Caledonian Nappe Sequence of Finnmark, Northern Norway, and the Timing of Orogenic Deformation and Metamorphism

Total Page:16

File Type:pdf, Size:1020Kb

Caledonian Nappe Sequence of Finnmark, Northern Norway, and the Timing of Orogenic Deformation and Metamorphism Caledonian Nappe Sequence of Finnmark, Northern Norway, and the Timing of Orogenic Deformation and Metamorphism B. A. STURT Geologisk Institutt, adv. A, Joachim Frielesgt. 1, Bergen, Norway I. R. PRINGLE Department of Geophysics, Madingley Road, Cambridge, England D. ROBERTS Norges Geologiske Undersakelse, Postboks 3006, Trondheim, Norway ABSTRACT and have a varying metamorphic state, reaching at least into garnet grade (Holtedahl and others, 1960). The exact relation between On the basis of regional, structural, and metamorphic studies these rocks on Mageray and the older Caledonian metamorphic combined with age determinations, it is demonstrated that the in- complex of the Kalak Nappe are, however, not yet established. ternal metamorphic fabrics of the main nappe sequence of Finn- Correlations made by a number of authors equate, with the mark, northern Norway, developed during an Early Ordovician obvious exception of the younger sedimentary rocks of Magertfy, phase of the Caledonian orogeny (Grampian?); the cleavage de- the rocks of the Finnmark nappe pile with the upper Pre- velopment in the autochthon also belongs to this phase. The final cambrian-Tremadoc sequence of the foreland autochthon. This mise-en-place of the thrust-nappe sequence, however, appears to correlation indicates that- the entire Caledonian sequence of the belong to a later phase of Caledonian orogenic development, prob- nappe pile (without Mageroy) and immediately underlying au- ably toward the end of the Silurian Period, as does the deformation tochthon is upper Precambrian, passing conformably up at least and metamorphism of the Silurian sequence of Mageray. The into the lower part of the Tremadoc. The nappe units beneath the geochronological results also give information regarding the posi- Kalak Nappe, although of lower metamorphic grade, have a simi- tioning of the lower boundaries to the Cambrian and Ordovician lar structural sequence. It is demonstrated in this paper that the Systems. Key words: areal geology, orogeny, geochronology, major internal deformation pattern and metamorphic develop- metamorphic rocks, Precambrian, Cambrian, Ordovician. ment, together with folding and cleavage formation in the adjacent autochthon, were broadly synchronous and produced during the INTRODUCTION 500- to 530-m.y. orogenic phase established for the main metamor- phic event within the Kalak Nappe. The geochronological evidence In recent years considerable progress has been made in under- implies that the deformation and metamorphism of the Finnmark standing the Caledonian geology of the northernmost part of Nor- nappe pile was coeval with the Grampian event in the Scottish way. As a result of studies extending over nearly a century, the Dalradian and that this Early Ordovician orogenic phase had con- general sequence and major features of the nappe complex in siderable regional development. It is difficult to ascribe a precise Finnmark and its underlying upper Precambrian—Tremadoc au- age for thrusting in this region, which is probably, in part, of Late tochthon are now well known. Problems exist, however, in estab- Silurian development. lishing precise correlations between the various tectono-strati- This paper represents part of a systematic study designed to graphic units, owing to the general lack of paleontological evidence. elucidate the geochronologic relations within the Finnmark region, Indeed, with the exception of the underlying autochthon and two and it is hoped that work in progress and planned by us will shed fossiliferous localities in the Kalak Nappe, paleontological evidence further light on the remaining problems and perhaps establish the enabling stratigraphic correlation is absent. Lithostratigraphic precise age of emplacement of the various tectonic units. markers such as the glacigene