Here in Europe After the Revolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Post-Caledonian Dolerite Dyke from Magerøy, North Norway: Age and Geochemistry
A post-Caledonian dolerite dyke from Magerøy, North Norway: age and geochemistry DAVID ROBERTS, JOHN G. MITCHELL & TORGEIR B. ANDERSEN Roberts. D., Mitchell, J. G. & Andersen, T. B.: A post-Caledonian dolerite dyke from Magerøy, North Norway: age and geochemistry. Norsk Geologisk Tidsskrift, Vol. 71, pp. 28�294. Oslo 1991 . ISSN 0029-196X. A post-Caledonian, NW-SE trending, dolerite dyke on Magerøy has a geochemicalsignature comparable to that of continental tholeiites. Clinopyroxenes from three samples of the dolerite gave K-Ar ages of ca. 312, ca. 302 and ca. 266 Ma, suggesting a Perrno-Carboniferous age. In view of low K20 contents of the pyroxenes and the possible presence of excess argon, it is argued that the most reliable estimate of the emplacement age of the dyke is provided by the unweighted mean value, namely 293 ± 22 Ma. This Late Carboniferous age coincides with the later stages of a major phase of rifting and crustal extension in adjacent offshore areas. The dyke is emplaced along a NW-SE trending fault. Parallel or subparallel faults on Magerøy and in other parts of northem Finnmark may thus carry a component of Carboniferous crustal extension in their polyphase movement histories. David Roberts, Geological Survey of Norway, Post Box 3006-Lade, N-7(}()2 Trondheim, Norway; John G. Mitchell, Department of Physics, The University, Newcastle upon Tyne NE1 7RU, England; Torgeir B. Andersen, Institutt for geologi, Post Box 1047, University of Oslo, N-41316 Oslo 3, Norway. In the Caledonides of northernmost Norway, maficdy kes tolites indicate an Early Silurian (Llandovery) age (Hen are common in many parts of the metamorphic allochthon ningsmoen 1961; Føyn 1967; Bassett 1985) for part of the and are invariably deformed and metamorphosed, locally succession. -
Hele Troms Og Finnmark Hele Tromsø
Fylkestingskandidater Kommunestyrekandidater 1 2 3 1 2 3 Ivar B. Prestbakmo Anne Toril E. Balto Irene Lange Nordahl Marlene Bråthen Mats Hegg Jacobsen Olaug Hanssen Salangen Karasjok Sørreisa 4 5 6 4 5 6 Fred Johnsen Rikke Håkstad Kurt Wikan Edmund Leiksett Rita H. Roaldsen Magnus Eliassen Tana Bardu Sør-Varanger 7. Kine Svendsen 16. Hans-Ole Nordahl 25. Tore Melby Hele Hele 8. Glenn Maan 17. May Britt Pedersen 26. Kjell Borch 7. Marlene Bråthen, 10. Hugo Salamonsen, 13. Kurt Michalsen, 9. Wenche Skallerud 18. Frode Pettersen 27. Ole Marius Johnsen Tromsø Nordkapp Skjervøy 10. Bernt Bråthen 19. Mona Wilhelmsen 28. Sigurd Larsen 8. Jan Martin Rishaug, 11. Linn-Charlotte 14. Grethe Liv Olaussen, Troms og Finnmark Tromsø 11. Klaus Hansen 20. Fredrik Hanssen 29. Per-Kyrre Larsen Alta Nordahl, Sørreisa Porsanger 12. Ida Johnsen 21. Dag Nordvang 30. Peter Ørebech 9. Karin Eriksen, 12. Klemet Klemetsen, 15. Gunnleif Alfredsen, 13. Kathrine Strandli 22. Morten Furunes 31. Sandra Borch Kvæfjord Kautokeino Senja senterpartiet.no/troms senterpartiet.no/tromso 14. John Ottosen 23. Asgeir Slåttnes 15. Judith Maan 24. Kåre Skallerud VÅR POLITIKK VÅR POLITIKK Fullstendig program finner du på Fullstendig program finner du på For hele Tromsø senterpartiet.no/tromso for hele Troms og Finnmark senterpartiet.no/troms anlegg og andre stukturer tilpas- Senterpartiet vil ha tjenester Det skal være trygt å bli Næringsutvikling – det er i • Øke antallet lærlingeplasser. nord, for å styrke vår identitet og set aktivitet og friluftsliv Mulighetenes landsdel Helse og beredskap nær folk og ta hele Tromsø i gammel i Tromsø nord verdiene skapes Senterpartiet vil: Senterpartiet vil: • Utvide borteboerstipendet, øke stolthet. -
Russian Fishing Activities Off the Coast of Finnmark*A Legal History1 Kirsti Strøm Bull*, Professor, Faculty of Law, University of Oslo, Oslo, Norway
