An Atmospheric Source of S in Mesoarchaean Structurally-Controlled Gold Mineralisation of the Barberton Greenstone Belt

Total Page:16

File Type:pdf, Size:1020Kb

An Atmospheric Source of S in Mesoarchaean Structurally-Controlled Gold Mineralisation of the Barberton Greenstone Belt An atmospheric source of S in Mesoarchaean structurally-controlled gold mineralisation of the Barberton Greenstone Belt Andrea Agangi, Axel Hofmann, Benjamin Eickmann, Johanna Marin-Carbonne, Steven Reddy To cite this version: Andrea Agangi, Axel Hofmann, Benjamin Eickmann, Johanna Marin-Carbonne, Steven Reddy. An atmospheric source of S in Mesoarchaean structurally-controlled gold mineralisation of the Barberton Greenstone Belt. Precambrian Research, Elsevier, 2016, 285, pp.10-20. 10.1016/j.precamres.2016.09.004. hal-01407404 HAL Id: hal-01407404 https://hal.archives-ouvertes.fr/hal-01407404 Submitted on 19 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An atmospheric source of S in Mesoarchaean structurally-controlled gold mineralisation of the Barberton Greenstone Belt ⇑ Andrea Agangi a, , Axel Hofmann b, Benjamin Eickmann b, Johanna Marin-Carbonne c, Steven M. Reddy a a Department of Applied Geology, Curtin University, Bentley, WA, Australia b Department of Geology, University of Johannesburg, Johannesburg, South Africa c Université Lyon, UJM –Saint Etienne, Laboratoire Magma et Volcans CNRS UMR 6524, UBP, IRD, 23 rue Paul Michelon, 42100 St Etienne, France The Barberton Greenstone Belt of southern Africa hosts several Mesoarchaean gold deposits. The ores were mostly formed in greenschist facies conditions, and occur as hydrothermal alteration zones around extensional faults that truncate and post-date the main compressional structures of the greenstone belt. Ore deposition was accompanied by the intrusion of porphyries, which has led to the hypothesis that gold may have been sourced from magmas. Because the transport of Au in the hydrothermal fluids is widely believed to have involved S complexes, tracing the origin of S may place strong constraints on the origin of Au. We measured multiple S isotopes in sulfide ore from Sheba and Fairview mines of the Barberton Greenstone Belt to distinguish ‘‘deep” S sources (e.g. magmas) from ‘‘surface” S sources (i.e. rocks of the volcano-sedimentary succession that contain S processed in the atmosphere preserved as sulfide and sulfate minerals). Ion probe (SIMS) analyses of pyrite from ore zones indicate mass-independent frac- tionation of S isotopes (D33S=À0.6‰ to +1.0‰) and the distribution of the analyses in the D33S–d34S space matches the distribution peak of previously published analyses of pyrite from the entire volcano-sedimentary succession. Notwithstanding that the H2O–CO2 components of the fluids may have been introduced from a deep source external to the greenstone belt rocks, the fact that S bears an atmo- spheric signature suggests the hypothesis that the source of Au should also be identified in the supracrus- tal succession of the greenstone belt. Our findings differ from conclusions of previous studies of other Archaean shear-hosted Au deposits based on mineralogical and isotopic evidence, which suggested a magmatic or mantle source for Au, and imply that there is no single model that can be applied to this type of mineralisation in the Archaean. 