Siliciclastic Associated Banded Iron Formation from the 3.2Ga Moodies Group, Barberton Greenstone Belt, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Siliciclastic Associated Banded Iron Formation from the 3.2Ga Moodies Group, Barberton Greenstone Belt, South Africa Precambrian Research 226 (2013) 116–124 Contents lists available at SciVerse ScienceDirect Precambrian Research journa l homepage: www.elsevier.com/locate/precamres Siliciclastic associated banded iron formation from the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa a,∗ b c Tomaso R.R. Bontognali , Woodward W. Fischer , Karl B. Föllmi a ETH-Zurich, Geological Institute, Zurich, Switzerland b California Institute of Technology, Geological and Planetary Sciences, Pasadena, CA, United States c University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland a r t i c l e i n f o a b s t r a c t Article history: Most models proposed for banded iron formation (BIF) deposition are based on observations of well- Received 29 June 2012 preserved Late Archean and Paleoproterozoic BIF. Efforts to push the understanding gained from younger Received in revised form successions deeper in time have been hampered by the high metamorphic grades that characterize Early 30 November 2012 Archean BIF. This study focuses on a unique occurrence of well-preserved and contextualized BIF from Accepted 19 December 2012 the Early Archean (∼3.2 Ga) Moodies Group, in the Barberton Greenstone Belt, South Africa. The Moodies Available online xxx BIF occurs thinly interbedded with fine-grained and cross-stratified sandstones, indicating deposition during times of decreased clastic sediment supply. In the Moodies BIF, chert is present as concretions, Keywords: and is never observed in direct contact with the siliciclastic material but is always associated with iron Banded iron formation Chert minerals. This observation suggests that the processes leading to the formation of both chert and iron Iron cycle minerals were coupled. The dominant iron-rich minerals within unweathered Moodies BIF are hematite Early life and magnetite, with less common occurrences of Fe–carbonate phases (mainly ankerite). Petrographic Barberton Greenstone Belt textures reveal that hematite constitutes an early mineral phase, while magnetite and ankerite display textures indicative of a late diagenetic or metamorphic origin. Carbonaceous particles are present in close association with the magnetite crystals. These C-bearing phases may be the preserved organic matter of microbes involved in the production of the ferric iron precursor phases, though it is difficult to rule out an origin from abiotic processes involving thermal decomposition of siderite to magnetite and organic carbon compounds. Nonetheless, the range of textures, mineralogies, and valence states supports the view that diagenetically-stabilized BIF mineralogies reflect the interaction of ferric iron phases with reducing fluids during diagenesis. These patterns are commonly observed in younger Archean and Paleoproterozoic iron formations, and imply a continuity of processes operating in the iron and silica cycles across both a range of paleoenvironments and long intervals of Archean time. © 2013 Elsevier B.V. All rights reserved. 1. Introduction able to link their occurrences to changes in fluid Earth redox chem- istry and geobiology. Banded iron formations (BIF) are chemical sedimentary rocks It is commonly thought that, during times of BIF formation, characterized by alternating layers of Fe-rich minerals and chert ocean basins must have been anoxic and sulfur poor (at least at (microcrystalline quartz) (James, 1954). Despite years of assiduous depth) in order to allow for the transport and accumulation of research, several aspects concerning their genesis remain contro- dissolved Fe(II); and that Fe was subsequently concentrated in versial (Bekker et al., 2010; Beukes and Gutzmer, 2008; Clout and the sediments by oxidation, hydration, and precipitation (Canfield, Simonson, 2005; Klein, 2005; Trendall, 2002). BIF are widespread 1998; Cloud, 1968; Drever, 1974; Holland, 1973; Klein, 2005). Fe(II) in Archean and Paleoproterozoic sedimentary basins, but similar may have been oxidized in the water column forming a hydrous facies is not observed to form in any modern geological setting. ferric oxide phase as a precursor to hematite (Bekker et al., 2010; BIF clearly result from a suite of non-uniform processes. Secular Lepp and Goldich, 1964). Oxidation may have occurred either in changes in their accumulation and sedimentary style continue to the presence of O2 produced by photosynthetic organisms or in the motivate efforts to understand their origins, with the goal of being absence of molecular oxygen, through abiotic photochemical reac- tions (Cairns-Smith, 1978) or through anoxygenic photosynthesis with iron as a primary electron donor (Widdel et al., 1993). Alterna- ∗ tively, direct precipitation from anoxic seawater may have formed Corresponding author. E-mail address: [email protected] (T.R.R. Bontognali). siderite and mixed valence iron–silicate phases. 