1 the Origin of Genome Instability in Cancer

Total Page:16

File Type:pdf, Size:1020Kb

1 the Origin of Genome Instability in Cancer The Origin of Genome Instability in Cancer: Role of the Fragile Site Gene Product FHIT Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Joshua Charles Saldivar, M.S. Biomedical Sciences Graduate Program The Ohio State University 2013 Dissertation Committee: Kay Huebner, PhD, Advisor Carlo Croce, MD Joanna Groden, PhD Denis Guttridge, PhD 1 Copyright by Joshua Charles Saldivar 2013 2 ABSTRACT The transformation of normal cells to cancer cells involves multiple steps mediated by the acquisition of mutations, selection and clonal expansion of cells with favorable mutations. Most cancers exhibit remarkable genomic instability, defined as an elevated rate of genetic mutation at the single nucleotide and chromosome levels. Genomic instability is a facilitating hallmark of cancer in that it raises the probability of generating cancer-promoting mutations. Multiple factors contribute to the genome instability phenotypes seen in cancer, but the molecular processes initiating instability in sporadic cancer are unknown. In dysplastic cells, genomic alterations are first seen at chromosome fragile sites. These fragile sites are exquisitely sensitive to agents that stress DNA replication forks, and thus, it is thought that replicative stress is a major source of genome instability in cancer. A frequent and very early genetic alteration in precancerous cells is deletion within fragile site FRA3B, which overlaps exons of the large FHIT gene, resulting in loss of FHIT protein expression. Here it is shown that loss of FHIT expression triggers endogenous replication stress hindering replication fork progression and inducing fork stalling and collapse. Consequently, FHIT-deficient cells develop spontaneous DNA breaks and chromosome instability. Mechanistically, FHIT loss-induced replication stress ii is due to an imbalance in the deoxyribonucleotide triphosphate pool and an insufficient supply of thymidine triphosphate. FHIT up-regulates the S-phase-specific expression of thymidine kinase 1, a component of the pyrimidine salvage pathway for the production of thymidine triphosphate. Balanced precursors of DNA are needed for efficient and accurate DNA replication, and notably restoration of nucleotide balance rescues DNA replication defects in FHIT-deficient cells. Under selective pressure, FHIT-deficient clones enabled by oncogenic mutations emerge with newly acquired precancerous phenotypes, suggesting that FHIT loss-induced genome instability facilitates tumorigenesis. Collectively, these findings support a model where loss of FHIT expression initiates genomic instability in dysplastic lesions, linking alterations at chromosome fragile sites to the origin of genome instability and cancer progression. iii Dedicated to Catherine Waters for her love and companionship To my mother for her love and support, for valuing my education, and for cultivating my curiosity To my father for teaching me to work hard, to be courageous, to never quit, and inspiring me to always do my best To Robert Story and Dr. Michael Johnson for giving me the opportunity as a high-school student to work in a research laboratory, and in doing so, kindling my love for science iv ACKNOWLEDGMENTS I am especially grateful to my advisor, Dr. Kay Huebner, for supporting and mentoring me during my graduate research years. I am especially thankful for the many opportunities to travel and attend prestigious meeting; these trips have given me countless ideas, molded my hypotheses and kept me up to date on the hot topics in the field. I am very grateful for Dr. Huebner’s tireless commitment to any and all of my student needs. She has challenged my thinking, encouraged my ideas, and promoted my research. It is because of her that I have been able to achieve my goals. I would like to thank my thesis committee members, Drs. Carlo Croce, Joanna Groden, and Denis Guttridge, for their helpful comments and critiques during committee meetings, for their suggestions on current