1. Introduction either present in the mineral structure or as sub-microscopic inclu- sions (‘‘invisible gold”) (Craig et al., 1998). In this kind of The Palaeoarchaean Barberton Greenstone Belt of southern structurally-controlled gold deposits, the mineralising fluids are Africa hosts some of the oldest gold mineralisation known typically aqueo-carbonic and have low to moderate salinity (Anhaeusser, 1976; de Ronde et al., 1991; Dirks et al., 2013; (Goldfarb et al., 2001; Mikucki and Ridley, 1993), and are inter- Dziggel et al., 2010)(Fig. 1). These deposits have proved to be an preted to originate from a deep source (Salier et al., 2005). The ori- important source of Au since their discovery in the 1880s, and have gin of mineralising fluids is controversial, especially in Archaean produced more than 345 tons of Au (Anhaeusser, 1976; Dirks et al., deposits, and mineralogical, elemental and isotopic evidence 2009)(Fig. 1). Most deposits are hosted in greenschist facies rocks, seems to point towards either metamorphic or igneous sources, where gold mineralisation is structurally controlled and occurs or a combination of these (Hutti mine, India; Rogers et al., 2013; along extensional faults cross-cutting the main compressional Western Australia, Doublier et al., 2014; Wang et al., 1993). Prop- structures of the greenstone belt, which extend for several tens agation of these fluids along crust-scale structures is believed to be of km along strike (Dirks et al., 2013). The ore is dominated by pyr- responsible for the formation of deposits in a single region over a ite and arsenopyrite, and gold is mostly finely dispersed in sulfides, range of depths and temperatures (from <200 to >500, and possibly 6700 °C) (‘‘crustal continuum model”; Barnicoat et al., 1991; ⇑ Corresponding author. Groves, 1993; Phillips and Powell, 2009; Kolb et al., 2015). Deposi- E-mail address: [email protected] (A. Agangi). tion of Au would have occurred by reaction of the mineralising 1 31˚E 31˚30`E A Nelspruit Batholith 3106 Ma Salisbury 25˚30`S Kop 3109 Ma Stentor Pluton New Consort 3180 Ma Lily Kaap Valley Pluton Sheba 3227 Ma Fairview Saddleback-Inyoka Fault System Abbotts Agnes Nelshoogte Bellevue Pluton LEGEND Transvaal Group Sediments Potassic granites 26˚S Syenites, granodiorites Piggs Peak TTG Intrusions Batholith Dalmein Barberton Moodies Group Greenstone Belt Pluton Fig Tree Group Mpuluzi Batholith Onverwacht Group Kaapvaal 20 km Major gold deposits Craton W Fairview (cross section) E S Sheba (cross section) N B Mamba E 11 Level adit M ureka Cats cavear chert No 1 incline Ulundi syncline garet Blue Rock Fig Tree Group e tombi (greywacke, shale) lin In icline Commitment reef Ulundi syncline Eureka SynclineKidson 22 Level e antic Golden Quarry spital ant Ho No 2 incl tkoppi r in Zwa e 46CMR 23 Level line No 3 in MRC cli 33ZKA Sheba fault ne 33ZKB Eureka Sync Le Roux Reef Rossiter Reef 35 Level Eldorado ancline es Hope Reef in Moodies Group 62-11 Chert Moodies Group y anticl (quartzite) Talc carbonate schist da (quartzite) Sheba fault DykesLevel 74 Birth Gold mineralisation 500m 0 Shafts 0500m samples Fig. 1. (A) Geological map of the Barberton Greenstone Belt and distribution of the main gold deposits (modified from de Ronde et al., 1992). (B) Cross sections of Fairview and Sheba mines (modified from Barberton gold mines, 2014). fluid with the host rocks or by fluid mixing (Bateman and can be expressed as D33S=d33S À 1000 Á [(1 À d34S/1000)0.515 À 1], Hagemann, 2004; Evans et al., 2006), or vapour separation (de as ‰ variation. Among the products of this reaction, water-soluble Ronde et al., 1992; Mikucki and Ridley, 1993). The origin of S is sulfate with D33S < 0 and relatively insoluble elemental S with an important aspect in the study of deposits hosted in Archaean D33S > 0 can then be separated by bodies of water upon deposition greenstone belts and other structurally controlled Au deposits, on the Earth’s surface, incorporated into the sediments, and pre- À since hydrosulfide complexes [Au(HS)2 and AuHS] are believed served in the rock record in the form of sulfide and sulfate miner- to be the main Au transporting agents (Benning and Seward, als. In the Barberton Greenstone Belt MIF-S has been described in 1996; Pokrovski et al., 2014; Seward, 1973; Simon et al., 1999). pyrite and barite from several stratigraphic units (Grosch and Therefore, identifying the source of S can help constrain the origin McLoughlin, 2013; Montinaro et al., 2015; Philippot et al., 2012; of