Representations of 3-Manifold Groups

Total Page:16

File Type:pdf, Size:1020Kb

Representations of 3-Manifold Groups CHAPTER 3 Representations of 3-manifold groups Peter B. Shalen University of Illinois at Chicago Contents 1. Some basic concepts and examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.1. Representations and actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 1.2. A word about base points : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 1.3. The universal covering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1.4. The tree associated with a hypersurface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1.5. The three-dimensional case: essential surfaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 1.6. The action associated to a hyperbolic structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12 2. Actions of 3-manifold groups on trees : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13 2.1. Constructing an equivariant map : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14 2.2. Constructing a surface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15 2.3. Remarks on dual surfaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16 2.4. Making a dual surface essential : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19 2.5. Applications, I: Nonseparating surfaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21 2.6. Applications, II: Free products and stu® : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25 3. The tree for SL2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27 3.1. Valuations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27 3.2. The p-adic valuation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28 3.3. Fields of meromorphic functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28 3.4. The valuation ring : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29 3.5. The p-adics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30 3.6. De¯ning the tree for SL2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31 3.7. The action : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38 3.8. Getting to know the tree, I: the link of a vertex : : : : : : : : : : : : : : : : : : : : : : : : : : : 38 3.9. Getting to know the tree, II: axes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40 3.10. Application: Ihara's theorem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41 4. Varieties of representations and varieties of characters : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42 April 23, 1999 { Draft version; Typeset by LaTEX Supported by an NSF grant and a U. of I. University Scholar award Handbook of Geometric Topology { Style ¯les Created by F.D. Mesman and W.j. Maas °c 1996 Elsevier Science B.V. 1 2 P. Shalen 4.1. The variety of representations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42 4.2. A little algebraic geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43 4.3. More on varieties of representations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45 4.4. Varieties of characters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46 4.5. The irreducible component of a discrete faithful character : : : : : : : : : : : : : : : : : : : 49 5. Ideal points and trees : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52 5.1. Some more algebraic geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52 5.2. Projective varieties : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54 5.3. Canonical completions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56 5.4. Associating an action on a tree with an ideal point : : : : : : : : : : : : : : : : : : : : : : : : : 57 5.5. More about the action : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59 5.6. Separating surfaces in knot exteriors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61 6. The proof of the weak Neuwirth Conjecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63 7. The Smith Conjecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65 7.1. Preliminary observations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66 7.2. The character variety appears : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67 7.3. The character variety argument completed : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69 7.4. The equivariant loop theorem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70 7.5. The root-of-unity phenomenon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71 7.6. Extensions of the theorem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71 8. Degrees and Norms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72 8.1. Degrees of trace functions; de¯ning the norm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73 8.2. A word about norms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76 8.3. Further properties of the norm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77 9. Applications to Dehn surgery : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80 9.1. The Cyclic Surgery Theorem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80 9.2. The \no-closed-surface" case : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80 9.3. A little geometry of numbers: a theorem of Minkowski's : : : : : : : : : : : : : : : : : : : : : 84 9.4. The \no-closed-surface" case, concluded : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86 9.5. The case where there are closed surfaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86 9.6. Other applications to surgery : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87 10. Boundary slopes and genera: Neuwirth and Poincar¶e Conjectures : : : : : : : : : : : : : : : : : : : 89 10.1. A lower bound for the diameter of the boundary slopes : : : : : : : : : : : : : : : : : : : : : 90 10.2. Some related results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91 11. R-trees and degenerations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93 References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94 Representations of 3-manifold groups 3 The phrase \representations of 3-manifold groups" is likely to suggest di®erent things to di®erent people. When I was asked to write a chapter for this handbook on this subject, I thought it would be wise to focus on something I knew about, and I therefore decided to concentrate on the interaction between two kinds of repre- sentations of fundamental groups of 3-manifolds: representations by 2 2 matrices, and representations by automorphisms of trees. Representations of the£ ¯rst kind are related to hyperbolic structures on 3-manifolds, while those of the second kind are related to surfaces in 3-manifolds. The interaction between these two kinds of representations therefore provides a link between what are probably the two most useful kinds of structures on 3-manifolds, whence the utility of this theory in studying group actions, Dehn surgery, surfaces in knot exteriors, and degeneration of hyperbolic structures. The core of this chapter is an attempt to present|with the necessary background|some of the content of a series of joint papers [17], [18], [19], |by Marc Culler and myself, and of the ¯rst chapter of our paper [15] with Cameron Gordon and John Luecke. I have been able to give only the briefest hints about the remarkable developments in the area that have been made by Steven Boyer and Xingru Zhang in [5], [6] and [7], by Daryl Cooper and Darren Long and their co-authors in [11], [13], and other papers|see [14] for a survey|and by Nathan Dun¯eld in [22] and [23]. I have been even briefer about my closely related joint work with John
Recommended publications
  • Nieuw Archief Voor Wiskunde
    Nieuw Archief voor Wiskunde Boekbespreking Kevin Broughan Equivalents of the Riemann Hypothesis Volume 1: Arithmetic Equivalents Cambridge University Press, 2017 xx + 325 p., prijs £ 99.99 ISBN 9781107197046 Kevin Broughan Equivalents of the Riemann Hypothesis Volume 2: Analytic Equivalents Cambridge University Press, 2017 xix + 491 p., prijs £ 120.00 ISBN 9781107197121 Reviewed by Pieter Moree These two volumes give a survey of conjectures equivalent to the ber theorem says that r()x asymptotically behaves as xx/log . That Riemann Hypothesis (RH). The first volume deals largely with state- is a much weaker statement and is equivalent with there being no ments of an arithmetic nature, while the second part considers zeta zeros on the line v = 1. That there are no zeros with v > 1 is more analytic equivalents. a consequence of the prime product identity for g()s . The Riemann zeta function, is defined by It would go too far here to discuss all chapters and I will limit 3 myself to some chapters that are either close to my mathematical 1 (1) g()s = / s , expertise or those discussing some of the most famous RH equiv- n = 1 n alences. Most of the criteria have their own chapter devoted to with si=+v t a complex number having real part v > 1 . It is easily them, Chapter 10 has various criteria that are discussed more brief- seen to converge for such s. By analytic continuation the Riemann ly. A nice example is Redheffer’s criterion. It states that RH holds zeta function can be uniquely defined for all s ! 1.
    [Show full text]
  • The Modal Logic of Potential Infinity, with an Application to Free Choice
    The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Commentary on Thurston's Work on Foliations
    COMMENTARY ON FOLIATIONS* Quoting Thurston's definition of foliation [F11]. \Given a large supply of some sort of fabric, what kinds of manifolds can be made from it, in a way that the patterns match up along the seams? This is a very general question, which has been studied by diverse means in differential topology and differential geometry. ... A foliation is a manifold made out of striped fabric - with infintely thin stripes, having no space between them. The complete stripes, or leaves, of the foliation are submanifolds; if the leaves have codimension k, the foliation is called a codimension k foliation. In order that a manifold admit a codimension- k foliation, it must have a plane field of dimension (n − k)." Such a foliation is called an (n − k)-dimensional foliation. The first definitive result in the subject, the so called Frobenius integrability theorem [Fr], concerns a necessary and sufficient condition for a plane field to be the tangent field of a foliation. See [Spi] Chapter 6 for a modern treatment. As Frobenius himself notes [Sa], a first proof was given by Deahna [De]. While this work was published in 1840, it took another hundred years before a geometric/topological theory of foliations was introduced. This was pioneered by Ehresmann and Reeb in a series of Comptes Rendus papers starting with [ER] that was quickly followed by Reeb's foundational 1948 thesis [Re1]. See Haefliger [Ha4] for a detailed account of developments in this period. Reeb [Re1] himself notes that the 1-dimensional theory had already undergone considerable development through the work of Poincare [P], Bendixson [Be], Kaplan [Ka] and others.