sedimentary deposits of the Varanger ice age enable limited correlations to be established, but facies LATE PRECAMBRIAN-TREMADOC AUTOCHTHON variations and changes in metamorphic state between the various tectonic units, combined with the general lack of fauna, make In eastern Finnmark the autochthonous upper Precambrian and precise stratigraphic correlations a difficult task. Cambrian-Ordovician sedimentary rocks rest unconformably on a Recent studies of the geochronology of this region indicate that Precambrian crystalline basement of Karelian and older age (Fig. the age of the high-grade metamorphism in the Upper or Kalak 1). These rocks form an outcrop belt extending some 200 km from Nappe (F0yn, 1967) is in the region of 500 to 530 m.y. on the basis west to east, with a maximum width of approximately 60 km. In of Rb-Sr isochron studies (Pringle and Sturt, 1969; Pringle, 1974; the west rocks of the outcrop constitute a narrow zone along the Pringle and Roberts, 1973). This pattern finds confirmation in eastern margin of the Caledonian thrust front, continuing into the K-Ar determinations on nepheline from alkaline rocks in West more southerly regions of the fold belt (the Dividal Group or Finnmark (Sturt and others, 1967). Results of K-Ar and Rb-Sr Hyolithus zone). Comparable autochthonous sedimentary deposits studies of mica from the rocks of this nappe also indicate a major overlying the upper Precambrian Raipas rocks have been described climatic event toward the end of the Silurian Period within the from tectonic windows in the Reppafjord-Alta-Kva;nangen region range 384 to 420 m.y. B.P. Evidence of this Late Silurian event is of West Finnmark and North Troms (Fayn, 1964, 1967; Roberts found in the metamorphic rocks of eastern Mager0y, where a diag- and Fareth, 1973). nostic Silurian fauna including monograptids has been collected The maximum thickness of the East Finnmark autochthonous (Henningsmoen, 1961; F0yn, 1966). The Silurian rocks of rocks is between 4,000 and 5,000 m (Banks and others, 1971), Mageray have been strongly deformed (Ramsay and Sturt, 1971) with fresh or marine shallow-water shale and sandstone pre- Geological Society of America Bulletin, v. 86, p. 710-718,1 fig., May 1975, Doc. no. 50S13. 710 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/86/5/710/3418572/i0016-7606-86-5-710.pdf by guest on 25 September 2021 CALEDONIAN NAPPE SEQUENCE OF FINNMARK, NORTHERN NORWAY 25° 30° 71° 70° Figure 1. Tectono-stratigraphic units of Finnmark, northern Norway. dominating (Table 1). To the north the rocks are truncated by a The sedimentary rocks of the East Finnmark autochthon are major dislocation zone, the Trollfjord-Komagelv fault (Siedlecka bounded to the northwest and west by a succession of nappes and Siedlecki, 1967, 1971; Harland and Gayer, 1972; Roberts, (Table 2). The lowest tectonic unit, the Gaissa Nappe, is virtually 1972), which separates them from the sequences of the Barents Sea unmetamorphosed and is overlain by the Laksefjord Nappe with and Raggo Groups. It has recently been proposed by Siedlecki greenschist-facies rocks. Above these is the high-grade Kalak (1974) that this fault zone can be traced from offshore Mageray Nappe (F0yn, 1960, 1967; Laird, 1972) or Kalak Nappe Complex through northern Norway (Fig. 1) and on into northern Russia (Roberts, 1973). The highest part of the succession in the au- between Kildin and the mainland. This indicates that this is a major tochthon, namely, the Tremadoc, is truncated by the Laksefjord fault of considerable lateral extent, but as yet of unknown amount Nappe on the Digermul Peninsula (Reading, 1965). or type of displacement. Although the sequence north of the The autochthonous succession south of the Trollfjord-Komagelv Trollfjord-Komagelv fault zone is a highly significant element in the fault zone begins with the Older Sandstone Series (Fayn, 1937) and late Precambrian development of northern Norway, its lithostratig- is essentially a sandstone-shale sequence some 1,300 m in thickness raphy will not be discussed in the present account. Descriptions of (Banks and