Arctic Review on Law and Politics Vol. 6, No. 1, 2015, pp. 3Á10 Russian Fishing Activities off the Coast of Finnmark*A Legal History1 Kirsti Strøm Bull*, Professor, Faculty of Law, University of Oslo, Oslo, Norway Abstract The rich fishery resources off the coast of Finnmark have historically attracted fishermen from other parts of Norway and from neighbouring countries. This article discusses the legal history of Russian fishing activities off the coast of Finnmark and covers the historical period from the 1700s until the termination of this fishery in the early 1900s. The article shows that Russian fishermen, like the Sa´mi from Finland*and unlike fishermen from other nations, were authorized to establish shacks and landing places. Both the agreements and legal disputes surrounding the fishery, which lasted until World War I, are discussed in the article. Keywords: fishery; Russia; legal history; rights to marine resources; Finnmark; The Lapp Codicil Received: August 2014; Accepted: September 2014; Published: March 2015 1. Introduction protecting fishery resources for the benefit of Finnmark’s own population* From far back in time, the rich fisheries off the coast of Finnmark have attracted fishermen from beyond the county’s own borders. Some of these fishermen, known in Norwegian as nordfarere (‘‘northern seafarers’’), came from further south along the Norwegian coast, specifically from the counties of Nordland and Trøndelag. Others came from further east, from Finland and Russia. In more recent times, fishermen started to arrive from even further afield, notably from England. When the English trawlers ventured into Varangerfjord in 1911, they triggered a dispute between Norway and England concerning the delimitation of the Norwegian fisheries zone that continued until 1951, when the matter was decided by the International Court of Justice in The Hague. -
The Expert Mechanism on the Rights of Indigenous Peoples (EMRIP)
The Expert Mechanism on the Rights of Indigenous Peoples (EMRIP) Your ref Our ref Date 18/2098-13 27 February 2019 The Expert Mechanism on the Rights of Indigenous Peoples (EMRIP) – Norway's contribution to the report focusing on recognition, reparation and reconciliation With reference to the letter of 20th November 2018 from the Office of the United Nations High Commissioner for Human Rights where we were invited to contribute to the report of the Expert Mechanism on recognition, reparation and reconciliation initiatives in the last 10 years. Development of the Norwegian Sami policy For centuries, the goal of Norwegian Sami policy was to assimilate the Sami into the Norwegian population. For instance Sami language was banned in schools. In 1997 the King, on behalf of the Norwegian Government, gave an official apology to the Sami people for the unjust treatment and assimilation policies. The Sami policy in Norway today is based on the recognition that the state of Norway was established on the territory of two peoples – the Norwegians and the Sami – and that both these peoples have the same right to develop their culture and language. Legislation and programmes have been established to strengthen Sami languages, culture, industries and society. As examples we will highlight the establishment of the Sámediggi (the Sami parliament in Norway) in 1989, the Procedures for Consultations between the State Authorities and Sámediggi of 11 May 2005 and the Sami Act. More information about these policies can be found in Norway's reports on the implementation of the ILO Convention No. 169 and relevant UN Conventions. -
A Novel Interaction: the Thin Stripe Hermit Crab, Clibanarius
A NOVEL INTERACTION: THE THIN STRIPE HERMIT CRAB, CLIBANARIUS VITTATUS, KILLS THE FLORIDA CROWN CONCH, MELONGENA CORONA, FOR ITS SHELL by Jennifer Cutter A Thesis Submitted to the Faculty of Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2017 Copyright by Jennifer Cutter 2017 ii ACKNOWLEDGEMENTS I would like to thank Florida Atlantic University, Harbor Branch Oceanographic Institute, and Dr. Donna Devlin for giving me the opportunity to conduct this fascinating study. I would also like to thank the other committee members (Dr. Vincent Encomio, Dr. Edward Proffitt, and Dr. William Brooks) for their help, advice, and guidance. This work was made possible through funding from the Indian River Lagoon Research Fellowship awarded by the Harbor Branch Foundation and a scholarship awarded by The Broward Shell Club. Additionally, I would like to thank Dr. Richard Turner for being willing to meet with me on several occasions to answer questions and share his vast knowledge. iv ABSTRACT Author: Jennifer Cutter Title: A Novel Interaction: The thin stripe hermit Crab, Clibanarius vittatus, kills the Florida crown conch, Melongena corona, for its shell Institution: Florida Atlantic University Thesis Advisor: Dr. Donna Devlin Degree: Master of Science Year: 2017 The hermit crab Clibanarius vittatus kills Melongena corona solely to acquire a better fitting shell. This finding is contrary to previous studies, which found that hermit crabs of other species cannot kill gastropods or, in most instances, remove freshly dead gastropods from their shells. This interaction cannot be classified as predation because Melongena tissue was never consumed. -