0301-9268/$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.precamres.2012.12.003 T.R.R. Bontognali et al. / Precambrian Research 226 (2013) 116–124 117 Although now common, the hypotheses that microbes were suggesting that a global theory explaining all BIF occurrences may involved in the primary oxidation of Fe(II) to Fe(III) (via oxygenic not exist. To answer the question of whether current models can or anoxygenic photosynthesis, or via chemoautotrophy at low oxy- be extrapolated back in time to explain these Early Archean BIF it is gen concentrations (Brown et al., 1995; Cloud, 1973; Harder, 1919; important to identify well-preserved examples of earlier Archean Hartman, 1984; Kappler et al., 2005; Konhauser et al., 2002; Perry BIF, which can be compared in terms of their sedimentary geology, et al., 1973; Posth et al., 2008)) contrast with the general lack of geochemistry, and petrography, with their younger equivalents. microbial biomass (e.g. accumulation of organic carbon, microfos- This study focuses on the BIF from the ∼3.2 Ga Moodies Group sils or biomarkers) within BIF (Beukes and Klein, 1992; Klein and from the Barberton Greenstone Belt, South Africa. These sedimen- Beukes, 1989). A reasonable explanation for this discordance is pro- tary rocks have been noted (Eriksson, 1977, 1983; Heubeck and vided by diagenetic processes that respired much of the organic Lowe, 1999), but not studied in detail because the few outcrops carbon back to dissolved inorganic carbon (DIC) during interactions where they are exposed at the surface are strongly affected by surfi- with ferric oxide or mixed valence phases (Baur et al., 1985; Fischer cial weathering obscuring the original mineralogies. For this study, and Knoll, 2009; Konhauser et al., 2005; Perry et al., 1973; Walker, we were able to collect a suite of samples directly from the under- 1984). This scenario is consistent with the well-documented pres- ground tunnels of an active gold mine. Coupled to observations ence, in many BIF, of diagenetic iron-bearing carbonates (siderite from an outcrop located at the surface, these materials provide a 13 and ankerite) characterized by a C-depleted isotopic composition unique window into the processes responsible for the deposition (Baur et al., 1985; Becker and Clayton, 1972; Beukes et al., 1990; of BIF in Early Archean time. Fischer and Knoll, 2009; Goodwin et al., 1976; Kaufman et al., 1990; Perry et al., 1973). 2. Geological setting The origin of chert – the most abundant phase in BIF –inthese rocks is no less enigmatic than that of iron. In the absence of silicify- The Barberton Greenstone Belt (BGB) is situated in the ing organisms, Precambrian oceans were likely close to saturation central-east part of South Africa, along the border between the with respect to amorphous silica and evaporation may have pro- Mpumalanga Province and Swaziland (Fig. 1). The BGB contains a vided an important driver for the precipitation of chert (Siever, diverse suite of sedimentary strata deposited in one of the oldest 1992; Trendall and Blockley, 1970). However, this interpretation recognized foreland basins; despite their early Archean age, regions does not explain why chert is common in BIF, which are com- of the BGB have remarkably good preservation and provide a unique monly manifest as a deep-water facies. One hypothesis to explain and rich source of insight about sedimentary processes and envi- the transport and precipitation of silica in deep waters, as well ronments on the early Earth (Byerly et al., 1986; Eriksson, 1977; as its close association with iron minerals, has been proposed by Eriksson and Simpson, 2000; Javaux et al., 2010; Noffke et al., 2006; Fischer and Knoll (2009). This mechanism is based on the tendency Simpson et al., 2012). The successions of rocks that comprise the of ferric hydroxides to bind and shuttle silica to basinal waters and BGB were subdivided into three different