and future projects, and for monitoring my timely progression through the program. I would like to thank the Biomedical Sciences Graduate program for accepting me into the program back in 2008, and special thanks to Dr. Ginny Sanders, the program director at the time, for being an inspirational director. Special thanks to the program office staff, including Ms Amy Lahmers and Ms Kelli Kaiser, for their continued dedication to the graduate program and students. v I would like to thank current and former members of Dr. Huebner’s lab, for making the lab a friendly, cheerful environment every day. I would like to thank Drs. Hidetaka Shibata and Satoshi Miuma for teaching me many research techniques, offering insightful discussions, and for their friendship in the lab. I would like to thank Dr. Jin Sun for his technical expertise, daily maintenance of our animal colony, assistance with presentations and room reservations, and for managing the lab safety protocol. I would especially like to thank Jessica Bene and Larissa Topeka who as talented undergraduate students performed many critical experiments some of which have been used in this dissertation. I would like to thank Dr. Chris Mathews and Linda Wheeler for their willingness to collaborate and offer their expertise in nucleotide metabolism. Their contributions led to significant advances in our understanding of FHIT function. I greatly appreciate financial support provided by the Ohio State University Wexner Medical Center and the National Institutes of Health. vi VITA November 24, 1982……………………...Born – Springdale, Arkansas 2000-2005……………………………….Undergraduate Laboratory Assistant P.I.: Michael G. Johnson, PhD, University of Arkansas, Fayetteville, Arkansas 2005……………………………...............B.S. in Biochemistry, University of Arkansas, Fayetteville, Arkansas 2007……………………………………...M.S. in Food Science, University of Arkansas, Fayetteville, Arkansas 2007-2008………………………………..Hourly Assistant P.I.: Steven C. Ricke, PhD University of Arkansas, Fayetteville, Arkansas 2008-present……………………………..Graduate Research Associate Dissertation Advisor: Kay Huebner, PhD The Ohio State University, Biomedical Sciences Graduate Program, Columbus, Ohio vii PUBLICATIONS Peer-Reviewed Manuscripts: 1. Saldivar JC, Bene J, Hosseini SA, Miuma S, Horton S, Heerema NA, and Huebner K. Characterization of the role of FHIT in suppression of DNA damage. Adv Biol Regul. 2013:53(1) 77-85. 2. Saldivar JC, Miuma S, Bene J, Hosseini SA, Shibata H, Sun J, Wheeler LJ, Mathews CK, and Huebner K. Initiation of genome instability and preneoplastic processes through loss of FHIT expression. PLoS Genetics. 2012; 8(11):e1003077. 3. Hu B, Nandhu MS, Sim H, Agudelo-Garcia PA, Saldivar JC, et al. Fibulin-3 Promotes glioma growth and resistance through a novel paracrine regulation of Notch signaling. Cancer Res. 2012;72(15) 3873-85. 4. Milillo SR, Friedly EC, Saldivar JC, et al. A review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes. Crit Rev Food Sci Nutr. 2012:52(8) 712-25. 5. Shibata H, Miuma S, Saldivar JC, Huebner K. Response of subtype-specific human breast cancer-derived cells to PARP and Chk1 inhibition. Cancer Science. 2011; 102(10) 1882-8. 6. Huebner K, Saldivar JC, Sun J, Shibata H, Druck T. Hits, FHITs and Nits: beyond enzymatic function. Adv Enzyme Regul. 2011; 51(1) 208-217. 7. Saldivar JC, Shibata H, and Huebner K. Pathology and biology associated with the fragile FHIT gene and gene product. J Cell Biochem. 2010:109(5) 858-865. 8. Lungu B, Saldivar JC, Story R, Ricke S, Johnson MG. 2009. The combination of energy-dependent internal adaptation mechanisms and external factors enable Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation. Foodborne Pathog Dis. 2010;7(5):499-505. FIELDS OF STUDY Major Field: Biomedical Science Research Emphasis: Genetics viii TABLE OF CONTENTS Page Abstract…………………………………………………………….…………………….ii Dedication…………………………………………………………….………………….iv Acknowledgements……………………………………………….………...……………v Vita………………………………………………………………………...