Lecture Notes on Geometry and Topology Kevin Zhou
[email protected] These notes cover geometry and topology in physics. They focus on how the mathematics is applied, in the context of particle physics and condensed matter, with little emphasis on rigorous proofs. For instance, no point-set topology is developed or assumed. The primary sources were: • Nakahara, Geometry, Topology, and Physics. The standard textbook on the subject for physi- cists. Covers the usual material (simplicial homology, homotopy groups, de Rham cohomology, bundles), with extra chapters on advanced subjects like characteristic classes and index theo- rems. The material is developed clearly, but there are many errata, and the most comprehensive list is available here. At MIT I co-led an undergraduate reading group on this book with Matt DeCross, who wrote problem sets available here. • Robert Littlejon's Physics 250 notes. These notes primarily follow Nakahara, with some extra physical applications. They are generally more careful and precise. • Nash and Sen, Topology and Geometry for Physicists. A shorter alternative to Nakahara which covers the usual material from a slightly more mathematical perspective. For instance, topological spaces are defined, and excision and long exact sequences are used. However, many propositions are left unproven, and some purported proofs are invalid. • Schutz, Geometrical Methods of Mathematical Physics. A basic introduction to differential geometry that focuses on differential forms. • Baez, Gauge Fields, Knots, and Gravity. Covers differential geometry and fiber bundles as applied in gauge theory. Like Nash and Sen, it has a \math-style" presentation, but not rigorous proofs. Also contains neat applications to Chern-Simons theory and knot theory.