from Singapore confused with Neanthes glandicincta Southern, 1921 and Ceratonereis (Composetia) burmensis (Monro, 1937) Yen-Ling Lee1* & Christopher J. Glasby2 Abstract. A new cryptic species of Neanthes (Nereididae), N. wilsonchani, new species, is described from intertidal mudflats of eastern Singapore. The new species was confused with both Ceratonereis (Composetia) burmensis (Monro, 1937) and Neanthes glandicincta Southern, 1921, which were found to be conspecific with the latter name having priority. Neanthes glandicincta is newly recorded from Singapore, its reproductive forms (epitokes) are redescribed, and Singapore specimens are compared with topotype material from India. The new species can be distinguished from N. glandicincta by slight body colour differences and by having fewer pharyngeal paragnaths in Areas II (4–8 vs 7–21), III (11–28 vs 30–63) and IV (1–9 vs 7–20), and in the total number of paragnaths for all Areas (16–41 vs 70–113). No significant differences were found in the morphology of the epitokes between the two species. The two species have largely non-overlapping distributions in Singapore; the new species is restricted to Pleistocene coastal alluvium in eastern Singapore, while N. glandicinta occurs in western Singapore as well as in Malaysia and westward to India. Key words. polychaete, new species, taxonomy, ragworm INTRODUCTION Both species are atypical members of their respective nominative genera: N.
    [Show full text]
  • Family Nereididae Marine Sediment Monitoring
    Family Nereididae Marine Sediment Monitoring Puget Sound Polychaetes: Nereididae Family Nereididae Family-level characters (from Hilbig, 1994) Prostomium piriform (pear-shaped) or rounded, bearing 2 antennae, two biarticulate palps, and 2 pairs of eyes. Eversible pharynx with 2 sections, the proximal oral ring and the distal maxillary ring which possesses 2 fang-shaped, often serrated terminal jaws; both the oral and maxillary rings may bear groups of papillae or hardened paragnaths of various sizes, numbers, and distribution patterns. Peristomium without parapodia, with 4 pairs of tentacular cirri. Parapodia uniramous in the first 2 setigers and biramous thereafter; parapodia possess several ligules (strap-like lobes) and both a dorsal cirrus and ventral cirrus. Shape, size, location of ligules is distinctive. They are more developed posteriorly, so often need to see ones from median to posterior setigers. Setae generally compound in both noto- and neuropodia; some genera have simple falcigers (blunt-tipped setae)(e.g., Hediste and Platynereis); completely lacking simple capillary setae. Genus and species-level characters The kind and the distribution of the setae distinguish the genera and species. The number and distribution of paragnaths on the pharynx. Unique terminology for this family Setae (see Hilbig, 1994, page 294, for pictures of setae) o Homogomph – two prongs of even length where the two articles of the compound setae connect. o Heterogomph – two prongs of uneven length where the two articles of the compound setae connect. o Spinigers - long articles in the compound setae. o Falcigers – short articles in the compound setae. o So, there can be homogomph falcigers and homogomph spinigers, and heterogomph falcigers and heterogomph spinigers.
    [Show full text]
  • Polychaeta: Nereididae) in Venezuelans Waters
    Presence of Platynereis mucronata de León-González, Solís-Weiss & Valadez-Rocha, 2001 (Polychaeta: Nereididae) in Venezuelans waters MARÍA CECILIA GÓMEZ-MADURO1 & OSCAR DÍAZ-DÍAZ2* 1 Posgrado en Ciencias Marinas Instituto Oceanográfico de Venezuela. 2 Laboratorio de Biología de Poliquetos, Dpto. Biología Marina, Instituto Oceanográfico de Venezuela. *Corresponding author: [email protected] Abstract. In a study of polychaetes associated to the algae Sargassum vulgare collected in the Gulf of Cariaco, Venezuela. Seventy-five specimens of a nereidid species were examined and identified as Platyereis mucronata. With this record the distribution range of this species extends to the coast of Venezuela. Keywords: Polychaetofauna, annelids, biodiversity, distribution, nereidids. Resumen. Presencia de Platynereis mucronata de León-González, Solís-Weiss & Valadez-Rocha, 2001 (Polychaeta: Nereididae) en aguas Venezolanas. En un estudio sobre poliquetos asociados al alga Sargassum vulgarae recolectados en el Golfo de Cariaco, Venezuela, se examinaron 65 ejemplares de un neréidido e identificados como Platyereis mucronata. Con este registro se amplía el área de distribución de esta especie hasta la costa de Venezuela. Palabras clave: Poliquetofauna, anélidos, biodiversidad, distribución, neréididos. The Nereididae Lamarck, 1818 family is Liñero-Arana, 1983; Liñero-Arana & Díaz-Díaz, grouped within the order Phyllodocida, is one of the 2007; Vanegas-Espinosa et al., 2007), but only two most representative and diverse families, with over are Platynereis species (Platynereis coccinea (Delle 530 described species, belonging to 43 genera Chiaje 1822) and Platynereis dumerilii (Audouin & (Glasby et al., 2000). The nereidid polychaetes are Milne Edwards 1834)), both registered in the Gulf of primarily marine, although some species are present Cariaco (Amaral & Nonato 1975, Liñero-Arana & in brackish waters.
    [Show full text]