groups (Hall, 1918; Lowe sediments. Fe(III) respiration taking place within sediments would et al., 1999) (Fig. 2). The Onverwacht Group (3.5–3.3 Ga) is pre- then return the majority of iron to the water column, while silica, dominantly composed of mafic and ultramafic volcanic rocks but it which does not undergo reductive dissolution, remains reactive, also includes some thin cherty units thought to be sedimentary in is concentrated in pore waters, and is ultimately precipitated as origin (Lowe et al., 1999). The overlying Fig Tree Group (3.3–3.2 Ga) diagenetic mineral phases. consists mainly of fine-grained sedimentary rocks including BIF, Finally, not only is the origin of the BIF mineralogy contro- carbonaceous
Recommended publications
  • U–Pb Zircon (SHRIMP) Ages for the Lebombo Rhyolites, South Africa
    Journal of the Geological Society, London, Vol. 161, 2004, pp. 547–550. Printed in Great Britain. 2000) and the ages corroborate and further strengthen the SPECIAL chronology of the Lebombo stratigraphy. The rapid eruption of the Karoo succession is thought to have been responsible for trigger- U–Pb zircon (SHRIMP) ing the early Toarcian extinction event (Hesselbo et al. 2000). Geological setting. The Karoo Supergroup succession along the ages for the Lebombo Lebombo monocline is highlighted in Figure 1. The oldest phase of Karoo volcanism is marked by the Mashikiri nephelinites, rhyolites, South Africa: which unconformably overlie Jurassic Clarens Formation sand- stones (Fig. 2). The nephelinites have been dated at 182.1 Æ refining the duration of 1.6 Ma (40Ar/39Ar plateau age; Duncan et al. 1997) and form a lava succession up to 170 m thick (Bristow 1984). These rocks Karoo volcanism are confined to the northern part of the Lebombo rift and are absent along the central and southern sections. The nephelinites T. R. RILEY1,I.L.MILLAR2, are conformably overlain by picrites and picritic basalts of the 3 1 Letaba Formation, although in the southern Lebombo the picrites M. K. WATKEYS ,M.L.CURTIS, directly overlie the Clarens Formation. The picrites overlap in 1 3 P. T. LEAT , M. B. KLAUSEN & age (182.7 Æ 0.8 Ma; Duncan et al. 1997) with the Mashikiri C. M. FANNING4 nephelinites and are believed to form a succession up to 4 km in thickness. 1British Antarctic Survey, High Cross, Madingley Road, The Letaba Formation picrites are in turn overlain by a major Cambridge, CB3 0ET, UK (e-mail: [email protected]) succession (4–5 km thick) of low-MgO basalts, termed the Sabie 2British Antarctic Survey c/o NERC Isotope Geosciences River Basalt Formation (Cleverly & Bristow 1979).
    [Show full text]
  • Meso-Archaean and Palaeo-Proterozoic Sedimentary Sequence Stratigraphy of the Kaapvaal Craton
    Marine and Petroleum Geology 33 (2012) 92e116 Contents lists available at SciVerse ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Meso-Archaean and Palaeo-Proterozoic sedimentary sequence stratigraphy of the Kaapvaal Craton Adam J. Bumby a,*, Patrick G. Eriksson a, Octavian Catuneanu b, David R. Nelson c, Martin J. Rigby a,1 a Department of Geology, University of Pretoria, Pretoria 0002, South Africa b Department of Earth and Atmospheric Sciences, University of Alberta, Canada c SIMS Laboratory, School of Natural Sciences, University of Western Sydney, Hawkesbury Campus, Richmond, NSW 2753, Australia article info abstract Article history: The Kaapvaal Craton hosts a number of Precambrian sedimentary successions which were deposited Received 31 August 2010 between 3105 Ma (Dominion Group) and 1700 Ma (Waterberg Group) Although younger Precambrian Received in revised form sedimentary sequences outcrop within southern Africa, they are restricted either to the margins of the 27 September 2011 Kaapvaal Craton, or are underlain by orogenic belts off the edge of the craton. The basins considered in Accepted 30 September 2011 this work are those which host the Witwatersrand and Pongola, Ventersdorp, Transvaal and Waterberg Available online 8 October 2011 strata. Many of these basins can be considered to have formed as a response to reactivation along lineaments, which had initially formed by accretion processes during the amalgamation of the craton Keywords: Kaapvaal during the Mid-Archaean. Faulting along these lineaments controlled sedimentation either directly by Witwatersrand controlling the basin margins, or indirectly by controlling the sediment source areas. Other basins are Ventersdorp likely to be more controlled by thermal affects associated with mantle plumes.
