Galileo Radio Science Investigations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
Modeling and Adjustment of THEMIS IR Line Scanner Camera Image Measurements
Modeling and Adjustment of THEMIS IR Line Scanner Camera Image Measurements by Brent Archinal USGS Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001 [email protected] As of 2004 December 9 Version 1.0 Table of Contents 1. Introduction 1.1. General 1.2. Conventions 2. Observations Equations and Their Partials 2.1. Line Scanner Camera Specific Modeling 2.2. Partials for New Parameters 2.2.1. Orientation Partials 2.2.2. Spatial Partials 2.2.3. Partials of the observations with respect to the parameters 2.2.4. Parameter Weighting 3. Adjustment Model 4. Implementation 4.1. Input/Output Changes 4.1.1. Image Measurements 4.1.2. SPICE Data 4.1.3. Program Control (Parameters) Information 4.2. Computational Changes 4.2.1. Generation of A priori Information 4.2.2. Partial derivatives 4.2.3. Solution Output 5. Testing and Near Term Work 6. Future Work Acknowledgements References Useful web sites Appendix I - Partial Transcription of Colvin (1992) Documentation Appendix II - HiRISE Sensor Model Information 1. Introduction 1.1 General The overall problem we’re solving is that we want to be able to set up the relationships between the coordinates of arbitrary physical points in space (e.g. ground points) and their coordinates on line scanner (or “pushbroom”) camera images. We then want to do a least squares solution in order to come up with consistent camera orientation and position information that represents these relationships accurately. For now, supported by funding from the NASA Critical Data Products initiative (for 2003 September to 2005 August), we will concentrate on handling the THEMIS IR camera system (Christensen et al., 2003). -
The Economic Impact of Physics Research in the UK: Satellite Navigation Case Study
The economic impact of physics research in the UK: Satellite Navigation Case Study A report for STFC November 2012 Contents Executive Summary................................................................................... 3 1 The science behind satellite navigation......................................... 4 1.1 Introduction ................................................................................................ 4 1.2 The science................................................................................................ 4 1.3 STFC’s role in satellite navigation.............................................................. 6 1.4 Conclusions................................................................................................ 8 2 Economic impact of satellite navigation ........................................ 9 2.1 Introduction ................................................................................................ 9 2.2 Summary impact of GPS ........................................................................... 9 2.3 The need for Galileo................................................................................. 10 2.4 Definition of the satellite navigation industry............................................ 10 2.5 Methodological approach......................................................................... 11 2.6 Upstream direct impacts .......................................................................... 12 2.7 Downstream direct impacts..................................................................... -
Exploration of the Moon
Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms. -
An Investigation of Aerogravity Assist at Titan and Triton for Capture Into Orbit About Saturn and Neptune 2Nd International Planetary Probe Workshop August 2004, USA
An Investigation of Aerogravity Assist at Titan and Triton for Capture into Orbit About Saturn and Neptune 2nd International Planetary Probe Workshop August 2004, USA Philip Ramsey(1) and James Evans Lyne(2) (1)Department of Mechanical, Aerospace and Biomedical Engineering The University of Tennessee Knoxville, TN 37996 USA [email protected] (2)Department of Mechanical, Aerospace and Biomedical Engineering The University of Tennessee Knoxville, TN 37996 USA [email protected] ABSTRACT proposed that an aerogravity assist maneuver at the moon Titan could be used to capture a probe Previous work by our group has shown that an into orbit about Saturn, using an aeroshell with a aerogravity assist maneuver at the moon Titan with a low to moderate lift-to-drag ratio (0.25 to could be used to capture a spacecraft into a 1.0).1 This approach provides for capture into closed orbit about Saturn if a nominal orbit about the gas giant, while avoiding the atmospheric profile at Titan is assumed. The very high entry speeds and aerothermal heating present study extends that work and examines environment inherent to a trajectory thru the the impact of atmospheric dispersions, variations atmosphere of Saturn itself. in the final target orbit and low density aerodynamics on the aerocapture maneuver. Titan is unique among moons in the solar Accounting for atmospheric dispersions system in that it has an atmosphere considerably substantially reduces the entry corridor width for thicker than Earth’s, with a ground level density a blunt configuration with a lift-to-drag ratio of of about 5.44 kg/m3. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