Os Nomes Galegos Dos Moluscos 2020 2ª Ed
Os nomes galegos dos moluscos 2020 2ª ed. Citación recomendada / Recommended citation: A Chave (20202): Os nomes galegos dos moluscos. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga /wp!content/up oads/achave_osnomesga egosdos"mo uscos"2020.pd# Fotografía: caramuxos riscados (Phorcus lineatus ). Autor: David Vilasís. $sta o%ra est& su'eita a unha licenza Creative Commons de uso a%erto( con reco)ecemento da autor*a e sen o%ra derivada nin usos comerciais. +esumo da licenza: https://creativecommons.org/ icences/%,!nc-nd/-.0/deed.g . Licenza comp eta: https://creativecommons.org/ icences/%,!nc-nd/-.0/ ega code. anguages. 1 Notas introdutorias O que cont!n este documento Neste recurso léxico fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas) ! primeira edición d" Os nomes galegos dos moluscos é do ano #$%& Na segunda edición (2$#$), adicionáronse algunhas especies, asignáronse con maior precisión algunhas das denominacións vernáculas galegas, corrixiuse algunha gralla, rema'uetouse o documento e incorporouse o logo da (have. )n total, achéganse nomes galegos para *$+ especies de moluscos A estrutura )n primeiro lugar preséntase unha clasificación taxonómica 'ue considera as clases, ordes, superfamilias e familias de moluscos !'uí apúntanse, de maneira xeral, os nomes dos moluscos 'ue hai en cada familia ! seguir -
Caledonian Nappe Sequence of Finnmark, Northern Norway, and the Timing of Orogenic Deformation and Metamorphism
Caledonian Nappe Sequence of Finnmark, Northern Norway, and the Timing of Orogenic Deformation and Metamorphism B. A. STURT Geologisk Institutt, adv. A, Joachim Frielesgt. 1, Bergen, Norway I. R. PRINGLE Department of Geophysics, Madingley Road, Cambridge, England D. ROBERTS Norges Geologiske Undersakelse, Postboks 3006, Trondheim, Norway ABSTRACT and have a varying metamorphic state, reaching at least into garnet grade (Holtedahl and others, 1960). The exact relation between On the basis of regional, structural, and metamorphic studies these rocks on Mageray and the older Caledonian metamorphic combined with age determinations, it is demonstrated that the in- complex of the Kalak Nappe are, however, not yet established. ternal metamorphic fabrics of the main nappe sequence of Finn- Correlations made by a number of authors equate, with the mark, northern Norway, developed during an Early Ordovician obvious exception of the younger sedimentary rocks of Magertfy, phase of the Caledonian orogeny (Grampian?); the cleavage de- the rocks of the Finnmark nappe pile with the upper Pre- velopment in the autochthon also belongs to this phase. The final cambrian-Tremadoc sequence of the foreland autochthon. This mise-en-place of the thrust-nappe sequence, however, appears to correlation indicates that- the entire Caledonian sequence of the belong to a later phase of Caledonian orogenic development, prob- nappe pile (without Mageroy) and immediately underlying au- ably toward the end of the Silurian Period, as does the deformation tochthon is upper Precambrian, passing conformably up at least and metamorphism of the Silurian sequence of Mageray. The into the lower part of the Tremadoc. The nappe units beneath the geochronological results also give information regarding the posi- Kalak Nappe, although of lower metamorphic grade, have a simi- tioning of the lower boundaries to the Cambrian and Ordovician lar structural sequence. -
South Carolina Our Amazing Coast