……………vii List of Tables……………………………………………………………………………xii List of Figures………………………………………………………………………….xiii Chapters: 1. FHIT, a Guardian of the Preneoplastic Genome?....................................................1 1.1 Introduction………………………………….……………...……………….1 1.2 The FHIT gene and gene product…………………………….………..…….2 1.3 Tumor suppressor function of FHIT………………………...….……………5 1.4 Loss of FHIT expression in early preneoplasias…………....…….…………..7 1.5 Genomic instability in FHIT-deficient cells………………………………….9 1.6 Conclusion………………………………………………………..…………11 2. Initiation of Genome Instability and Preneoplastic Process through Loss of FHIT Expression…………………..…………….………………..13 2.1 Introduction…………………………………………………..…….……….13 2.2 Materials and Methods………………………………………..………….…16 2.3 Results………………………………………………………….....…………20 2.3.1 FHIT-deficient cells spontaneous DNA breaks………...……...….20 ix 2.3.2 FHIT prevents endogenous replication stress and replication fork stalling…………………………….………....25 2.3.3 Genome instability induced by FHIT-deficiency does not activate the S/G2 checkpoint………………….………...30 2.3.4 Genomic alterations caused by FHIT loss expedite cell immortalization…………………………………….…………35 2.4 Discussion……………………………………………………..…..………..38 2.4.1 Model for FHIT loss-induced genome instability………………...38 2.4.2 FHIT deletion as a cancer-driving mutations……………...……...41 3. FHIT Supports DNA
Recommended publications
  • Wo 2010/075007 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US).
    [Show full text]
  • Mutations in DCPS and EDC3 in Autosomal Recessive Intellectual
    Human Molecular Genetics, 2015, Vol. 24, No. 11 3172–3180 doi: 10.1093/hmg/ddv069 Advance Access Publication Date: 20 February 2015 Original Article Downloaded from ORIGINAL ARTICLE Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA http://hmg.oxfordjournals.org/ decapping in neurodevelopment Iltaf Ahmed1,2,†, Rebecca Buchert3,†, Mi Zhou5,†, Xinfu Jiao5,†, Kirti Mittal1, Taimoor I. Sheikh1, Ute Scheller3, Nasim Vasli1, Muhammad Arshad Rafiq1, 6 1 7 2 M. Qasim Brohi , Anna Mikhailov , Muhammad Ayaz , Attya Bhatti , at Universitaet Erlangen-Nuernberg, Wirtschafts- und Sozialwissenschaftliche Z on August 15, 2016 Heinrich Sticht4, Tanveer Nasr8,9, Melissa T. Carter10, Steffen Uebe3, André Reis3, Muhammad Ayub7,11, Peter John2, Megerditch Kiledjian5,*, John B. Vincent1,12,13,* and Rami Abou Jamra3,* 1Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8, 2Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan, 3Institute of Human Genetics and 4Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany, 5Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA, 6Sir Cowasji Jehangir Institute of Psychiatry, Hyderabad, Sindh 71000, Pakistan, 7Lahore Institute of Research and Development,
    [Show full text]
  • Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution
    cancers Review Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution Giusi Russo 1, Alfonso Tramontano 2, Ilaria Iodice 1, Lorenzo Chiariotti 1 and Antonio Pezone 1,* 1 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy; [email protected] (G.R.); [email protected] (I.I.); [email protected] (L.C.) 2 Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +39-081-746-3614 Simple Summary: Cancer is a group of diseases characterized by abnormal cell growth with a high potential to invade other tissues. Genetic abnormalities and epigenetic alterations found in tumors can be due to high levels of DNA damage and repair. These can be transmitted to daughter cells, which assuming other alterations as well, will generate heterogeneous and complex populations. Deciphering this complexity represents a central point for understanding the molecular mechanisms of cancer and its therapy. Here, we summarize the genomic and epigenomic events that occur in cancer and discuss novel approaches to analyze the epigenetic complexity of cancer cell populations. Abstract: Cancer evolution is associated with genomic instability and epigenetic alterations, which contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are Citation: Russo, G.; Tramontano, A.; randomly generated, but strongly selected by deterministic events.