A New View of Haze Formation and Energy Balance in Triton's Cold And
EPSC Abstracts Vol. 13, EPSC-DPS2019-332-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. A New View of Haze Formation and Energy Balance in Triton’s Cold and Hazy Atmosphere Xi Zhang (1), Kazumasa Ohno (2), Darrell Strobel (3), Ryo Tazaki (4), and Satoshi Okuzumi (2) (1) University of California Santa Cruz, Santa Cruz, USA ([email protected]), (2) Tokyo Institute of Technology, Tokyo, Japan, (3) Johns Hopkins University, Baltimore, USA, (4) Tohoku University, Sendai, Japan Abstract missing coolant is needed to understand the energy balance in Triton’s lower atmosphere. This research on Neptune’s moon Triton consists of two parts. To start we built the first microphysical 2. Methods model of Triton haze formation including fractal aggregation of monomers and condensation of We have built the first bin-scheme microphysical supersaturated hydrocarbons and nitriles. Our model model for Triton’s haze and cloud formation. Our can explain the UV occultation and visible scattering model simulates the evolution of size distributions in observations from Voyager 2 spacecraft during the a one-dimensional framework with sedimentation, Neptune flyby. With our model we find that haze coagulation, condensation and vertical eddy mixing. particles play a dominant role in the energy balance We consider that the haze particles are initially in the lower atmosphere of Triton, which was composed of fractal aggregates—non-spherical neglected in previous studies. Future ice giant particles comprised of many many spherical missions with a Triton lander should be able to monomers—similar in previous studies on Titan and measure the infrared fluxes from the near-surface Pluto (e.g., Cabane et al. -
ALBERT VAN HELDEN + HUYGENS’S RING CASSINI’S DIVISION O & O SATURN’S CHILDREN
_ ALBERT VAN HELDEN + HUYGENS’S RING CASSINI’S DIVISION o & o SATURN’S CHILDREN )0g-_ DIBNER LIBRARY LECTURE , HUYGENS’S RING, CASSINI’S DIVISION & SATURN’S CHILDREN c !@ _+++++++++ l ++++++++++ _) _) _) _) _)HUYGENS’S RING, _)CASSINI’S DIVISION _) _)& _)SATURN’S CHILDREN _) _) _)DDDDD _) _) _)Albert van Helden _) _) _) , _) _) _)_ _) _) _) _) _) · _) _) _) ; {(((((((((QW(((((((((} , 20013–7012 Text Copyright ©2006 Albert van Helden. All rights reserved. A H is Professor Emeritus at Rice University and the Univer- HUYGENS’S RING, CASSINI’S DIVISION sity of Utrecht, Netherlands, where he resides and teaches on a regular basis. He received his B.S and M.S. from Stevens Institute of Technology, M.A. from the AND SATURN’S CHILDREN University of Michigan and Ph.D. from Imperial College, University of London. Van Helden is a renowned author who has published respected books and arti- cles about the history of science, including the translation of Galileo’s “Sidereus Nuncius” into English. He has numerous periodical contributions to his credit and has served on the editorial boards of Air and Space, 1990-present; Journal for the History of Astronomy, 1988-present; Isis, 1989–1994; and Tractrix, 1989–1995. During his tenure at Rice University (1970–2001), van Helden was instrumental in establishing the “Galileo Project,”a Web-based source of information on the life and work of Galileo Galilei and the science of his time. A native of the Netherlands, Professor van Helden returned to his homeland in 2001 to join the faculty of Utrecht University. -
Neptune Polar Orbiter with Probes*
NEPTUNE POLAR ORBITER WITH PROBES* 2nd INTERNATIONAL PLANETARY PROBE WORKSHOP, AUGUST 2004, USA Bernard Bienstock(1), David Atkinson(2), Kevin Baines(3), Paul Mahaffy(4), Paul Steffes(5), Sushil Atreya(6), Alan Stern(7), Michael Wright(8), Harvey Willenberg(9), David Smith(10), Robert Frampton(11), Steve Sichi(12), Leora Peltz(13), James Masciarelli(14), Jeffrey Van Cleve(15) (1)Boeing Satellite Systems, MC W-S50-X382, P.O. Box 92919, Los Angeles, CA 90009-2919, [email protected] (2)University of Idaho, PO Box 441023, Moscow, ID 83844-1023, [email protected] (3)JPL, 4800 Oak Grove Blvd., Pasadena, CA 91109-8099, [email protected] (4)NASA Goddard Space Flight Center, Greenbelt, MD 20771, [email protected] (5)Georgia Institute of Technology, 320 Parian Run, Duluth, GA 30097-2417, [email protected] (6)University of Michigan, Space Research Building, 2455 Haward St., Ann Arbor, MI 48109-2143, [email protected] (7)Southwest Research Institute, Department of Space Studies, 1050 Walnut St., Suite 400, Boulder, CO 80302, [email protected] (8)NASA Ames Research Center, Moffett Field, CA 94035-1000, [email protected] (9)4723 Slalom Run SE, Owens Cross Roads, AL 35763, [email protected] (10) Boeing NASA Systems, MC H013-A318, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099, [email protected] (11)Boeing NASA Systems, MC H012-C349, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099 [email protected] (12)Boeing Satellite Systems, MC W-S50-X382, P.O. Box 92919, Los Angeles, CA 90009-2919, [email protected] (13) )Boeing NASA Systems, MC H013-C320, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099, [email protected] (14)Ball Aerospace & Technologies Corp., P.O. -