others, 1971). Initial Rb-Sr isochron studies on rocks the rocks of this particular region have been given by Siedlecka and from this area have demonstrated that shale within the Vadsa Siedlecki (1967, 1971), and although these authors make correla- Group (Banks and others, 1974) of the Older Sandstone Series at tions between the rocks north and south of the Trollfjord- Varangerfjord give an age of 825 ± 19 m.y.1 (Prjngle, 1973). This Komagelv fault zone, they are based only on lithostratigraphic particular shale is unmetamorphosed and bears no tectonic cleav- similarities between parts of successions of predominantly clastic age, and the isochron is considered as indicating the age of rocks, essentially of shallow-water origin, from sequences now in diagenesis of these rocks. entirely different tectonic settings. Recent K-Ar studies on basic The Older Sandstone Series is overlain by the Vestertana Group dikes cutting the sedimentary sequence north of the fault indicate with a low-angle but significant unconformity (Table 1). Two tillite that the sequence may be at least 1,000 m.y. old (Beckinsdale and formations occur at the base of the Vestertana Group separated by others, 1974). We do not propose to go further into the problem of the intertillite Nyborg Formation. The latter contains shale con- relations on either side of the fault now but merely state that we find no justification for placing the rocks of the Laksefjord Nappe 1 at the base of an 0st Finnmark Supergroup (Siedlecka, 1973), that All Rb-Sr results use the decay constant Rb"' 1.39 x 10~" yr"'. All quoted Rb-Sr isochron ages have been recalculated on the York model II program (York, 1969), for is, beneath the rocks of the Barents Sea Group that lie north of the the least-squares fitting of a straight line with calculated errors, to achieve compatibil- Trollfjord-Komagelv fault. ity with other age determinations in Norway. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/86/5/710/3418572/i0016-7606-86-5-710.pdf by guest on 25 September 2021 712 STURT AND OTHERS taining little or no sand-size fraction and is not affected by Caledo- have been identified only 150 m above the base of the formation.
Recommended publications
  • A Post-Caledonian Dolerite Dyke from Magerøy, North Norway: Age and Geochemistry
    A post-Caledonian dolerite dyke from Magerøy, North Norway: age and geochemistry DAVID ROBERTS, JOHN G. MITCHELL & TORGEIR B. ANDERSEN Roberts. D., Mitchell, J. G. & Andersen, T. B.: A post-Caledonian dolerite dyke from Magerøy, North Norway: age and geochemistry. Norsk Geologisk Tidsskrift, Vol. 71, pp. 28�294. Oslo 1991 . ISSN 0029-196X. A post-Caledonian, NW-SE trending, dolerite dyke on Magerøy has a geochemicalsignature comparable to that of continental tholeiites. Clinopyroxenes from three samples of the dolerite gave K-Ar ages of ca. 312, ca. 302 and ca. 266 Ma, suggesting a Perrno-Carboniferous age. In view of low K20 contents of the pyroxenes and the possible presence of excess argon, it is argued that the most reliable estimate of the emplacement age of the dyke is provided by the unweighted mean value, namely 293 ± 22 Ma. This Late Carboniferous age coincides with the later stages of a major phase of rifting and crustal extension in adjacent offshore areas. The dyke is emplaced along a NW-SE trending fault. Parallel or subparallel faults on Magerøy and in other parts of northem Finnmark may thus carry a component of Carboniferous crustal extension in their polyphase movement histories. David Roberts, Geological Survey of Norway, Post Box 3006-Lade, N-7(}()2 Trondheim, Norway; John G. Mitchell, Department of Physics, The University, Newcastle upon Tyne NE1 7RU, England; Torgeir B. Andersen, Institutt for geologi, Post Box 1047, University of Oslo, N-41316 Oslo 3, Norway. In the Caledonides of northernmost Norway, maficdy kes tolites indicate an Early Silurian (Llandovery) age (Hen­ are common in many parts of the metamorphic allochthon ningsmoen 1961; Føyn 1967; Bassett 1985) for part of the and are invariably deformed and metamorphosed, locally succession.