South Carolina Our Amazing Coast SO0TB CARO LINA REGIONS o ..-- -·--C..,..~.1.ulrt..l• t -·- N O o.u. (South Carolina Map, South Carolina Aquarium’s Standards-based Curriculum, http://scaquarium.org) Teacher Resources and Lesson Plans Grades 3-5 Revised for South Carolina Teachers By Carmelina Livingston, M.Ed. Adapted from GA Amazing Coast by Becci Curry *Lesson plans are generated to use the resources of Georgia’s Amazing Coast and the COASTeam Aquatic Curriculum. Lessons are aligned to the SOUTH CAROLINA SCIENCE CURRICULUM STANDARDS and are written in the “Learning Focused” format. South Carolina Our Amazing Coast Table of Contents Grade 3 Curriculum…………………………………………………………….................1 – 27 Grade 4 Curriculum……………………………………………………………………...28 – 64 Grade 5 Curriculum……………………………………………………………………...65 – 91 SC Background………………...…………………………………………….…………92 – 111 Fast Facts of SC………………...……………………………………………………..112 – 122 Web Resources………………...……………………….……………………………...123 - 124 South Carolina: Our Amazing Coast Grade 3 Big Idea – Habitats & Adaptations 3rd Grade Enduring understanding: Students will understand that there is a relationship between habitats and the organisms within those habitats in South Carolina. South Carolina Science Academic Standards Scientific Inquiry 3-1.1 Classify objects by two of their properties (attributes). 3-1.4 Predict the outcome of a simple investigation and compare the result with the prediction. Life Science: Habitats and Adaptations 3-2.3 Recall the characteristics of an organism’s habitat that allow the organism to survive there. 3-2.4 Explain how changes in the habitats of plants and animals affect their survival. Earth Science: Earth’s Materials and Changes 3-3.5 Illustrate Earth’s saltwater and freshwater features (including oceans, seas, rivers, lakes, ponds, streams, and glaciers). -
Our. Knowledge of the Geology of the Alta District of West Finnmark Owes Much to the Work of Holtedahl (1918, 1960) and Føyn (1964)
Correlation of Autochthonous Stratigraphical Sequences in the Alta-Repparfjord Region, West Finnmark DAVID ROBERTS & EIGILL FARETH Roberts, D. & Fareth, E.: Correlation of autochthonous stratigraphical se quences in the Alta-Repparfjord region, west Finnmark. Norsk Geologisk Tidsskrift, Vol. 54, pp. 123-129. Oslo 1974. An outline of the geology of the area between Alta and the Komagfjord tectonic window is presented. Lithologies (including a tillite) constituting an autochthonous sequence are described from an area on the north-east side of Altafjord, and from their similarity to those of formations occurring in adjacent areas a revised regional stratigraphical correlation is proposed. An occurrence of biogenic structures appears to provide confirmatory evidence for an earlier suggested correlation with Late Precambrian sequences be tween west and east Finnmark. D. Roberts & E. Fareth, Norges Geologiske Undersøkelse, Postboks 3006, 7001 Trondheim, Norway. Regional setting; previous correlations Our. knowledge of the geology of the Alta district of west Finnmark owes much to the work of Holtedahl (1918, 1960) and Føyn (1964). The oldest rocks, the Raipas Group or Series (Reitan 1963a) of Precambrian (Karelian) age, are represented by a sequence of greenschist facies metasediments, metavolcanics and intrusives. Lying unconformably upon the Raipas is a quartzite formation, a thin tillite, and a mixed shale and sandstone succession. Holtedahl (1918) re ferred to these autochthonous post-Raipas rocks as the 'Bossekopavdelingen', but Føyn (1964) later demonstrated the presence of an angular uncon formity beneath the tillite and adopted this break as the border between what he termed the Bossekop Group and the overlying sediments, the Borras Group. These were later referred to as sub-groups (Føyn 1967, Pl. -
Documents Félix A
Click Here & Upgrade Expanded Features PDF Unlimited Pages CompleteDocuments Félix A. Grana Raffucci. Junio, 2007. NOMENCLATURA DE LOS ORGANISMOS ACUÁTICOS Y MARINOS DE PUERTO RICO E ISLAS VÍRGENES. Volumen 4: Moluscos de Puerto Rico e Islas Vírgenes. Parte 3. Clase Gastropoda Órden Caenogastropoda Familias Eulimidae a Conidae Click Here & Upgrade Expanded Features PDF Unlimited Pages CompleteDocuments CLAVE DE COMENTARIOS: M= organismo reportado de ambientes marinos E= organismo reportado de ambientes estuarinos D= organismo reportado de ambientes dulceacuícolas int= organismo reportado de ambientes intermareales T= organismo reportado de ambientes terrestres L= organismo