Post-Operative Chylothorax in Children Undergoing Congenital Heart Surgery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Best Threshold for Diagnosis of Stenosis Or Thrombosis Within Six Months of Access Flow Measurement in Arteriovenous Fistulae
J Am Soc Nephrol 14: 3264–3269, 2003 Best Threshold for Diagnosis of Stenosis or Thrombosis within Six Months of Access Flow Measurement in Arteriovenous Fistulae MARCELLO TONELLI,*†‡ GIAN S. JHANGRI,§ DAVID J. HIRSCH,ʈ¶ JOANNE MARRYATT,¶ PAULA MOSSOP,¶ COLLEEN WILE,¶ and KAILASH K. JINDAL* *Department of Medicine, University of Alberta, Edmonton, Canada; †Department of Critical Care, University of Alberta, Edmonton, Canada; ‡Institute of Health Economics, Edmonton, Canada; §Department of Public Health Sciences, University of Alberta, Edmonton, Canada; ʈDepartment of Medicine, Dalhousie University, Halifax, Canada; and ¶Queen Elizabeth II Health Sciences Centre, Halifax, Canada Abstract. Canadian clinical practice guidelines recommend within 6 mo, and both seemed superior to Ͻ400 ml/min. performing angiography when access blood flow (Qa) is Ͻ500 However, the frequency of the composite definition of stenosis ml/min in native vessel arteriovenous fistulae (AVF), but data among AVF with Qa between 500 and 600 ml/min was only 6 on the value of Qa that best predicts stenosis are sparse. (25%) of 24, as compared with 58 (76%) of 76 when Qa was Because correction of stenosis in AVF improves patency rates, Ͻ500 ml/min. This suggests that most lesions that would be this issue seems worthy of investigation. Receiver-operating found using a threshold of Ͻ600 ml/min occurred in AVF with characteristic curves were constructed to examine the relation- Qa Ͻ500 ml/min and that the small gain in sensitivity associ- ship between different threshold values of Qa and stenosis in ated with the Ͻ600-ml/min threshold would be outweighed by 340 patients with AVF. -
Everything I Need to Know About Renal Artery Stenosis
Patient Information Renal Services Everything I need to know about renal artery stenosis What is renal artery stenosis? Renal artery stenosis is the narrowing of the main blood vessel running to one or both of your kidneys. Why does renal artery stenosis occur? It is part of the process of arteriosclerosis (hardening of the arteries), that develops in very many of us as we get older. As well as becoming thicker and harder, the arteries develop fatty deposits in their walls which can cause narrowing. If the kidneys are affected there is generally also arterial disease (narrowing of the arteries) in other parts of the body, and often a family history of heart attack or stroke, or poor blood supply to the lower legs. Arteriosclerosis is a consequence of fat in our diet, combined with other factors such as smoking, high blood pressure and genetic factors inherited, it may develop faster if you have diabetes. What are the symptoms? You may have fluid retention, where the body holds too much water and this can cause breathlessness, however often there are no symptoms. The arterial narrowing does not cause pain, and urine is passed normally. As a result this is usually a problem we detect when other tests are done, for example, routine blood test to measure how well your kidneys are working. What are the complications of renal artery stenosis? Kidney failure, if the kidneys have a poor blood supply, they may stop working. This can occur if the artery blocks off suddenly or more gradually if there is serious narrowing. -
Lymphatic Dysregulation in Patients with Heart Failure JACC Review Topic of the Week
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL. 78, NO. 1, 2021 ª 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER THE PRESENT AND FUTURE JACC REVIEW TOPIC OF THE WEEK Lymphatic Dysregulation in Patients With Heart Failure JACC Review Topic of the Week a,b c d e Marat Fudim, MD, MHS, Husam M. Salah, MD, Janarthanan Sathananthan, MBCHB, MPH, Mathieu Bernier, MD, f g e,h i Waleska Pabon-Ramos, MD, MPH, Robert S. Schwartz, MD, Josep Rodés-Cabau, MD, PHD, François Côté, MD, j d a,b Abubaker Khalifa, MD, Sean A. Virani, MD, MSC, MPH, Manesh R. Patel, MD ABSTRACT The lymphatic system is an integral part of the circulatory system and plays an important role in the volume homeostasis of the human body. The complex anatomy and physiology paired with a lack of