    [Show full text]
  • Hele Troms Og Finnmark Hele Tromsø
    Fylkestingskandidater Kommunestyrekandidater 1 2 3 1 2 3 Ivar B. Prestbakmo Anne Toril E. Balto Irene Lange Nordahl Marlene Bråthen Mats Hegg Jacobsen Olaug Hanssen Salangen Karasjok Sørreisa 4 5 6 4 5 6 Fred Johnsen Rikke Håkstad Kurt Wikan Edmund Leiksett Rita H. Roaldsen Magnus Eliassen Tana Bardu Sør-Varanger 7. Kine Svendsen 16. Hans-Ole Nordahl 25. Tore Melby Hele Hele 8. Glenn Maan 17. May Britt Pedersen 26. Kjell Borch 7. Marlene Bråthen, 10. Hugo Salamonsen, 13. Kurt Michalsen, 9. Wenche Skallerud 18. Frode Pettersen 27. Ole Marius Johnsen Tromsø Nordkapp Skjervøy 10. Bernt Bråthen 19. Mona Wilhelmsen 28. Sigurd Larsen 8. Jan Martin Rishaug, 11. Linn-Charlotte 14. Grethe Liv Olaussen, Troms og Finnmark Tromsø 11. Klaus Hansen 20. Fredrik Hanssen 29. Per-Kyrre Larsen Alta Nordahl, Sørreisa Porsanger 12. Ida Johnsen 21. Dag Nordvang 30. Peter Ørebech 9. Karin Eriksen, 12. Klemet Klemetsen, 15. Gunnleif Alfredsen, 13. Kathrine Strandli 22. Morten Furunes 31. Sandra Borch Kvæfjord Kautokeino Senja senterpartiet.no/troms senterpartiet.no/tromso 14. John Ottosen 23. Asgeir Slåttnes 15. Judith Maan 24. Kåre Skallerud VÅR POLITIKK VÅR POLITIKK Fullstendig program finner du på Fullstendig program finner du på For hele Tromsø senterpartiet.no/tromso for hele Troms og Finnmark senterpartiet.no/troms anlegg og andre stukturer tilpas- Senterpartiet vil ha tjenester Det skal være trygt å bli Næringsutvikling – det er i • Øke antallet lærlingeplasser. nord, for å styrke vår identitet og set aktivitet og friluftsliv Mulighetenes landsdel Helse og beredskap nær folk og ta hele Tromsø i gammel i Tromsø nord verdiene skapes Senterpartiet vil: Senterpartiet vil: • Utvide borteboerstipendet, øke stolthet.
    [Show full text]
  • Map: Basement-Cover Relationships
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 • BASEMENT-COVER RELATIONSHIPS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 BASEMENT-COVER RELATIONSHIPS FLINN ET AL~g~ JOHNSTONE ET AL RATHBONE ~ HARRIS~'~ RAMSAY & STURT SANDERSi I & VAN BREEMEN BREWER ET AL" 0 km 100 I I WATSON & DUNNING- GENERAL REVIEW KENNAN ET AL-- PARATECTONIC IRELAND BAMFORD-- SEISMIC CONSTRAINTS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 The Caledonides of the British Isles--reviewed. 1979. Geological Society of London. Basement-cover relations in the British Caledonides Janet Watson & F. W. Dunning CONTENTS 1. Introduction 67 2. The Metamorphic Caledonides 68 a The Lewisian complex and related rocks 68 b Pre-Caledonian cover units 70 c Other possible basement units 72 d The Caledonian orogenic front 73 e Grenville activity in the northern Caledonian province 74 3. The Non-metamorphic Caledonides 76 a Basic facts relating to the belt in general 76 b The Midland Valley Transition Zone 77 c The Southern Uplands-Longford-Down-Clare Inliers Belt 83 d The Iapetus Suture 84 e The Lake District-Isle of Man-Leinster Belt 84 f The Irish Sea Horst 85 g The Welsh Basin and its eastern borders 85 h Eastern England 86 j The Midland Craton 86 4. Conclusions 87 5. Acknowledgements 88 6. References 88 1. Introduction underlying the Metamorphic Caledonides (which Although the conventional regional subdivi- consists mainly of gneisses) and that underlying sion of the British and Irish
    [Show full text]
  • Russian Fishing Activities Off the Coast of Finnmark*A Legal History1 Kirsti Strøm Bull*, Professor, Faculty of Law, University of Oslo, Oslo, Norway