Au in these deposits, which has so far remained elusive Roerdink et al., 2012, 2013). (Tomkins, 2013; Gaboury, 2013; Kendrick et al., 2011; Pitcairn Following the discovery of MIF-S in sedimentary environments, et al., 2006). MIF-S signal has also been found in Neoarchaean VMS deposits In order to distinguish deep (magmatic- or mantle-related) (Jamieson et al., 2013), in diamond-hosted sulfide inclusions from sedimentary sources of sulfur, multiple S isotope analyses (Farquhar et al., 2002; Thomassot et al., 2009), in the Palaeopro- can be used. Mass-independent fractionation of S isotopes (MIF- terozoic Rustenburg Layered Suite of the Bushveld complex S) is a common feature of Archaean and early Palaeoproterozoic (Penniston-Dorland et al., 2012) and in olivine-hosted sulfide (>2.4 Ga) sedimentary and diagenetic sulfur minerals (sulfides inclusions in Cainozoic plume-related ocean island basalt magmas and sulfates; Ono et al., 2003). This S isotope signature is believed (Cabral et al., 2013). These findings have revealed a feedback to originate from ultraviolet radiation-induced reactions of S gas between surface and deep S cycle, indicating that S processed in species (e.g. SO2,SO3) in anoxic atmosphere, and thus to be a dis- the atmosphere during the Archaean can be stored in the crust or tinctively atmospheric signature (e.g. Farquhar et al., 2000). MIF-S the mantle, and be recycled back to the surface through different 2 processes, even after a long time. Thus, using MIF-S signal as a mar- and structural style, and occur as auriferous quartz-carbonate ker of Archaean atmospheric processes has opened up new ways of veins and sulfide bodies (Agangi et al., 2014; Anhaeusser, 1986; testing the hypothesis that ore deposits, even if non-sediment- Schouwstra, 1995). Ore assemblages include predominant pyrite hosted, can have sourced at least part of their S from sediments and arsenopyrite, with minor chalcopyrite, Ni–As sulfide and spha- or other deposits that carry MIF-S (Bekker et al., 2009; Fiorentini lerite.
Recommended publications
  • U–Pb Zircon (SHRIMP) Ages for the Lebombo Rhyolites, South Africa
    Journal of the Geological Society, London, Vol. 161, 2004, pp. 547–550. Printed in Great Britain. 2000) and the ages corroborate and further strengthen the SPECIAL chronology of the Lebombo stratigraphy. The rapid eruption of the Karoo succession is thought to have been responsible for trigger- U–Pb zircon (SHRIMP) ing the early Toarcian extinction event (Hesselbo et al. 2000). Geological setting. The Karoo Supergroup succession along the ages for the Lebombo Lebombo monocline is highlighted in Figure 1. The oldest phase of Karoo volcanism is marked by the Mashikiri nephelinites, rhyolites, South Africa: which unconformably overlie Jurassic Clarens Formation sand- stones (Fig. 2). The nephelinites have been dated at 182.1 Æ refining the duration of 1.6 Ma (40Ar/39Ar plateau age; Duncan et al. 1997) and form a lava succession up to 170 m thick (Bristow 1984). These rocks Karoo volcanism are confined to the northern part of the Lebombo rift and are absent along the central and southern sections. The nephelinites T. R. RILEY1,I.L.MILLAR2, are conformably overlain by picrites and picritic basalts of the 3 1 Letaba Formation, although in the southern Lebombo the picrites M. K. WATKEYS ,M.L.CURTIS, directly overlie the Clarens Formation. The picrites overlap in 1 3 P. T. LEAT , M. B. KLAUSEN & age (182.7 Æ 0.8 Ma; Duncan et al. 1997) with the Mashikiri C. M. FANNING4 nephelinites and are believed to form a succession up to 4 km in thickness. 1British Antarctic Survey, High Cross, Madingley Road, The Letaba Formation picrites are in turn overlain by a major Cambridge, CB3 0ET, UK (e-mail: [email protected]) succession (4–5 km thick) of low-MgO basalts, termed the Sabie 2British Antarctic Survey c/o NERC Isotope Geosciences River Basalt Formation (Cleverly & Bristow 1979).