simple diagnostic tools to study the lymphatic system have led to an underappreciation of the contribution of the lymphatic system to acute and chronic heart failure (HF). Herein, we discuss the physiological role of the lymphatic system in volume management and the evidence demonstrating the dysregulation of the lymphatic system in HF. Further, we discuss the opportunity to target the lymphatic system in the management of HF and different potential approaches to accessing the lymphatic system. (J Am Coll Cardiol 2021;78:66–76) © 2021 by the American College of Cardiology Foundation. he circulatory system consists of the cardio- lead to interstitial edema with clinical manifestations T vascular system and the lymphatic system. such as extremity and tissue edema, including pulmo- The cardiovascular system is a closed, high- nary edema. -
Cancer and Lymphatics: Part I
Cancer And Lymphatics: Part I Jassin M. Jouria, MD Dr. Jassin M. Jouria is a medical doctor, professor of academic medicine, and medical author. He graduated from Ross University School of Medicine and has completed his clinical clerkship training in various teaching hospitals throughout New York, including King’s County Hospital Center and Brookdale Medical Center, among others. Dr. Jouria has passed all USMLE medical board exams, and has served as a test prep tutor and instructor for Kaplan. He has developed several medical courses and curricula for a variety of educational institutions. Dr. Jouria has also served on multiple levels in the academic field including faculty member and Department Chair. Dr. Jouria continues to serves as a Subject Matter Expert for several continuing education organizations covering multiple basic medical sciences. He has also developed several continuing medical education courses covering various topics in clinical medicine. Recently, Dr. Jouria has been contracted by the University of Miami/Jackson Memorial Hospital’s Department of Surgery to develop an e-module training series for trauma patient management. Dr. Jouria is currently authoring an academic textbook on Human Anatomy & Physiology. ABSTRACT In the human body, cells receive nutrition and oxygen from lymph, a fluid that is recirculated through the body via an extensive network of vessels. Upon arriving at one of many nodes found within the body, the lymph is filtered to discern healthy cells from those carrying disease or infection. However, cancer can either develop in the lymph nodes around the body, or it can travel there via the lymphatic vessel network. -
Hereditary Hemorrhagic Telangiectasia: Diagnosis and Management From
REVIEW ARTICLE Hereditary hemorrhagic telangiectasia: Ferrata Storti diagnosis and management from Foundation the hematologist’s perspective Athena Kritharis,1 Hanny Al-Samkari2 and David J Kuter2 1Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ and 2Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA ABSTRACT Haematologica 2018 Volume 103(9):1433-1443 ereditary hemorrhagic telangiectasia (HHT), also known as Osler- Weber-Rendu syndrome, is an autosomal dominant disorder that Hcauses abnormal blood vessel formation. The diagnosis of hered- itary hemorrhagic telangiectasia is clinical, based on the Curaçao criteria. Genetic mutations that have been identified include ENG, ACVRL1/ALK1, and MADH4/SMAD4, among others. Patients with HHT may have telangiectasias and arteriovenous malformations in various organs and suffer from many complications including bleeding, anemia, iron deficiency, and high-output heart failure. Families with the same mutation exhibit considerable phenotypic variation. Optimal treatment is best delivered via a multidisciplinary approach with appropriate diag- nosis, screening and local and/or systemic management of lesions. Antiangiogenic agents such as bevacizumab have emerged as a promis- ing systemic therapy in reducing bleeding complications but are not cur- ative. Other pharmacological agents include iron supplementation, antifibrinolytics and hormonal treatment. This review discusses the biol- ogy of HHT, management issues that face -
A Successful Intra-Pleural Fibrinolytic Therapy with Alteplase in a Patient with Empyematous Multiloculated Chylothorax