    [Show full text]
  • Desktop Palaeontological Heritage Impact
    DESKTOP PALAEONTOLOGICAL HERITAGE IMPACT ASSESSEMENT REPORT ON THE SITES OF SEVEN PROPOSED SITES OF WIDENING OF THE N4 HIGHWAY (NAMED WB1, WB3, WB4, WB5, WB7, EB1 AND EB3) TO BE LOCATED BETWEEN WATERVAL BOVEN AND NELSPRUIT, MPUMALANGA PROVINCE 7 February 2016 Prepared for: Prism Environmental Management Services (Pty) Ltd On behalf of: Postal address: SANRAL P.O. Box 13755 Hatfield 0028 South Africa Cell: +27 (0) 79 626 9976 Faxs:+27 (0) 86 678 5358 E-mail: [email protected] DESKTOP PALAEONTOLOGICAL HERITAGE IMPACT ASSESSEMENT REPORT ON THE SITES OF SEVEN PROPOSED SITES OF WIDENING OF THE N4 HIGHWAY (NAMED WB1, WB3, WB4, WB5, WB7, EB1 AND EB3) TO BE LOCATED BETWEEN WATERVAL BOVEN AND NELSPRUIT, MPUMALANGA PROVINCE Prepared for: Prism Environmental Management Service (Pty) Ltd On Behalf of: SANRAL Prepared By: Prof B.D. Millsteed 2 Desktop Palaeontological Impact Assessment Report – on seven sites of proposed widening of the N4 Highway between Waterval Boven and Nelspruit, Mpumalanga Province. EXECUTIVE SUMMARY The South African National Roads Agency SOC Ltd (SANRAL) is proposing upgrades by widening certain sections of the existing National N4 Toll Route between eMgwenya (Waterval Boven) and Mbombela (Nelspruit), Mpumalanga. As part of continual upgrading of this road corridor between Pretoria in the west and Maputo, Mozambique in the east; a need has arisen to introduce extensions to existing passing lanes whilst new passing lanes are also required. SANRAL has an implementing agent and concessionaire for the National N4 Toll Route existing between Pretoria and Maputo known as “Trans African Concessions” (TracN4) – a concessionaire established during the mid-90’s specifically for the management of the N4 corridor between South Africa and Mozambique.
    [Show full text]
  • Investigating Sexual Dimorphism in Ceratopsid Horncores
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-01-25 Investigating Sexual Dimorphism in Ceratopsid Horncores Borkovic, Benjamin Borkovic, B. (2013). Investigating Sexual Dimorphism in Ceratopsid Horncores (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26635 http://hdl.handle.net/11023/498 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Investigating Sexual Dimorphism in Ceratopsid Horncores by Benjamin Borkovic A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA JANUARY, 2013 © Benjamin Borkovic 2013 Abstract Evidence for sexual dimorphism was investigated in the horncores of two ceratopsid dinosaurs, Triceratops and Centrosaurus apertus. A review of studies of sexual dimorphism in the vertebrate fossil record revealed methods that were selected for use in ceratopsids. Mountain goats, bison, and pronghorn were selected as exemplar taxa for a proof of principle study that tested the selected methods, and informed and guided the investigation of sexual dimorphism in dinosaurs. Skulls of these exemplar taxa were measured in museum collections, and methods of analysing morphological variation were tested for their ability to demonstrate sexual dimorphism in their horns and horncores.