    Arctic Review on Law and Politics Vol. 6, No. 1, 2015, pp. 3Á10 Russian Fishing Activities off the Coast of Finnmark*A Legal History1 Kirsti Strøm Bull*, Professor, Faculty of Law, University of Oslo, Oslo, Norway Abstract The rich fishery resources off the coast of Finnmark have historically attracted fishermen from other parts of Norway and from neighbouring countries. This article discusses the legal history of Russian fishing activities off the coast of Finnmark and covers the historical period from the 1700s until the termination of this fishery in the early 1900s. The article shows that Russian fishermen, like the Sa´mi from Finland*and unlike fishermen from other nations, were authorized to establish shacks and landing places. Both the agreements and legal disputes surrounding the fishery, which lasted until World War I, are discussed in the article. Keywords: fishery; Russia; legal history; rights to marine resources; Finnmark; The Lapp Codicil Received: August 2014; Accepted: September 2014; Published: March 2015 1. Introduction protecting fishery resources for the benefit of Finnmark’s own population* From far back in time, the rich fisheries off the coast of Finnmark have attracted fishermen from beyond the county’s own borders. Some of these fishermen, known in Norwegian as nordfarere (‘‘northern seafarers’’), came from further south along the Norwegian coast, specifically from the counties of Nordland and Trøndelag. Others came from further east, from Finland and Russia. In more recent times, fishermen started to arrive from even further afield, notably from England. When the English trawlers ventured into Varangerfjord in 1911, they triggered a dispute between Norway and England concerning the delimitation of the Norwegian fisheries zone that continued until 1951, when the matter was decided by the International Court of Justice in The Hague.
    [Show full text]
  • Juan Gómez-Barreiro Dear Editor, Thanks for Your Message. It Is
    To Topical Editor: Juan Gómez-Barreiro Dear editor, Thanks for your message. It is rather unusual to receive a third revision from an editor, but we have tried to follow your last remarks. See below some explanations, because we have not properly understood some of your queries. A) It is not clear how the authors choose the studied areas in the Iberian Massif. A short description on these criteria could be very useful for the interested reader. The criteria for the selection of the targeted study areas was (and still is) explained at the end of the Introduction section. “Until now the Toledanian and Sardic magmatic events had been studied on different areas and interpreted separately, without taking into account their similarities and differences. In this work, the geochemical affinities of the Furongian–Early Ordovician (Toledanian) and Early–Late Ordovician (Sardic) felsic magmatic activities recorded in the Central Iberian and Galicia-Trás-os-Montes Zones, Pyrenees, Occitan Domain and Sardinia are compared. The re-appraisal is based on 17 new samples from the Pyrenees, Montagne Noire and Sardinia, completing the absence of analysis in these areas and wide- ranging a dataset of 93 previously published geochemical analyses throughout the study region in south-western Europe”. • Besides, according to up-to-date references (e.g. Martínez Catalán et al 2019; https://doi.org/10.1007/978-3-030-10519-8_4), the Cantabrian, Westasturian-Leonese and Central Iberian zones were part of the Gondwana margin at that time span (broadly autochthon), while in the Galicia -Trás-os-Montes zone (Allochthon), only those units below the Ophiolites are clearly of that affinity (Basal and Parautochthon units).