Glossary Nov 08
NAVIGATION ACRONYMS, ABBREVIATIONS AND DEFINITIONS Collected by David Broughton These may be reproduced freely, but please inform the Royal Institute of Navigation of any amendments or additions via e-mail ([email protected]) or fax (+44 20 7591 3131). ‘ minute (= 1º/60) 112 European emergency phone number (= 911 in US, 999 in UK) 1st4sport Awarding body of the NCF Qualifications 2-AFC two-alternative forced-choice (procedure used in animal studies) 2dRMS twice distance root-mean-square Twice the root-mean-square of the radial distances from the true position to the observed positions obtained from a number of trials. Should contain 95% of observed positions. 2SOPS 2nd Space Operations Sqn (of 50th Space Wing)(USAF) Exercise command and control of GPS satellite constellation. 3DNC Three-dimensional digital navigational chart 3G third generation (of mobile phone technology or telematics) There is also 2G, 2.5G and 4G for phones. 3GPP 3G Partnership Project 3GT 3rd Generation Telematics (ERTICO and OSGi project) 802.11 a wireless interconnection standard with a range of 50 metres Also known as WiFi. An IEEE standard. 911 US emergency phone number (= 112 in Europe, 999 in UK) a atto (SI unit multiplier of 10-18) a semi-major axis of ellipse (for WGS-84 = 6,378,137 m) A-band NATO radar band 0-250 MHz = > 1.2 m A-GNSS (AGNSS) Assisted GNSS A-GPS (AGPS) Assisted GPS A-NPA Advance Notice of Proposed Amendment (EU JAA) A-NPRM Advance Notice of Proposed Rulemaking (FAA, FCC etc) A-S anti-spoofing In GPS the use of encryption to prevent a P-Code receiver locking to a bogus P-Code transmission. -
Galileo: Recent Developments
House of Commons Transport Committee Galileo: Recent Developments First Report of Session 2007–08 HC 53 Incorporating HC 1055, Session 2006–07 House of Commons Transport Committee Galileo: Recent Developments First Report of Session 2007–08 Report, together with formal minutes, oral and written evidence Ordered by The House of Commons to be printed 7 November 2007 HC 53 Incorporating HC 1055, Session 2006–07 Published on 12 November 2007 by authority of the House of Commons London: The Stationery Office Limited £0.00 The Transport Committee The Transport Committee is appointed by the House of Commons to examine the expenditure, administration and policy of the Department for Transport and its associated public bodies. Current membership Mrs Gwyneth Dunwoody MP (Labour, Crewe and Nantwich) (Chairman) Mr David Clelland MP (Labour, Tyne Bridge) Clive Efford MP (Labour, Eltham) Mrs Louise Ellman MP (Labour/Co-operative, Liverpool Riverside) Mr Philip Hollobone MP (Conservative, Kettering) Mr John Leech MP (Liberal Democrat, Manchester, Withington) Mr Eric Martlew MP (Labour, Carlisle) Mr Lee Scott MP (Conservative, Ilford North) David Simpson MP (Democratic Unionist, Upper Bann) Mr Graham Stringer MP (Labour, Manchester Blackley) Mr David Wilshire MP (Conservative, Spelthorne) Powers The Committee is one of the departmental select committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No 152. These are available on the Internet via www.parliament.uk. Publications The Reports and evidence of the Committee are published by The Stationery Office by Order of the House. All publications of the Committee (including press notices) are on the Internet at www.parliament.uk/transcom. -
The Atmospheres of Pluto and Triton: Investigations with ALMA. M.A. Gurwell1, E
Pluto System After New Horizons 2019 (LPI Contrib. No. 2133) 7060.pdf The Atmospheres of Pluto and Triton: Investigations with ALMA. M.A. Gurwell1, E. Lellouch2, B.J. Butler3, R. Moreno4, A. Moullet5, D.F. Strobel6, and P. Lavvas7. 1Center for Astrophysics | Harvard & Smithsonian (Cam- bridge, MA 02138 USA; [email protected]), 2LESIA, Observatoire de Paris (92195 Meudon, France; em- [email protected]), 3National Radio Astronomy Observatory (Socorro, NM 87801 USA; bbut- [email protected]), 4LESIA, Observatoire de Paris (92195 Meudon, France; [email protected]), 5SOFIA Sci- ence Center, NASA Ames Research Center (Moffett Field, CA 94035 USA; [email protected]), 6Departments of Earth & Planetary Sciences and Physics & Astronomy, Johns Hopkins University (Baltimore, MD 21218 USA; [email protected]), 7GSMA, Université Reims Champagne-Ardenne (51687 Reims Cedex 2, France; panayotis.lav- [email protected]) Introduction: Pluto and Triton hold unique clues hyperfine structure of HCN; see Fig. 1), providing a for understanding the composition and evolution of the strong confirmation of the presence of CO, and the outer solar system, and are recognized as benchmarks first observation of HCN in Pluto's atmosphere. The for studies of the Kuiper Belt. They are two of the larg- results are detailed in [5] and summarized here. The est known and most easily observed KBO members CO and HCN lines probed Pluto's atmosphere up to (from Earth, but with caveats), and they are similar in ∼450 km and ∼900 km altitude, respectively. The CO many ways; for one example, they both possess thin mole fraction was 515 ± 40 ppm for a 12 µbar surface (10 microbar class), N2-dominated atmospheres.