    [Show full text]
  • Open Kosei.Pdf
    The Pennsylvania State University The Graduate School Department of Geosciences GEOCHEMISTRY OF ARCHEAN–PALEOPROTEROZOIC BLACK SHALES: THE EARLY EVOLUTION OF THE ATMOSPHERE, OCEANS, AND BIOSPHERE A Thesis in Geosciences by Kosei Yamaguchi Copyright 2002 Kosei Yamaguchi Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2002 We approve the thesis of Kosei Yamaguchi Date of Signature ____________________________________ _______________________ Hiroshi Ohmoto Professor of Geochemistry Thesis Advisor Chair of Committee ____________________________________ _______________________ Michael A. Arthur Professor of Geosciences ____________________________________ _______________________ Lee R. Kump Professor of Geosciences ____________________________________ _______________________ Raymond G. Najjar Associate Professor of Meteorology ____________________________________ _______________________ Peter Deines Professor of Geochemistry Associate Head for Graduate Program and Research in Geosciences iii ABSTRACT When did the Earth's surface environment become oxic? The timing and mechanism of the rise of atmospheric pO2 level in the early Precambrian have been long debated but no consensus has been reached. The oxygenation of the atmosphere and oceans has significant impacts on the evolution of the biosphere and the geochemical cycles of redox-sensitive elements. In order to constrain the evolution of the atmosphere, oceans, biosphere, and geochemical cycles of elements, a systematic and multidisciplinary
    [Show full text]
  • Faculty of Science
    Faculty of Science DEAN’S REPORT received an NRF A-rating, while three young researchers, Dr Amanda Weltman (Department of Mathematics and Applied The Faculty of Science enjoyed Mathematics), and Dr David Braun and considerable success in its Dr Shadreck Chirikure from the Department of Archaeology, received NRF P-ratings research endeavours in a in 2011. number of areas during 2011. At the university level, three of our more senior scientists, professors George To meet the continuing rise in cost of Janelidze (Department of Mathematics internationally competitive research, staff and Applied Mathematics), Hans-Peter were successful in raising approximately Kunzi (Department of Mathematics and R141 million in research income to cover Applied Mathematics), and Ed Rybicki a range of projects, including salaries were honoured by being elected as for soft-funded staff, postdoctoral fellows of the University of Cape Town in fellows and master’s and PhD bursaries. This is a recognition of their international research standing and particularly noteworthy achievement, given the dwindling the impact of their research. Professor Janelidze was NRF resources for the pure sciences. Of this funding, recognised for his work in categorical algebra, including R58 million was received from the NRF and some abstract Galois theory, with applications in classical R78 million from research contracts with industry, algebra, geometry and topology; Professor Kunzi for his government, public entities and statutory bodies, and work in analytic and categorical topology, focusing on science councils; with about R28 million being raised frame theory and asymmetric topology; and Professor from foreign sources. Of importance to the training of Rybicki for his work on the use of plants and cell cultures postgraduate students in our faculty, staff were able to to make pharmaceutically-important proteins, and in raise R32 million for bursaries in support of honours, elucidating the virus-host interactions of grass- and cereal- master’s and PhD students in the faculty.