    [Show full text]
  • The Expert Mechanism on the Rights of Indigenous Peoples (EMRIP)
    The Expert Mechanism on the Rights of Indigenous Peoples (EMRIP) Your ref Our ref Date 18/2098-13 27 February 2019 The Expert Mechanism on the Rights of Indigenous Peoples (EMRIP) – Norway's contribution to the report focusing on recognition, reparation and reconciliation With reference to the letter of 20th November 2018 from the Office of the United Nations High Commissioner for Human Rights where we were invited to contribute to the report of the Expert Mechanism on recognition, reparation and reconciliation initiatives in the last 10 years. Development of the Norwegian Sami policy For centuries, the goal of Norwegian Sami policy was to assimilate the Sami into the Norwegian population. For instance Sami language was banned in schools. In 1997 the King, on behalf of the Norwegian Government, gave an official apology to the Sami people for the unjust treatment and assimilation policies. The Sami policy in Norway today is based on the recognition that the state of Norway was established on the territory of two peoples – the Norwegians and the Sami – and that both these peoples have the same right to develop their culture and language. Legislation and programmes have been established to strengthen Sami languages, culture, industries and society. As examples we will highlight the establishment of the Sámediggi (the Sami parliament in Norway) in 1989, the Procedures for Consultations between the State Authorities and Sámediggi of 11 May 2005 and the Sami Act. More information about these policies can be found in Norway's reports on the implementation of the ILO Convention No. 169 and relevant UN Conventions.
    [Show full text]
  • Structural Geology of Parautochthonous and Allochthonous Terranes of the Penokean Orogeny in Upper Michigan Comparisons with Northern Appalachian Tectonics
    Structural Geology of Parautochthonous and Allochthonous Terranes of the Penokean Orogeny in Upper Michigan Comparisons with Northern Appalachian Tectonics U.S. GEOLOGICAL SURVEY BULLETIN 1904-Q AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the U.S. Geological Survey, Book and Open-File Report Sales, Box 25286, Building 810, Denver Federal Center, Denver, CO 80225 Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications counter at the following U.S. Geological Survey offices, all of of general interest (such as leaflets, pamphlets, booklets), single which are authorized agents of the Superintendent of Documents. copies of periodicals (Earthquakes & Volcanoes, Preliminary De­ termination of Epicenters), and some miscellaneous reports, includ­ ANCHORAGE, Alaska-Rm.
    [Show full text]
  • Morphotectonic Analysis Along the Northern Margin of Samos Island, Related to the Seismic Activity of October 2020, Aegean Sea, Greece
    geosciences Article Morphotectonic Analysis along the Northern Margin of Samos Island, Related to the Seismic Activity of October 2020, Aegean Sea, Greece Paraskevi Nomikou 1,* , Dimitris Evangelidis 2, Dimitrios Papanikolaou 1, Danai Lampridou 1, Dimitris Litsas 2, Yannis Tsaparas 2 and Ilias Koliopanos 2 1 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784 Athens, Greece; [email protected] (D.P.); [email protected] (D.L.) 2 Hellenic Navy Hydrographic Service, Mesogeion 229, TGN 1040 Cholargos, Greece; [email protected] (D.E.); [email protected] (D.L.); [email protected] (Y.T.); [email protected] (I.K.) * Correspondence: [email protected] Abstract: On 30 October 2020, a strong earthquake of magnitude 7.0 occurred north of Samos Island at the Eastern Aegean Sea, whose earthquake mechanism corresponds to an E-W normal fault dipping to the north. During the aftershock period in December 2020, a hydrographic survey off the northern coastal margin of Samos Island was conducted onboard R/V NAFTILOS. The result was a detailed bathymetric map with 15 m grid interval and 50 m isobaths and a morphological slope map. The morphotectonic analysis showed the E-W fault zone running along the coastal zone with 30–50◦ of Citation: Nomikou, P.; Evangelidis, slope, forming a half-graben structure. Numerous landslides and canyons trending N-S, transversal D.; Papanikolaou, D.; Lampridou, D.; Litsas, D.; Tsaparas, Y.; Koliopanos, I. to the main direction of the Samos coastline, are observed between 600 and 100 m water depth. The Morphotectonic Analysis along the ENE-WSW oriented western Samos coastline forms the SE margin of the neighboring deeper Ikaria Northern Margin of Samos Island, Basin.