CASE REPORT East J Med 24(3): 379-382, 2019 DOI: 10.5505/ejm.2019.72621 A Successful Intra-Pleural Fibrinolytic Therapy With Alteplase in A Patient with Empyematous Multiloculated Chylothorax Mohamed Faisal1*, Rayhan Amiseno1, Nurashikin Mohammad2 1Respiratory Unit, Universiti Kebangsaan Malaysia Medical Centre, Malaysia 2Medical Department, Universiti Sains Malaysia ABSTRACT Chylothorax is a collection of chyle in the pleural cavity resulting from leakage of lymphatic vessels, usually from the thoracic duct. In majority of cases, chylothorax is a bacteriostatic pleural effusion. Incidence of infected or even empyematous chylothorax are not common. Here, we report a case of a 57-year-old man with end stage renal disease and complete central venous stenosis who presented with recurrent right-sided chylothorax. It was complicated with sepsis and multilocated empyema and treated successfully with intra-pleural fibrinolytic therapy using alteplase. Key Words: Chylothorax, empyema, intrapleural fibrinolysis Introduction effusions and empyema in the adult population for the outcomes of treatment failure (surgical Chyle is a non-inflammatory, bacteriostatic fluid intervention or death) and surgical intervention with a variable protein, fat and a lymphocyte alone (4). Our patient had chylothorax which was predominance of the total nucleated cells. (1,2) complicated with empyema and treated with Incidence data are available for only post- combination of intravenous antibiotic and operative chylothorax, which can occur after sequential intra-pleural alteplase (without almost any surgical operation in the chest. It is deoxyribonuclease) administered to different most often observed after esophagectomy (about pleural locules. 3% of cases), or after heart surgery in children (up to about 6% of cases) (1). -
Large Coronary Artery Aneurysm with Thrombotic Coronary Occlusion Resulting in ST-Elevation Myocardial Infarction After Warfarin Interruption
Case Report http://dx.doi.org/10.12997/jla.2014.3.2.105 pISSN 2287-2892 • eISSN 2288-2561 JLA Large Coronary Artery Aneurysm with Thrombotic Coronary Occlusion Resulting in ST-Elevation Myocardial Infarction after Warfarin Interruption Jun-Hyoung Kim1, Hyung-Bok Park2, Young-Bae Lee1, Jae-Hyuk Lee1, Myung-Sung Kim1, Che-Wan Lim1, Deok-Kyu Cho2 1Department of Internal Medicine, Myongji Hospital, Goyang, 2Division of Cardiology, Cardiovascular Center, Myongji Hospital, Goyang, Korea A 44-year-old man, who had a history of myocardial infarction (MI) due to thrombotic occlusion of right coronary artery (RCA) aneurysm, visited emergency department presenting with ST-segment elevation myocardial infarction (STEMI). The patient had been on oral anticoagulant therapy (warfarin) from the first thrombotic event, but the medication had been recently changed to aspirin 4 months before the second event. Emergent coronary angiography revealed thrombotic total occlusion of RCA with heavy thrombotic burden from middle RCA to the ostium of the posterior descending branch. Combination pharmacotherapy was performed with anticoagulants (heparin), fibrinolytics (urokinase), and Glycoprotein IIb/IIIa antagonists (abciximab), in addition to mechanical thrombosuction. However, on hospital day 2, the patient complained recurrent chest pain and again underwent coronary angiography, which revealed distal embolization of large thrombus to the posterior lateral branch. Coronary flow was recovered after repeated mechanical thrombosuction was performed. This case has shown the importance of aggressive combination drug therapy, accompanied by mechanical thrombosuction in patient with myocardial infarction due to thrombotic occlusion of coronary artery aneurysm and the importance of unceasing life-long anticoagulant therapy in those particular patients. -
Vascular Disease in the Elderly