    [Show full text]
  • Palaeontological Heritage of Mpumalanga
    SAHRA PALAEOTECHNICAL REPORT PALAEONTOLOGICAL HERITAGE OF MPUMALANGA View of the current coal mining area. Photograpgh: David Groenewald Dr Gideon Groenewald Cell: (082) 339-9202 David Groenewald Cell: (083) 469-4696 Logistical Support: Sue Groenewald Cell: (082) 339 9202 PO Box 360, Clarens, 9707 ([email protected]) (Copyright: March 2014) GENERAL INTRODUCTION The core purpose of this SAHRA palaeotechnical report (PTR) is to briefly but comprehensively document the palaeontological heritage resources in South Africa in an accessible and useful format. Following the request by SAHRA, the report is presented in the form of two sections. The first section outlines the general geological history of South Africa and the second section provides a more detailed, geological history of the Free State, Gauteng, North West, Limpopo and Mpumalanga Provinces with specific reference to the palaeontological sensitivity of geological formations and their importance to the development of life through 3600 million years of time in Earth history. The first section summarises the geological history of South Africa and gives a very brief description of the six major events that shaped the Earth over time. The known and predicted fossil heritage within all the major fossiliferous stratigraphic units (formations, groups etc) that crop out in South Africa are presented on a map that relates directly to the composite geological map of South Africa where mapping was done on a 1:250 000 scale. The palaeontological sensitivity of geological units was allocated sensitivity ratings on a five point scale: very high sensitivity, high sensitivity, moderate sensitivity, low sensitivity and very low sensitivity (Table 1). When used in conjunction with published geological maps, this report can be used by heritage managers and environmental impact assessors, as well as private developers, to rapidly evaluate the potential impact of proposed developments on fossil heritage.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • The Palaeontology Newsletter
    The Palaeontology Newsletter Contents 90 Editorial 2 Association Business 3 Association Meetings 11 News 14 From our correspondents Legends of Rock: Marie Stopes 22 Behind the scenes at the Museum 25 Kinds of Blue 29 R: Statistical tests Part 3 36 Rock Fossils 45 Adopt-A-Fossil 48 Ethics in Palaeontology 52 FossilBlitz 54 The Iguanodon Restaurant 56 Future meetings of other bodies 59 Meeting Reports 64 Obituary: David M. Raup 79 Grant and Bursary Reports 81 Book Reviews 103 Careering off course! 111 Palaeontology vol 58 parts 5 & 6 113–115 Papers in Palaeontology vol 1 parts 3 & 4 116 Virtual Palaeontology issues 4 & 5 117–118 Annual Meeting supplement >120 Reminder: The deadline for copy for Issue no. 91 is 8th February 2016. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 90 2 Editorial I watched the press conference for the publication on the new hominin, Homo naledi, with rising incredulity. The pomp and ceremony! The emotion! I wondered why all of these people were so invested just because it was a new fossil species of something related to us in the very recent past. What about all of the other new fossil species that are discovered every day? I can’t imagine an international media frenzy, led by deans and vice chancellors amidst a backdrop of flags and flashbulbs, over a new species of ammonite. Most other fossil discoveries and publications of taxonomy are not met with such fanfare. The Annual Meeting is a time for sharing these discoveries, many of which will not bring the scientists involved international fame, but will advance our science and push the boundaries of our knowledge and understanding.
    [Show full text]
  • DECEMBER 2019 Contents