    [Show full text]
  • Dcps Is a Transcript-Specific Modulator of RNA in Mammalian Cells
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press DcpS is a transcript-specific modulator of RNA in mammalian cells MI ZHOU,1 SOPHIE BAIL,1 HEATHER L. PLASTERER,2 JAMES RUSCHE,2 and MEGERDITCH KILEDJIAN1 1Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA 2Repligen Corporation, Waltham, Massachusetts 02453, USA ABSTRACT The scavenger decapping enzyme DcpS is a multifunctional protein initially identified by its property to hydrolyze the resulting cap structure following 3′ end mRNA decay. In Saccharomyces cerevisiae, the DcpS homolog Dcs1 is an obligate cofactor for the 5′-3′ exoribonuclease Xrn1 while the Caenorhabditis elegans homolog Dcs-1, facilitates Xrn1 mediated microRNA turnover. In both cases, this function is independent of the decapping activity. Whether DcpS and its decapping activity can affect mRNA steady state or stability in mammalian cells remains unknown. We sought to determine DcpS target genes in mammalian cells using a cell-permeable DcpS inhibitor compound, RG3039 initially developed for therapeutic treatment of spinal muscular atrophy. Global mRNA levels were examined following DcpS decapping inhibition with RG3039. The steady-state levels of 222 RNAs were altered upon RG3039 treatment. Of a subset selected for validation, two transcripts that appear to be long noncoding RNAs HS370762 and BC011766, were dependent on DcpS and its scavenger decapping catalytic activity and referred to as DcpS-responsive noncoding transcripts (DRNT) 1 and 2, respectively. Interestingly, only the increase in DRNT1 transcript was accompanied with an increase of its RNA stability and this increase was dependent on both DcpS and Xrn1.
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • The Endocytic Membrane Trafficking Pathway Plays a Major Role
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository RESEARCH ARTICLE The Endocytic Membrane Trafficking Pathway Plays a Major Role in the Risk of Parkinson’s Disease Sara Bandres-Ciga, PhD,1,2 Sara Saez-Atienzar, PhD,3 Luis Bonet-Ponce, PhD,4 Kimberley Billingsley, MSc,1,5,6 Dan Vitale, MSc,7 Cornelis Blauwendraat, PhD,1 Jesse Raphael Gibbs, PhD,7 Lasse Pihlstrøm, MD, PhD,8 Ziv Gan-Or, MD, PhD,9,10 The International Parkinson’s Disease Genomics Consortium (IPDGC), Mark R. Cookson, PhD,4 Mike A. Nalls, PhD,1,11 and Andrew B. Singleton, PhD1* 1Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain 3Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 4Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 5Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom 6Department of Pathophysiology, University of Tartu, Tartu, Estonia 7Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 8Department of Neurology, Oslo University Hospital, Oslo, Norway 9Department of Neurology and Neurosurgery, Department of Human Genetics, McGill University, Montréal, Quebec, Canada 10Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada 11Data Tecnica International, Glen Echo, Maryland, USA ABSTRACT studies, summary-data based Mendelian randomization Background: PD is a complex polygenic disorder.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The P53/P73 - P21cip1 Tumor Suppressor Axis Guards Against Chromosomal Instability by Restraining CDK1 in Human Cancer Cells
    Oncogene (2021) 40:436–451 https://doi.org/10.1038/s41388-020-01524-4 ARTICLE The p53/p73 - p21CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells 1 1 2 1 2 Ann-Kathrin Schmidt ● Karoline Pudelko ● Jan-Eric Boekenkamp ● Katharina Berger ● Maik Kschischo ● Holger Bastians 1 Received: 2 July 2020 / Revised: 2 October 2020 / Accepted: 13 October 2020 / Published online: 9 November 2020 © The Author(s) 2020. This article is published with open access Abstract Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. fi Vice versa 1234567890();,: 1234567890();,: Consequently, induction of CDK1 is suf cient to induce abnormal microtubule assembly rates and W-CIN. , partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