    [Show full text]
  • Meso-Archaean and Palaeo-Proterozoic Sedimentary Sequence Stratigraphy of the Kaapvaal Craton
    Marine and Petroleum Geology 33 (2012) 92e116 Contents lists available at SciVerse ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Meso-Archaean and Palaeo-Proterozoic sedimentary sequence stratigraphy of the Kaapvaal Craton Adam J. Bumby a,*, Patrick G. Eriksson a, Octavian Catuneanu b, David R. Nelson c, Martin J. Rigby a,1 a Department of Geology, University of Pretoria, Pretoria 0002, South Africa b Department of Earth and Atmospheric Sciences, University of Alberta, Canada c SIMS Laboratory, School of Natural Sciences, University of Western Sydney, Hawkesbury Campus, Richmond, NSW 2753, Australia article info abstract Article history: The Kaapvaal Craton hosts a number of Precambrian sedimentary successions which were deposited Received 31 August 2010 between 3105 Ma (Dominion Group) and 1700 Ma (Waterberg Group) Although younger Precambrian Received in revised form sedimentary sequences outcrop within southern Africa, they are restricted either to the margins of the 27 September 2011 Kaapvaal Craton, or are underlain by orogenic belts off the edge of the craton. The basins considered in Accepted 30 September 2011 this work are those which host the Witwatersrand and Pongola, Ventersdorp, Transvaal and Waterberg Available online 8 October 2011 strata. Many of these basins can be considered to have formed as a response to reactivation along lineaments, which had initially formed by accretion processes during the amalgamation of the craton Keywords: Kaapvaal during the Mid-Archaean. Faulting along these lineaments controlled sedimentation either directly by Witwatersrand controlling the basin margins, or indirectly by controlling the sediment source areas. Other basins are Ventersdorp likely to be more controlled by thermal affects associated with mantle plumes.
    [Show full text]
  • Investigating Sexual Dimorphism in Ceratopsid Horncores
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-01-25 Investigating Sexual Dimorphism in Ceratopsid Horncores Borkovic, Benjamin Borkovic, B. (2013). Investigating Sexual Dimorphism in Ceratopsid Horncores (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26635 http://hdl.handle.net/11023/498 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Investigating Sexual Dimorphism in Ceratopsid Horncores by Benjamin Borkovic A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA JANUARY, 2013 © Benjamin Borkovic 2013 Abstract Evidence for sexual dimorphism was investigated in the horncores of two ceratopsid dinosaurs, Triceratops and Centrosaurus apertus. A review of studies of sexual dimorphism in the vertebrate fossil record revealed methods that were selected for use in ceratopsids. Mountain goats, bison, and pronghorn were selected as exemplar taxa for a proof of principle study that tested the selected methods, and informed and guided the investigation of sexual dimorphism in dinosaurs. Skulls of these exemplar taxa were measured in museum collections, and methods of analysing morphological variation were tested for their ability to demonstrate sexual dimorphism in their horns and horncores.