    [Show full text]
  • Our. Knowledge of the Geology of the Alta District of West Finnmark Owes Much to the Work of Holtedahl (1918, 1960) and Føyn (1964)
    Correlation of Autochthonous Stratigraphical Sequences in the Alta-Repparfjord Region, West Finnmark DAVID ROBERTS & EIGILL FARETH Roberts, D. & Fareth, E.: Correlation of autochthonous stratigraphical se­ quences in the Alta-Repparfjord region, west Finnmark. Norsk Geologisk Tidsskrift, Vol. 54, pp. 123-129. Oslo 1974. An outline of the geology of the area between Alta and the Komagfjord tectonic window is presented. Lithologies (including a tillite) constituting an autochthonous sequence are described from an area on the north-east side of Altafjord, and from their similarity to those of formations occurring in adjacent areas a revised regional stratigraphical correlation is proposed. An occurrence of biogenic structures appears to provide confirmatory evidence for an earlier suggested correlation with Late Precambrian sequences be­ tween west and east Finnmark. D. Roberts & E. Fareth, Norges Geologiske Undersøkelse, Postboks 3006, 7001 Trondheim, Norway. Regional setting; previous correlations Our. knowledge of the geology of the Alta district of west Finnmark owes much to the work of Holtedahl (1918, 1960) and Føyn (1964). The oldest rocks, the Raipas Group or Series (Reitan 1963a) of Precambrian (Karelian) age, are represented by a sequence of greenschist facies metasediments, metavolcanics and intrusives. Lying unconformably upon the Raipas is a quartzite formation, a thin tillite, and a mixed shale and sandstone succession. Holtedahl (1918) re­ ferred to these autochthonous post-Raipas rocks as the 'Bossekopavdelingen', but Føyn (1964) later demonstrated the presence of an angular uncon­ formity beneath the tillite and adopted this break as the border between what he termed the Bossekop Group and the overlying sediments, the Borras Group. These were later referred to as sub-groups (Føyn 1967, Pl.
    [Show full text]
  • Antler Orogeny and Foreland Basin: a Model: Discussion and Reply
    Antler orogeny and foreland basin: A model: Discussion and reply Discussion J. G. JOHNSON ) „ , r, . _ „„,,, ANNE PENDERGAST I ®ePartmenl °J Geology, Oregon Slate University, Corvallis, Oregon 97331 We deny that rocks of the Antler allochthon have been southern part of the Pine Valley quadrangle, south of Pony Creek, redistributed by probable Mesozoic thrust nappes along the the sequence is: Nevada Group carbonates, Pilot Shale, "Chainman Roberts Mountains thrust front between the latitudes of Eureka Shale," Roberts Mountains allochthon (Johnson and Pendergast, and Elko, as was represented by Speed and Sleep (1982, Fig. 1). 1981, p. 653). The important paper on the Antler orogeny by Speed and Throughout the rest of the Pinyon Range, mapped by Smith Sleep (1982) proposed a model which should be revised in the light and Ketner (1975, PI. 1; 1978) or discussed by them as regards of new interpretations of central Nevada geology made by Johnson timing of deformation (1977), two facts stand out consistently. (1) and Pendergast (1981) and published while the Speed and Sleep Wherever the base of the allochthon has been mapped, it overlies manuscript was in press. The most significant of these is that Lower Lower Mississippian (Kinderhookian) rocks. (2) Wherever the Mississippian rocks are in both the autochthon and the allochthon stratigraphic sequence is exposed, the lowest Mississippian beds along the thrust front. Specifically, we refer to allochthonous overlie Devonian autochthonous rocks. Ordovician-Devonian rocks in the belt from Devils Gate to the Because Smith and Ketner (1968) mapped Kinderhookian Roberts Mountains, from the west flank of the Sulphur Spring Webb Formation as overlying both autochthon and allochthon, Range, and including rocks as young as Kinderhookian at several they (apparently) assumed that any structurally higher allochthon localities in the Pinyon Range.