Chapter 13: Vascular Disease in the Elderly Nobuyuki Bill Miyawaki* and Paula E. Lester† *Division of Nephrology and †Division of Geriatrics, Winthrop University Hospital, Mineola, New York PHYSIOLOGIC EFFECTS OF AGING ON stiffening of medium and large arteries lined with BLOOD VESSEL ELASTICITY AND atheromatous plaques. The progressive accumula- COMPLIANCE tion of atherosclerotic plaque continues with aging and often remains silent until lesions reach a critical The aging process is commonly associated with in- stenotic threshold or rupture, leading to dimin- creased vascular rigidity and decreased vascular ished organ perfusion. Arterial stiffening also leads compliance. This process reflects the accumulation to an increase in pulse wave velocity and an en- of smooth muscle cells and connective tissue in the hancement in central aortic systolic pressure.3 The walls of major blood vessels. Endothelial cells and increased waveform velocity allows the backward smooth muscle cells constitute most of vessel wall reflective wave to return earlier back to the heart. cellularity and the remainder of the wall is com- The resulting increases of the left ventricular myo- posed of extracellular matrix including collagen cardial load and the loss of coronary perfusion at and elastin. Although aging has minimal effect on the onset of diastole may potentiate myocardial the muscular tunica media layer thickness, aging ischemia.3 leads to profound progressive thickening of the tu- Common ailments in the elderly including dia- nica intima layer comprised -
Anatomy and Physiology in Relation to Compression of the Upper Limb and Thorax
Clinical REVIEW anatomy and physiology in relation to compression of the upper limb and thorax Colin Carati, Bren Gannon, Neil Piller An understanding of arterial, venous and lymphatic flow in the upper body in normal limbs and those at risk of, or with lymphoedema will greatly improve patient outcomes. However, there is much we do not know in this area, including the effects of compression upon lymphatic flow and drainage. Imaging and measuring capabilities are improving in this respect, but are often expensive and time-consuming. This, coupled with the unknown effects of individual, diurnal and seasonal variances on compression efficacy, means that future research should focus upon ways to monitor the pressure delivered by a garment, and its effects upon the fluids we are trying to control. More is known about the possible This paper will describe the vascular Key words effects of compression on the anatomy of the upper limb and axilla, pathophysiology of lymphoedema when and will outline current understanding of Anatomy used on the lower limbs (Partsch and normal and abnormal lymph drainage. It Physiology Junger, 2006). While some of these will also explain the mechanism of action Lymphatics principles can be applied to guide the use of compression garments and will detail Compression of compression on the upper body, it is the effects of compression on fluid important that the practitioner is movement. knowledgeable about the anatomy and physiology of the upper limb, axilla and Vascular drainage of the upper limb thorax, and of the anatomical and vascular It is helpful to have an understanding of Little evidence exists to support the differences that exist between the upper the vascular drainage of the upper limb, use of compression garments in the and lower limb, so that the effects of these since the lymphatic drainage follows a treatment of lymphoedema, particularly differences can be considered when using similar course (Figure 1). -
Lymph and Lymphatic Vessels
Cardiovascular System LYMPH AND LYMPHATIC VESSELS Venous system Arterial system Large veins Heart (capacitance vessels) Elastic arteries Large (conducting lymphatic vessels) vessels Lymph node Muscular arteries (distributing Lymphatic vessels) system Small veins (capacitance Arteriovenous vessels) anastomosis Lymphatic Sinusoid capillary Arterioles (resistance vessels) Postcapillary Terminal arteriole venule Metarteriole Thoroughfare Capillaries Precapillary sphincter channel (exchange vessels) Copyright © 2010 Pearson Education, Inc. Figure 19.2 Regional Internal jugular vein lymph nodes: Cervical nodes Entrance of right lymphatic duct into vein Entrance of thoracic duct into vein Axillary nodes Thoracic duct Cisterna chyli Aorta Inguinal nodes Lymphatic collecting vessels Drained by the right lymphatic duct Drained by the thoracic duct (a) General distribution of lymphatic collecting vessels and regional lymph nodes. Figure 20.2a Lymphatic System Outflow of fluid slightly exceeds return Consists of three parts 1. A network of lymphatic vessels carrying lymph 1. Transports fluid back to CV system 2. Lymph nodes 1. Filter the fluid within the vessels 3. Lymphoid organs 1. Participate in disease prevention Lymphatic System Functions 1. Returns interstitial fluid and leaked plasma proteins back to the blood 2. Disease surveillance 3. Lipid transport from intestine via lacteals Venous system Arterial system Heart Lymphatic system: Lymph duct Lymph trunk Lymph node Lymphatic collecting vessels, with valves Tissue fluid Blood Lymphatic capillaries Tissue cell capillary Blood Lymphatic capillaries capillaries (a) Structural relationship between a capillary bed of the blood vascular system and lymphatic capillaries. Filaments anchored to connective tissue Endothelial cell Flaplike minivalve Fibroblast in loose connective tissue (b) Lymphatic capillaries are blind-ended tubes in which adjacent endothelial cells overlap each other, forming flaplike minivalves. -