    [Show full text]
  • Open Kosei.Pdf
    The Pennsylvania State University The Graduate School Department of Geosciences GEOCHEMISTRY OF ARCHEAN–PALEOPROTEROZOIC BLACK SHALES: THE EARLY EVOLUTION OF THE ATMOSPHERE, OCEANS, AND BIOSPHERE A Thesis in Geosciences by Kosei Yamaguchi Copyright 2002 Kosei Yamaguchi Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2002 We approve the thesis of Kosei Yamaguchi Date of Signature ____________________________________ _______________________ Hiroshi Ohmoto Professor of Geochemistry Thesis Advisor Chair of Committee ____________________________________ _______________________ Michael A. Arthur Professor of Geosciences ____________________________________ _______________________ Lee R. Kump Professor of Geosciences ____________________________________ _______________________ Raymond G. Najjar Associate Professor of Meteorology ____________________________________ _______________________ Peter Deines Professor of Geochemistry Associate Head for Graduate Program and Research in Geosciences iii ABSTRACT When did the Earth's surface environment become oxic? The timing and mechanism of the rise of atmospheric pO2 level in the early Precambrian have been long debated but no consensus has been reached. The oxygenation of the atmosphere and oceans has significant impacts on the evolution of the biosphere and the geochemical cycles of redox-sensitive elements. In order to constrain the evolution of the atmosphere, oceans, biosphere, and geochemical cycles of elements, a systematic and multidisciplinary
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • The Palaeontology Newsletter
    The Palaeontology Newsletter Contents 90 Editorial 2 Association Business 3 Association Meetings 11 News 14 From our correspondents Legends of Rock: Marie Stopes 22 Behind the scenes at the Museum 25 Kinds of Blue 29 R: Statistical tests Part 3 36 Rock Fossils 45 Adopt-A-Fossil 48 Ethics in Palaeontology 52 FossilBlitz 54 The Iguanodon Restaurant 56 Future meetings of other bodies 59 Meeting Reports 64 Obituary: David M. Raup 79 Grant and Bursary Reports 81 Book Reviews 103 Careering off course! 111 Palaeontology vol 58 parts 5 & 6 113–115 Papers in Palaeontology vol 1 parts 3 & 4 116 Virtual Palaeontology issues 4 & 5 117–118 Annual Meeting supplement >120 Reminder: The deadline for copy for Issue no. 91 is 8th February 2016. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 90 2 Editorial I watched the press conference for the publication on the new hominin, Homo naledi, with rising incredulity. The pomp and ceremony! The emotion! I wondered why all of these people were so invested just because it was a new fossil species of something related to us in the very recent past. What about all of the other new fossil species that are discovered every day? I can’t imagine an international media frenzy, led by deans and vice chancellors amidst a backdrop of flags and flashbulbs, over a new species of ammonite. Most other fossil discoveries and publications of taxonomy are not met with such fanfare. The Annual Meeting is a time for sharing these discoveries, many of which will not bring the scientists involved international fame, but will advance our science and push the boundaries of our knowledge and understanding.
    [Show full text]
  • DECEMBER 2019 Contents
    QUARTERLY NEWS BULLETIN ~ Geoplaque atChapmansPeakDrive ICDP approvesfundingfordrillingproject Komatiite 50 th Anniversary DECEMBER 2 0 1 9 ........................................................................................................................................................................................................................ VOLUME 62 NO. 4 ............................... CENTREFOLD: Viljoens, a lifetime with komatiite. 3 Photos: David Reid, Komatiite in Barberton and Nondweni Volume 62 ~ Number FOUR ~ DECEMBER 2019 contents Society News GSSA MANDELA MINING PRECINCT (FORMERLY CSIR MININGTEK), 2 From the Editor’s desk - Chris Hatton CORNER RUSTENBURG & CARLOW ROADS, 3 Executive Manager’s Corner - Craig Smith MELVILLE, SOUTH AFRICA. 4 President’s Column - Sifiso Siwela 8 The Professional (Affairs) Corner P.O. Box 9230 CRIRSCO Auckland Park 2006 Johannesburg, South Africa University News Tel: +27 11 358 0028 9 Wits e-mail: [email protected] 16 Stellenbosch Web: www.gssa.org.za Articles COMMITTEE 20 Unveiling of the Geoplaque at Chapman’s Peak Drive Convener & Editor: Chris Hatton .................... 082 562 57 23 Sea Point Contact Advertising: Jann Otto ........................ 082 568 0432 25 Save the date! Geocongress Design & Layout: Belinda Boyes-Varley ........ 079 29 7748 26 REI Fund Printing: Seriti Printing (Pty) Ltd ....... 02 43 7632 27 IUGS and IGCP All submissions to (in order of preference): 3 ICDP approves funding for drilling project on the Bushveld email attachments (in Word .doc) to: [email protected]