pelágico B= organismo bentónico P= organismo parasítico en alguna etapa de su vida F= organismo de valor pesquero Q= organismo de interés para el acuarismo A= organismo de interés para artesanías u orfebrería I= especie exótica introducida p=organismo reportado específicamente en Puerto Rico u= organismo reportado específicamente en las Islas Vírgenes de Estados Unidos b= organismo reportado específicamente en las Islas Vírgenes Británicas números= profundidades, en metros, en las que se ha reportado la especie Click Here & Upgrade Expanded Features PDF Unlimited Pages CompleteDocuments INDICE DE FAMILIAS EN ESTE VOLUMEN Aclididae Aclis Buccinidae Antillophos Bailya Belomitra Colubraria Engina Engoniophos Manaria Monostiolum Muricantharus Parviphos Pisania Pollia Cerithiopsidae Cerithiopsis Horologica Retilaskeya Seila Cancellariidae Agatrix Cancellaria Trigonostoma -
Salinity Tolerances for the Major Biotic Components Within the Anclote River and Anchorage and Nearby Coastal Waters
Salinity Tolerances for the Major Biotic Components within the Anclote River and Anchorage and Nearby Coastal Waters October 2003 Prepared for: Tampa Bay Water 2535 Landmark Drive, Suite 211 Clearwater, Florida 33761 Prepared by: Janicki Environmental, Inc. 1155 Eden Isle Dr. N.E. St. Petersburg, Florida 33704 For Information Regarding this Document Please Contact Tampa Bay Water - 2535 Landmark Drive - Clearwater, Florida Anclote Salinity Tolerances October 2003 FOREWORD This report was completed under a subcontract to PB Water and funded by Tampa Bay Water. i Anclote Salinity Tolerances October 2003 ACKNOWLEDGEMENTS The comments and direction of Mike Coates, Tampa Bay Water, and Donna Hoke, PB Water, were vital to the completion of this effort. The authors would like to acknowledge the following persons who contributed to this work: Anthony J. Janicki, Raymond Pribble, and Heidi L. Crevison, Janicki Environmental, Inc. ii Anclote Salinity Tolerances October 2003 EXECUTIVE SUMMARY Seawater desalination plays a major role in Tampa Bay Water’s Master Water Plan. At this time, two seawater desalination plants are envisioned. One is currently in operation producing up to 25 MGD near Big Bend on Tampa Bay. A second plant is conceptualized near the mouth of the Anclote River in Pasco County, with a 9 to 25 MGD capacity, and is currently in the design phase. The Tampa Bay Water desalination plant at Big Bend on Tampa Bay utilizes a reverse osmosis process to remove salt from seawater, yielding drinking water. That same process is under consideration for the facilities Tampa Bay Water has under design near the Anclote River. -
Shell's Field Guide C.20.1 150 FB.Pdf
1 C.20.1 Human beings have an innate connection and fascination with the ocean & wildlife, but still we know more about the moon than our Oceans. so it’s a our effort to introduce a small part of second largest phylum “Mollusca”, with illustration of about 600 species / verities Which will quit useful for those, who are passionate and involved with exploring shells. This database made from our personal collection made by us in last 15 years. Also we have introduce website “www.conchology.co.in” where one can find more introduction related to our col- lection, general knowledge of sea life & phylum “Mollusca”. Mehul D. Patel & Hiral M. Patel At.Talodh, Near Water Tank Po.Bilimora - 396321 Dist - Navsari, Gujarat, India [email protected] www.conchology.co.in 2 Table of Contents Hints to Understand illustration 4 Reference Books 5 Mollusca Classification Details 6 Hypothetical view of Gastropoda & Bivalvia 7 Habitat 8 Shell collecting tips 9 Shell Identification Plates 12 Habitat : Sea Class : Bivalvia 12 Class : Cephalopoda 30 Class : Gastropoda 31 Class : Polyplacophora 147 Class : Scaphopoda 147 Habitat : Land Class : Gastropoda 148 Habitat :Freshwater Class : Bivalvia 157 Class : Gastropoda 158 3 Hints to Understand illustration Scientific Name Author Common Name Reference Book Page Serial No. No. 5 as Details shown Average Size Species No. For Internal Ref. Habitat : Sea Image of species From personal Land collection (Not in Scale) Freshwater Page No.8 4 Reference Books Book Name Short Format Used Example Book Front Look p-Plate No.-Species Indian Seashells, by Dr.Apte p-29-16 No.