    [Show full text]
  • Glucose-Induced Changes in Gene Expression in Human Pancreatic Islets: Causes Or Consequences of Chronic Hyperglycemia
    Diabetes Volume 66, December 2017 3013 Glucose-Induced Changes in Gene Expression in Human Pancreatic Islets: Causes or Consequences of Chronic Hyperglycemia Emilia Ottosson-Laakso,1 Ulrika Krus,1 Petter Storm,1 Rashmi B. Prasad,1 Nikolay Oskolkov,1 Emma Ahlqvist,1 João Fadista,2 Ola Hansson,1 Leif Groop,1,3 and Petter Vikman1 Diabetes 2017;66:3013–3028 | https://doi.org/10.2337/db17-0311 Dysregulation of gene expression in islets from patients In patients with type 2 diabetes (T2D), islet function de- with type 2 diabetes (T2D) might be causally involved clines progressively. Although the initial pathogenic trigger in the development of hyperglycemia, or it could develop of impaired b-cell function is still unknown, elevated glu- as a consequence of hyperglycemia (i.e., glucotoxicity). cose levels are known to further aggravate b-cell function, a To separate the genes that could be causally involved condition referred to as glucotoxicity, which can stimulate in pathogenesis from those likely to be secondary to hy- apoptosis and lead to reduced b-cell mass (1–5). Prolonged perglycemia, we exposed islets from human donors to exposure to hyperglycemia also can induce endoplasmic re- ISLET STUDIES normal or high glucose concentrations for 24 h and ana- ticulum (ER) stress and production of reactive oxygen spe- fi lyzed gene expression. We compared these ndings with cies (6), which can further impair islet function and thereby gene expression in islets from donors with normal glucose the ability of islets to secrete the insulin needed to meet the tolerance and hyperglycemia (including T2D). The genes increased demands imposed by insulin resistance and obe- whose expression changed in the same direction after sity (7).
    [Show full text]
  • Mitochondrial Rab Gaps Govern Autophagosome Biogenesis During Mitophagy Koji Yamano1, Adam I Fogel1, Chunxin Wang1, Alexander M Van Der Bliek2, Richard J Youle1*
    RESEARCH ARTICLE elife.elifesciences.org Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy Koji Yamano1, Adam I Fogel1, Chunxin Wang1, Alexander M van der Bliek2, Richard J Youle1* 1Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States; 2Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, United States Abstract Damaged mitochondria can be selectively eliminated by mitophagy. Although two gene products mutated in Parkinson’s disease, PINK1, and Parkin have been found to play a central role in triggering mitophagy in mammals, how the pre-autophagosomal isolation membrane selectively and accurately engulfs damaged mitochondria remains unclear. In this study, we demonstrate that TBC1D15, a mitochondrial Rab GTPase-activating protein (Rab-GAP), governs autophagosome biogenesis and morphology downstream of Parkin activation. To constrain autophagosome morphogenesis to that of the cargo, TBC1D15 inhibits Rab7 activity and associates with both the mitochondria through binding Fis1 and the isolation membrane through the interactions with LC3/ GABARAP family members. Another TBC family member TBC1D17, also participates in mitophagy and forms homodimers and heterodimers with TBC1D15. These results demonstrate that TBC1D15 and TBC1D17 mediate proper autophagic encapsulation of mitochondria by regulating Rab7 activity at the interface between mitochondria and isolation membranes. DOI: 10.7554/eLife.01612.001 *For correspondence: [email protected] Introduction Competing interests: See page 21 Autophagosomes enclose seemingly random portions of the cytoplasm to supply nutrients during starvation or they can specifically engulf cellular debris to maintain quality control (Mizushima et al., Funding: See page 21 2011).
    [Show full text]