Functions of Lymphatic System
Lymphatic system The lymphatic system contains three parts, a network of lymphatic vessels, a fluid inside of the vessels called lymph, and lymph nodes that cleanse the lymph while it passes through. Functions of Lymphatic system: 1. Draining excess interstitial fluid-It is responsible for the removal of interstitial fluid from tissues 2. Transporting dietary lipids-It absorbs and transports fatty acids and fats as chyle from the digestive system 3. Carrying out immune response- It transports white blood cells to and from the lymph nodes into the bones. The lymph transports antigen-presenting cells, such as dendritic cells, to the lymph nodes where an immune response is stimulated. 4. The lymphatic system returns fluids that have leaked from the blood (vascular system) back to the blood. Without it, our cardiovascular and immune systems would begin to shut down. FLOW OF LYMPH Lymphatic Capillaries Lymphatic capillaries merge together into larger lymphatic vessels to carry lymph through the body. The structure of lymphatic vessels closely resembles that of veins: they both have thin walls and carrying fluids under low pressure. Lymph is transported through lymphatic vessels by the skeletal muscle pump— contractions of skeletal muscles constrict the vessels to push the fluid forward. Check valves prevent the fluid from flowing back toward the lymphatic capillaries. The sequence of fluid flow is blood capillaries (blood) interstitial spaces (interstitial fluid) lymphatic capillaries (lymph) lymphatic vessels (lymph) lymphatic ducts (lymph) junction of the internal jugular and subclavian veins (blood). The interstitial fluid picked up by lymphatic capillaries is known as lymph. Lymph very closely resembles the plasma found in the veins: it is a mixture of about 90% water and 10% solutes such as proteins, cellular waste products, dissolved gases, and hormones. -
Lymphatic System Urls
Lymphatic System URLs Human Anatomy & Physiology 16 http://www.howstuffworks.com/immune-system.htm http://www.thebody.com/step/immune.html http://www.emc.maricopa.edu/faculty/farabee/BIOBK/ BioBookIMMUN.html & http://www.cayuga-cc.edu/about/facultypages/greer/ r http://www.acm.uiuc.edu/sigbio/project/updated- lymphatic/lymph1.html http://www.pblsh.com/Healthworks/lymphart.html Karen Webb Smith Unit Fou Introduction A. The lymphatic system is closely associated with the cardiovascular system and is comprised of a network of vessels that circulate body fluids. B. Lymphatic vessels transport excess fluid away from interstitial spaces between cells in most tissues & return it to the bloodstream. C. Lymphatic vessels called lacteals (located in the in the lining of the smallsmall intestine) absorb fats resulting from digestion, & then transport fats to the circulatory system. D. The organs of the lymphatic system help defend Lymphatic vessels against disease. transporting fluid from interstitial spaces to the bloodstream Lymphatic Pathways A. Lymphatic pathways start as lymphatic capillaries that merge to form larger vessels that empty into the circulatory system. (This is key to understanding this chapter.) B. Lymphatic Capillaries *are microscopic, close-ended tubes that extend into interstitial spaces forming networks that parallel the networks of the blood capillaries *walls consist of single layer squamous epithelial cells which enables interstitial fluid to enter the lymphatic capillaries *lymph – the fluid inside a lymph capillary C. Lymphatic Vessels *walls of lymphatic vessels are thinner than walls of veins * have semilunar valves to prevent backflow of lymph *lymph nodes – specialized lymph organs that are composed of a mass of lymphoid tissue located along the course of a lymphatic vessel D.