    [Show full text]
  • Classification of 3-Manifolds with Certain Spines*1 )
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 205, 1975 CLASSIFICATIONOF 3-MANIFOLDSWITH CERTAIN SPINES*1 ) BY RICHARD S. STEVENS ABSTRACT. Given the group presentation <p= (a, b\ambn, apbq) With m, n, p, q & 0, we construct the corresponding 2-complex Ky. We prove the following theorems. THEOREM 7. Jf isa spine of a closed orientable 3-manifold if and only if (i) \m\ = \p\ = 1 or \n\ = \q\ = 1, or (") (m, p) = (n, q) = 1. Further, if (ii) holds but (i) does not, then the manifold is unique. THEOREM 10. If M is a closed orientable 3-manifold having K^ as a spine and \ = \mq — np\ then M is a lens space L\ % where (\,fc) = 1 except when X = 0 in which case M = S2 X S1. It is well known that every connected compact orientable 3-manifold with or without boundary has a spine that is a 2-complex with a single vertex. Such 2-complexes correspond very naturally to group presentations, the 1-cells corre- sponding to generators and the 2-cells corresponding to relators. In the case of a closed orientable 3-manifold, there are equally many 1-cells and 2-cells in the spine, i.e., equally many generators and relators in the corresponding presentation. Given a group presentation one is motivated to ask the following questions: (1) Is the corresponding 2-complex a spine of a compact orientable 3-manifold? (2) If there are equally many generators and relators, is the 2-complex a spine of a closed orientable 3-manifold? (3) Can we say what manifold(s) have the 2-complex as a spine? L.
    [Show full text]
  • Manifolds: Where Do We Come From? What Are We? Where Are We Going
    Manifolds: Where Do We Come From? What Are We? Where Are We Going Misha Gromov September 13, 2010 Contents 1 Ideas and Definitions. 2 2 Homotopies and Obstructions. 4 3 Generic Pullbacks. 9 4 Duality and the Signature. 12 5 The Signature and Bordisms. 25 6 Exotic Spheres. 36 7 Isotopies and Intersections. 39 8 Handles and h-Cobordisms. 46 9 Manifolds under Surgery. 49 1 10 Elliptic Wings and Parabolic Flows. 53 11 Crystals, Liposomes and Drosophila. 58 12 Acknowledgments. 63 13 Bibliography. 63 Abstract Descendants of algebraic kingdoms of high dimensions, enchanted by the magic of Thurston and Donaldson, lost in the whirlpools of the Ricci flow, topologists dream of an ideal land of manifolds { perfect crystals of mathematical structure which would capture our vague mental images of geometric spaces. We browse through the ideas inherited from the past hoping to penetrate through the fog which conceals the future. 1 Ideas and Definitions. We are fascinated by knots and links. Where does this feeling of beauty and mystery come from? To get a glimpse at the answer let us move by 25 million years in time. 25 106 is, roughly, what separates us from orangutans: 12 million years to our common ancestor on the phylogenetic tree and then 12 million years back by another× branch of the tree to the present day orangutans. But are there topologists among orangutans? Yes, there definitely are: many orangutans are good at "proving" the triv- iality of elaborate knots, e.g. they fast master the art of untying boats from their mooring when they fancy taking rides downstream in a river, much to the annoyance of people making these knots with a different purpose in mind.
    [Show full text]
  • Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
    Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds.
    [Show full text]
  • Boundary Volume and Length Spectra of Riemannian Manifolds: What the Middle Degree Hodge Spectrum Doesn’T Reveal Tome 53, No 7 (2003), P
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Carolyn S. GORDON & Juan Pablo ROSSETTI Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn’t reveal Tome 53, no 7 (2003), p. 2297-2314. <http://aif.cedram.org/item?id=AIF_2003__53_7_2297_0> © Association des Annales de l’institut Fourier, 2003, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ 2297- BOUNDARY VOLUME AND LENGTH SPECTRA OF RIEMANNIAN MANIFOLDS: WHAT THE MIDDLE DEGREE HODGE SPECTRUM DOESN’T REVEAL by C.S. GORDON and J.P. ROSSETTI (1) To what extent does spectral data associated with the Hodge Laplacian dd* + d*d on a compact Riemannian manifold M determine the geometry and topology of M? Let specp (M) denote the spectrum of the Hodge Laplacian acting on the space of p-forms on M, with absolute boundary conditions in case the boundary of M is non-empty.