    [Show full text]
  • MARCH 2018 Contents
    QUARTERLY NEWS BULLETIN ~ Reviving and transforming SA’s minerals industry minerals SA’s transforming and Reviving Geobotany Groundwater MARCH 2 0 1 8 ........................................................................................................................................................................................................................ VOLUME 61 NO. 1 ............................... COVER PHOTO: The Goboboseb “dog”. A bizarre shaped cluster of quartz with hematite inclusions and amethyst. The head of the dog is a sceptre, 5.5 cm. Bruce Cairncross collection and photo. CENTREFOLD: Theewaterskloof Dam, February 2018. Nick Norman photo. For an image of Theewaterkloof Dam in July 2014 visit the Daily Maverick website. Picture Greg Gordan Allafricapix Volume 61 ~ Number One ~ MARCH 2018 contents Society News GSSA CSIR MINING PRECINCT (FORMERLY CSIR MININGTEK), 2 From the Editor’s desk - Chris Hatton CORNER RUSTENBURG & CARLOW ROADS, 3 Executive Manager’s Corner - Craig Smith MELVILLE, SOUTH AFRICA. 4 President’s Column - Ed Swindell P.O. Box 91230 Auckland Park 2006 Johannesburg, South Africa University News 6 Stellenbosch Tel: +27 11 358 0028 e-mail: [email protected] Web: www.gssa.org.za Articles 7 The Professional (Affairs) Corner COMMITTEE 9 Groundwater Convener & Editor: Chris Hatton .................... 082 562 1517 14 Geobotany Advertising: Jann Otto ........................ 082 568 0432 18 Reviving and transforming South Africa’s mineral industry Design & Layout: Belinda Boyes-Varley ........ 079 129 7748
    [Show full text]
  • Sedimentology and Stratigraphy of the Fig Tree Group, West Limb of the Onverwacht Anticline, Barberton Greenstone Belt, South Africa
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1986 Sedimentology and Stratigraphy of the Fig Tree Group, West Limb of the Onverwacht Anticline, Barberton Greenstone Belt, South Africa. Bruce William Nocita Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Nocita, Bruce William, "Sedimentology and Stratigraphy of the Fig Tree Group, West Limb of the Onverwacht Anticline, Barberton Greenstone Belt, South Africa." (1986). LSU Historical Dissertations and Theses. 4315. https://digitalcommons.lsu.edu/gradschool_disstheses/4315 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Problems in Western Gondwana Geology
    PROBLEMS IN WESTERN GONDWANA GEOLOGY - I Workshop - “South America - Africa correlations: du Toit revisited” th th Gramado-RS-Brazil, August 27 to 29 , 2007 EXTENDED ABSTRACTS Edited by Roberto Iannuzzi and Daiana R. Boardman PROBLEMS IN WESTERN GONDWANA GEOLOGY - I Workshop - “South America - Africa correlations: du Toit revisited” Gramado-RS-Brazil, August 27th to 29th, 2007 ORGANIZING COMMITTEE Coordinators: Roberto Iannuzzi (CIGO-UFRGS) Farid Chemale Jr. (IG-UFRGS) José Carlos Frantz (IG-UFRGS) Technical Support: Daiana Rockenbach Boardman (PPGeo-UFRGS) Cristina Félix (PPGeo-UFRGS) Graciela Pereira Tybusch (PPGeo-UFRGS) Treasurer: Farid Chemale Jr. (IG-UFRGS) Scientific Committee: Edison José Milani (CENPES/PETROBRAS) Victor Ramos (UBA, Argentina) Maarteen de Wit (UCT, África do Sul) Editors: Roberto Iannuzzi (CIGO-UFRGS) Daiana Rockenbach Boardman (PPGeo-UFRGS) SPONSORED BY Centro de Investigações do Gondwana (CIGO-UFRGS) Instituto de Geociências da Universidade Federal do Rio Grande do Sul (IG-UFRGS) Programa de Pós-Graduação em Geociências (PPGeo-UFRGS) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Petróleo Brasileiro S.A. (PETROBRAS) I PROBLEMS IN WESTERN GONDWANA GEOLOGY - I Workshop - South America - Africa correlations: du Toit revisited Gramado-RS-Brazil, August 27th to 29th, 2007 PREFACE Early in the 20th Century, pioneering correlations between the Paleozoic- Mesozoic basins of South America and southern Africa were used by Alexander du Toit to support the initial concepts of continental drift and the proposal of a united Gondwana continent. Du Toit found the bio- and lithostratigraphy of the South American rock sequences of the Paraná Basin in Brazil and of the distant mountains of Sierra de la Ventana in Argentina to be remarkably similar to those that he had himself mapped out carefully for many years in the Cape-Karoo Basin and its flanking Cape Fold Belt mountains in southern Africa.