    [Show full text]
  • Geologic Map of Washington - Northwest Quadrant
    GEOLOGIC MAP OF WASHINGTON - NORTHWEST QUADRANT by JOE D. DRAGOVICH, ROBERT L. LOGAN, HENRY W. SCHASSE, TIMOTHY J. WALSH, WILLIAM S. LINGLEY, JR., DAVID K . NORMAN, WENDY J. GERSTEL, THOMAS J. LAPEN, J. ERIC SCHUSTER, AND KAREN D. MEYERS WASHINGTON DIVISION Of GEOLOGY AND EARTH RESOURCES GEOLOGIC MAP GM-50 2002 •• WASHINGTON STATE DEPARTMENTOF 4 r Natural Resources Doug Sutherland· Commissioner of Pubhc Lands Division ol Geology and Earth Resources Ron Telssera, Slate Geologist WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Ron Teissere, State Geologist David K. Norman, Assistant State Geologist GEOLOGIC MAP OF WASHINGTON­ NORTHWEST QUADRANT by Joe D. Dragovich, Robert L. Logan, Henry W. Schasse, Timothy J. Walsh, William S. Lingley, Jr., David K. Norman, Wendy J. Gerstel, Thomas J. Lapen, J. Eric Schuster, and Karen D. Meyers This publication is dedicated to Rowland W. Tabor, U.S. Geological Survey, retired, in recognition and appreciation of his fundamental contributions to geologic mapping and geologic understanding in the Cascade Range and Olympic Mountains. WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES GEOLOGIC MAP GM-50 2002 Envelope photo: View to the northeast from Hurricane Ridge in the Olympic Mountains across the eastern Strait of Juan de Fuca to the northern Cascade Range. The Dungeness River lowland, capped by late Pleistocene glacial sedi­ ments, is in the center foreground. Holocene Dungeness Spit is in the lower left foreground. Fidalgo Island and Mount Erie, composed of Jurassic intrusive and Jurassic to Cretaceous sedimentary rocks of the Fidalgo Complex, are visible as the first high point of land directly across the strait from Dungeness Spit.
    [Show full text]
  • Variscan Accretionary Complex of Northwest Iberia: Terrane Correlation and Succession of Tectonothermal Events
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by EPrints Complutense Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events Jose R. Martlnez Catalan Departamento de Geologia, Unlversldad de Salamanca, 37008 Salamanca, Spain Ricardo Arenas Departamento de Petroiogia y Geoquimlca, Unlversldad Complutense, 28040 Madrid, Spain Florentino Diaz Garcia Departamento de Geologia, Unlversldad de OVledo, 33005 OVledo, Spain Jacobo Abati Departamento de Petroiogia y Geoquimlca, Unlversldad Complutense, 28040 Madrid, Spain ABSTRACT The allochthonous terranes of northwest Iberia can be correlated with specific pale ogeo­ graphic realms of the continental masses and intervening oceans involved in the Variscan colli­ sion. Assuming that the existing ophiolites represent the suture formed by the closure of the Rheic ocean, the units in the fo otwall to the suture correspond to the outer edge of the Good­ waDa continentalmargin, and the units in the hanging waD are interpreted as fragments of the conjugate margin, represented by the Me guma terrane. This correlation establishes a precise link betweencircum-Atlantic terranes, and makes it possible to draw a relatively simple sce­ nario of the successive tectonothermal events recorded. Following the amalgamation of Avalon to LaUl'entia, the remaining outboard terranes underwent a progressive accretion to this conti­ nent that ended with the collision between Laurentia and Gondwana. INTRODUCTION position in the nappe pile: basal, intermediate, granulite, amphibolite and greenschist facies. The allochthonousterranes of northwest Iberia and upper units. Because the intermediate units The ophiolitic nappes were stacked during the outcrop in five synforms or structural basins as show clear oceanicaffinities, they are referred to closure of the Rheic ocean.
    [Show full text]