    [Show full text]
  • Recent Advances in Topological Manifolds
    Recent Advances in Topological Manifolds Part III course of A. J. Casson, notes by Andrew Ranicki Cambridge, Lent 1971 Introduction A topological n-manifold is a Hausdorff space which is locally n-Euclidean (like Rn). No progress was made in their study (unlike that in PL and differentiable manifolds) until 1968 when Kirby, Siebenmann and Wall solved most questions for high dimensional manifolds (at least as much as for the PL and differentiable cases). Question: can compact n-manifolds be triangulated? Yes, if n 6 3 (Moise 1950's). This is unknown in general. However, there exist manifolds (of dimension > 5) which don't have PL structures. (They might still have triangulations in which links of simplices aren't PL spheres.) There is machinery for deciding whether manifolds of di- mension > 5 have a PL structure. Not much is known about 4-manifolds in the topological, differentiable, and PL cases. n n+1 Question 2: the generalized Sch¨onfliestheorem. Let B = x 2 R : kxk 6 1 , n n+1 n n S = x 2 R : kxk = 1 . Given an embedding f : B ! S (i.e. a 1-1 con- tinuous map), is Sn n f(Bn) =∼ Bn? No{the Alexander horned sphere. n n+1 0 n n ∼ n Let λB = x 2 R : kxk 6 λ . Question 2 : is S n f(λB ) = B (where 0 < λ < 1)? Yes. In 1960, Morton Brown, Mazur, and Morse proved the following: if g : Sn−1× n n n−1 [−1; 1] ! S is an embedding, then S ng(S ×f0g) has 2 components, D1;D2, ∼ ∼ n 0 such that D1 = D2 = B , which implies 2 as a corollary.
    [Show full text]
  • Notes on Geometry and Topology
    Lecture Notes on Geometry and Topology Kevin Zhou [email protected] These notes cover geometry and topology in physics. They focus on how the mathematics is applied, in the context of particle physics and condensed matter, with little emphasis on rigorous proofs. For instance, no point-set topology is developed or assumed. The primary sources were: • Nakahara, Geometry, Topology, and Physics. The standard textbook on the subject for physi- cists. Covers the usual material (simplicial homology, homotopy groups, de Rham cohomology, bundles), with extra chapters on advanced subjects like characteristic classes and index theo- rems. The material is developed clearly, but there are many errata, and the most comprehensive list is available here. At MIT I co-led an undergraduate reading group on this book with Matt DeCross, who wrote problem sets available here. • Robert Littlejon's Physics 250 notes. These notes primarily follow Nakahara, with some extra physical applications. They are generally more careful and precise. • Nash and Sen, Topology and Geometry for Physicists. A shorter alternative to Nakahara which covers the usual material from a slightly more mathematical perspective. For instance, topological spaces are defined, and excision and long exact sequences are used. However, many propositions are left unproven, and some purported proofs are invalid. • Schutz, Geometrical Methods of Mathematical Physics. A basic introduction to differential geometry that focuses on differential forms. • Baez, Gauge Fields, Knots, and Gravity. Covers differential geometry and fiber bundles as applied in gauge theory. Like Nash and Sen, it has a \math-style" presentation, but not rigorous proofs. Also contains neat applications to Chern-Simons theory and knot theory.
    [Show full text]
  • Connected Fundamental Groups and Homotopy Contacts in Fibered Topological (C, R) Space
    S S symmetry Article Connected Fundamental Groups and Homotopy Contacts in Fibered Topological (C, R) Space Susmit Bagchi Department of Aerospace and Software Engineering (Informatics), Gyeongsang National University, Jinju 660701, Korea; [email protected] Abstract: The algebraic as well as geometric topological constructions of manifold embeddings and homotopy offer interesting insights about spaces and symmetry. This paper proposes the construction of 2-quasinormed variants of locally dense p-normed 2-spheres within a non-uniformly scalable quasinormed topological (C, R) space. The fibered space is dense and the 2-spheres are equivalent to the category of 3-dimensional manifolds or three-manifolds with simply connected boundary surfaces. However, the disjoint and proper embeddings of covering three-manifolds within the convex subspaces generates separations of p-normed 2-spheres. The 2-quasinormed variants of p-normed 2-spheres are compact and path-connected varieties within the dense space. The path-connection is further extended by introducing the concept of bi-connectedness, preserving Urysohn separation of closed subspaces. The local fundamental groups are constructed from the discrete variety of path-homotopies, which are interior to the respective 2-spheres. The simple connected boundaries of p-normed 2-spheres generate finite and countable sets of homotopy contacts of the fundamental groups. Interestingly, a compact fibre can prepare a homotopy loop in the fundamental group within the fibered topological (C, R) space. It is shown that the holomorphic condition is a requirement in the topological (C, R) space to preserve a convex path-component. Citation: Bagchi, S. Connected However, the topological projections of p-normed 2-spheres on the disjoint holomorphic complex Fundamental Groups and Homotopy subspaces retain the path-connection property irrespective of the projective points on real subspace.
    [Show full text]