    [Show full text]
  • 3.26 Ga Mendon Formation, Barberton, Greenstone Belt, South Africa
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2013 High Resolution Tephra and U/Pb Chronology of the 3.33 – 3.26 Ga Mendon Formation, Barberton, Greenstone Belt, South Africa Nicholas Burns Decker Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Decker, Nicholas Burns, "High Resolution Tephra and U/Pb Chronology of the 3.33 – 3.26 Ga Mendon Formation, Barberton, Greenstone Belt, South Africa" (2013). LSU Master's Theses. 2176. https://digitalcommons.lsu.edu/gradschool_theses/2176 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. HIGH RESOLUTION TEPHRA AND U/PB CHRONOLOGY OF THE 3.33 – 3.26 GA MENDON FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the requirements for the degree of Master of Science in The Department of Geology and Geophysics by Nicholas Burns Decker B.S., Louisiana State University, 2010 May 2013 Acknowledgements The author is especially grateful to Dr. Gary Byerly, his advisor, for his ever insightful guidance, an excellent field season, and a worthwhile project. He would also like to thank Dr. Byerly, Dr. Don Lowe and his student Lizzy Stefurak, and Dr.
    [Show full text]
  • Depositional Setting and Metabolism of Microbial Mats in the Archean Moodies Group, Barberton Greenstone Belt, South Africa
    Depositional setting and metabolism of microbial mats in the Archean Moodies Group, Barberton Greenstone Belt, South Africa Kumulative Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften "doctor rerum naturalium“ (Dr. rer. nat.) von Dipl.-Geol. Martin Homann Eingereicht im Fachbereich Geowissenschaften an der Freien Universität Berlin Berlin, den 16.Dezember 2015 Diese Arbeit wurde von dem Promotionsausschuss des Fachbereiches Geowissenschaften der Freien Universität Berlin am 11. Februar 2014 genehmigt. …………………………………………………………………………………………………………… Prof. Dr. Christoph Heubeck (Erstgutachter) Friedrich-Schiller-Universität Jena Prof. Dr. Alessandro Airo (Zweitgutachter) Freie Universität Berlin Die Disputation erfolgte am: 12. Februar 2016 Erklärung Hiermit erkläre ich, Martin Homann, dass diese Arbeit ausschließlich auf Grundlage der angegebenen Hilfsmittel und Hilfen selbstständig von mir verfasst wurde. Diese Arbeit wurde in keinem früheren Promotionsverfahren eingereicht. Berlin, den 16. Dezember 2015 Martin Homann Zusammenfassung Das Archaikum umfasst etwa ein Drittel der Erdgeschichte. Während dieses Zeitraums von 1.5 Milliarden Jahren entwickelten sich die wichtigsten biochemischen Stoffwechselwege, einschließlich der oxygenen Photosynthese von Cyanobakterien, welche die Biosphäre bis heute dominiert. Die biologische Sauerstoffproduktion war die physiologische Basis für die Evolution von komplexen, multizellularen Lebensformen. Alter und Ursprung von Cyanobakterien sind jedoch nach wie vor ein kontroverses Thema, welches
    [Show full text]