    QUARTERLY NEWS BULLETIN ~ Geoplaque atChapmansPeakDrive ICDP approvesfundingfordrillingproject Komatiite 50 th Anniversary DECEMBER 2 0 1 9 ........................................................................................................................................................................................................................ VOLUME 62 NO. 4 ............................... CENTREFOLD: Viljoens, a lifetime with komatiite. 3 Photos: David Reid, Komatiite in Barberton and Nondweni Volume 62 ~ Number FOUR ~ DECEMBER 2019 contents Society News GSSA MANDELA MINING PRECINCT (FORMERLY CSIR MININGTEK), 2 From the Editor’s desk - Chris Hatton CORNER RUSTENBURG & CARLOW ROADS, 3 Executive Manager’s Corner - Craig Smith MELVILLE, SOUTH AFRICA. 4 President’s Column - Sifiso Siwela 8 The Professional (Affairs) Corner P.O. Box 9230 CRIRSCO Auckland Park 2006 Johannesburg, South Africa University News Tel: +27 11 358 0028 9 Wits e-mail: [email protected] 16 Stellenbosch Web: www.gssa.org.za Articles COMMITTEE 20 Unveiling of the Geoplaque at Chapman’s Peak Drive Convener & Editor: Chris Hatton .................... 082 562 57 23 Sea Point Contact Advertising: Jann Otto ........................ 082 568 0432 25 Save the date! Geocongress Design & Layout: Belinda Boyes-Varley ........ 079 29 7748 26 REI Fund Printing: Seriti Printing (Pty) Ltd ....... 02 43 7632 27 IUGS and IGCP All submissions to (in order of preference): 3 ICDP approves funding for drilling project on the Bushveld email attachments (in Word .doc) to: [email protected]
    [Show full text]
  • MARCH 2018 Contents
    QUARTERLY NEWS BULLETIN ~ Reviving and transforming SA’s minerals industry minerals SA’s transforming and Reviving Geobotany Groundwater MARCH 2 0 1 8 ........................................................................................................................................................................................................................ VOLUME 61 NO. 1 ............................... COVER PHOTO: The Goboboseb “dog”. A bizarre shaped cluster of quartz with hematite inclusions and amethyst. The head of the dog is a sceptre, 5.5 cm. Bruce Cairncross collection and photo. CENTREFOLD: Theewaterskloof Dam, February 2018. Nick Norman photo. For an image of Theewaterkloof Dam in July 2014 visit the Daily Maverick website. Picture Greg Gordan Allafricapix Volume 61 ~ Number One ~ MARCH 2018 contents Society News GSSA CSIR MINING PRECINCT (FORMERLY CSIR MININGTEK), 2 From the Editor’s desk - Chris Hatton CORNER RUSTENBURG & CARLOW ROADS, 3 Executive Manager’s Corner - Craig Smith MELVILLE, SOUTH AFRICA. 4 President’s Column - Ed Swindell P.O. Box 91230 Auckland Park 2006 Johannesburg, South Africa University News 6 Stellenbosch Tel: +27 11 358 0028 e-mail: [email protected] Web: www.gssa.org.za Articles 7 The Professional (Affairs) Corner COMMITTEE 9 Groundwater Convener & Editor: Chris Hatton .................... 082 562 1517 14 Geobotany Advertising: Jann Otto ........................ 082 568 0432 18 Reviving and transforming South Africa’s mineral industry Design & Layout: Belinda Boyes-Varley ........ 079 129 7748
    [Show full text]
  • Evidence for 3.3-Billion-Year-Old Oceanic Crust in the Barberton Greenstone Belt, South Africa
    Evidence for 3.3-billion-year-old oceanic crust in the Barberton greenstone belt, South Africa Eugene G. Grosch1* and Jiri Slama2 1Geology Department, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa 2Institute of Geology of the Czech Academy of Science, Rosvojova 269, 16500 Prague, Czech Republic ABSTRACT of the BGB and test for a continental versus juvenile oceanic setting. We Recognition of oceanic crust in Archean greenstone belts has develop a multi-pronged approach combining field observations, scientific remained a controversial and unresolved issue, with implications drill core, U-Pb detrital zircon ages, and geochemistry of metabasalts to for understanding early Earth geodynamics. In the search for early evaluate whether the sequence erupted on top of continental tonalite- Archean oceanic crust, we present a multi-pronged approach to test trondhjemite-granodiorite (TTG) crust, or whether it represents a pre- for the presence of an ophiolite-type sequence preserved in the Paleo- served remnant of accreted juvenile oceanic crust. The extent to which archean Barberton greenstone belt (BGB) of South Africa. New field the Kromberg type section potentially represents an Archean ophiolite observations are combined with detrital U-Pb zircon geochronology is assessed, with important implications for the nature of geodynamic and geochemistry on fresh drill-core material from the Kromberg processes on the early Archean Earth. type-section sequence of mafic-ultramafic rocks in the 3.56–3.33 Ga Onverwacht Group of the BGB. Trace element geochemistry indi- GEOLOGY AND SAMPLING cates that the Kromberg metabasalts were derived from the primi- The geographical location of the BGB on the border between Swaziland tive mantle.
    [Show full text]