Virtual Machine Part II: Program Control

Total Page:16

File Type:pdf, Size:1020Kb

Virtual Machine Part II: Program Control Virtual Machine Part II: Program Control Building a Modern Computer From First Principles www.nand2tetris.org Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 1 The big picture Some . Some Other . Jack language language language Chapters Some Jack compiler Some Other 9-13 compiler compiler Implemented in VM language Projects 7-8 VM implementation VM imp. VM imp. VM over the Hack Chapters over CISC over RISC emulator platforms platforms platform 7-8 A Java-based emulator CISC RISC is included in the course written in Hack software suite machine machine . a high-level machine language language language language Chapters . 1-6 CISC RISC other digital platforms, each equipped Any Hack machine machine with its VM implementation computer computer Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 2 The VM language Goal: Complete the specification and implementation of the VM model and language Arithmetic / Boolean commands Program flow commands add label (declaration) sub goto (label) neg eq if‐goto (label) gt Chapter 7 Chapter 8 lt Function calling commands and or function (declaration) not call (a function) Memory access commands pop x (pop into x, which is a variable) return (from a function) push y (y being a variable or a constant) Method: (a) specify the abstraction (model’s constructs and commands) (b) propose how to implement it over the Hack platform. Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 3 The compilation challenge Source code (high-level language) Target code class Main { 0000000000010000 static int x; 1110111111001000 Our ultimate goal: 0000000000010001 function void main() { 1110101010001000 // Inputs and multiplies two numbers Translate high-level 0000000000010000 var int a, b, c; programs into 1111110000010000 0000000000000000 let a = Keyboard.readInt(“Enter a number”); executable code. 1111010011010000 let b = Keyboard.readInt(“Enter a number”); 0000000000010010 let c = Keyboard.readInt(“Enter a number”); 1110001100000001 let x = solve(a,b,c); 0000000000010000 return; Compiler 1111110000010000 } 0000000000010001 0000000000010000 } 1110111111001000 0000000000010001 // Solves a quadratic equation (sort of) 1110101010001000 function int solve(int a, int b, int c) { 0000000000010000 var int x; 1111110000010000 if (~(a = 0)) 0000000000000000 x=(‐b+sqrt(b*b–4*a*c))/(2*a); 1111010011010000 0000000000010010 else 1110001100000001 x=‐c/b; 0000000000010000 return x; 1111110000010000 } 0000000000010001 } ... Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 4 The compilation challenge / two-tier setting Jack source code VM (pseudo) code Machine code push a 0000000000010000 if (~(a = 0)) push 0 1110111111001000 x = (‐b+sqrt(b*b–4*a*c))/(2*a) eq 0000000000010001 else if‐goto elseLabel 1110101010001000 x = ‐c/b Compiler push b 0000000000010000 neg 1111110000010000 push b 0000000000000000 push b 1111010011010000 call mult 0000000000010010 We’ll develop the compiler push 4 1110001100000001 push a VM translator 0000000000010000 later in the course call mult 1111110000010000 push c 0000000000010001 call mult 0000000000010000 We now turn to describe call sqrt 1110111111001000 how to complete the add 0000000000010001 push 2 1110101010001000 implementation of the VM push a 0000000000010000 call mult 1111110000010000 language div 0000000000000000 pop x 1111010011010000 goto contLable 0000000000010010 That is -- how to elseLabel: 1110001100000001 translate each VM push c 0000000000010000 neg 1111110000010000 command into assembly push b 0000000000010001 call div 0000000000010010 commands that perform pop x 1110001100000001 the desired semantics. contLable: ... Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 5 The compilation challenge Typical compiler’s source code input: // Computes x = (‐b + sqrt(b^2 ‐4*a*c)) / 2*a if (~(a = 0)) x = (‐b + sqrt(b * b –4 * a * c)) / (2 * a) else x = ‐ c / b program flow logic Boolean function call and arithmetic (branching) expressions return logic expressions (this lecture)(previous lecture) (this lecture) (previous lecture) How to translate such high-level code into machine language? In a two-tier compilation model, the overall translation challenge is broken between a front-end compilation stage and a subsequent back- end translation stage In our Hack-Jack platform, all the above sub-tasks (handling arithmetic / Boolean expressions and program flow / function calling commands) are done by the back-end, i.e. by the VM translator. Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 6 Lecture plan Arithmetic / Boolean commands Program flow commands add label (declaration) sub goto (label) neg eq if‐goto (label) gt Chapter 7 lt Function calling commands and or function (declaration) not call (a function) Memory access commands pop x (pop into x, which is a variable) return (from a function) push y (y being a variable or a constant) Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 7 Program flow commands in the VM language VM code example: In the VM language, the program flow abstraction function mult 1 is delivered using three commands: push constant 0 pop local 0 label c // label declaration label loop push argument 0 goto c // unconditional jump to the push constant 0 // VM command following the label c eq if‐goto c // pops the topmost stack element; if‐goto end // if it’s not zero, jumps to the push argument 0 // VM command following the label c push 1 sub How to translate these abstractions into assembly? pop argument 0 push argument 1 Simple: label declarations and goto directives can push local 0 be effected directly by assembly commands add More to the point: given any one of these three VM pop local 0 commands, the VM Translator must emit one or goto loop more assembly commands that effects the same label end semantics on the Hack platform push local 0 return How to do it? see project 8. Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 8 Flow of control pseudo code VM code if (cond) ~cond statement1 if‐goto elseLabel else statement1 statement2 goto contLabel label elseLabel statement2 label contLabel Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 9 Flow of control pseudo code VM code while (cond) label contLabel statement ~(cond) ... if‐goto exitLabel statement goto contLabel label exitLabel ... Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 10 Lecture plan Arithmetic / Boolean commands Program flow commands add label (declaration) sub goto (label) neg eq if‐goto (label) gt previous lt lecture Function calling commands and or function (declaration) not call (a function) Memory access commands pop x (pop into x, which is a variable) return (from a function) push y (y being a variable or a constant) Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 11 Subroutines // Compute x = (‐b + sqrt(b^2 ‐4*a*c)) / 2*a if (~(a = 0)) x = (‐b + sqrt(b * b –4 * a * c)) / (2 * a) else x = ‐ c / b Subroutines = a major programming artifact Basic idea: the given language can be extended at will by user- defined commands ( aka subroutines / functions / methods ...) Important: the language’s primitive commands and the user-defined commands have the same look-and-feel This transparent extensibility is the most important abstraction delivered by high-level programming languages The challenge: implement this abstraction, i.e. allow the program control to flow effortlessly between one subroutine to the other Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 12 Subroutines in the VM language Calling code, aka “caller” (example) Called code, aka “callee” (example) ... function mult 1 // computes (7 + 2) * 3 ‐ 5 push constant 0 push constant 7 pop local 0 // result (local 0) = 0 push constant 2 label loop add push argument 0 push constant 3 VM subroutine push constant 0 call mult call-and-return eq push constant 5 commands if‐goto end // if arg0==0, jump to end sub push argument 0 ... push 1 sub pop argument 0 // arg0‐‐ push argument 1 push local 0 add pop local 0 // result += arg1 goto loop label end push local 0 // push result return Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 13 Subroutines in the VM language The invocation of the VM’s primitive commands and subroutines follow exactly the same rules: The caller pushes the necessary argument(s) and calls the command / function for its effect The callee is responsible for removing the argument(s) from the stack, and for popping onto the stack the result of its execution. Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 14 What behind subroutines The following scenario happens The caller pushes the necessary arguments and call callee The state of the caller is saved The space of callee’s local variables is allocated The callee executes what it is supposed to do The callee removes all arguments and pushes the result to the stack The space of the callee is recycled The caller’s state is reinstalled Jump back to where is called Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 15 Stack as the facility for subroutines code flow stack function a start a call b start b call c start c ... start d end d function b end c call c start d call d end d ..
Recommended publications
  • Compilers & Translator Writing Systems
    Compilers & Translators Compilers & Translator Writing Systems Prof. R. Eigenmann ECE573, Fall 2005 http://www.ece.purdue.edu/~eigenman/ECE573 ECE573, Fall 2005 1 Compilers are Translators Fortran Machine code C Virtual machine code C++ Transformed source code Java translate Augmented source Text processing language code Low-level commands Command Language Semantic components Natural language ECE573, Fall 2005 2 ECE573, Fall 2005, R. Eigenmann 1 Compilers & Translators Compilers are Increasingly Important Specification languages Increasingly high level user interfaces for ↑ specifying a computer problem/solution High-level languages ↑ Assembly languages The compiler is the translator between these two diverging ends Non-pipelined processors Pipelined processors Increasingly complex machines Speculative processors Worldwide “Grid” ECE573, Fall 2005 3 Assembly code and Assemblers assembly machine Compiler code Assembler code Assemblers are often used at the compiler back-end. Assemblers are low-level translators. They are machine-specific, and perform mostly 1:1 translation between mnemonics and machine code, except: – symbolic names for storage locations • program locations (branch, subroutine calls) • variable names – macros ECE573, Fall 2005 4 ECE573, Fall 2005, R. Eigenmann 2 Compilers & Translators Interpreters “Execute” the source language directly. Interpreters directly produce the result of a computation, whereas compilers produce executable code that can produce this result. Each language construct executes by invoking a subroutine of the interpreter, rather than a machine instruction. Examples of interpreters? ECE573, Fall 2005 5 Properties of Interpreters “execution” is immediate elaborate error checking is possible bookkeeping is possible. E.g. for garbage collection can change program on-the-fly. E.g., switch libraries, dynamic change of data types machine independence.
    [Show full text]
  • Source-To-Source Translation and Software Engineering
    Journal of Software Engineering and Applications, 2013, 6, 30-40 http://dx.doi.org/10.4236/jsea.2013.64A005 Published Online April 2013 (http://www.scirp.org/journal/jsea) Source-to-Source Translation and Software Engineering David A. Plaisted Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, USA. Email: [email protected] Received February 5th, 2013; revised March 7th, 2013; accepted March 15th, 2013 Copyright © 2013 David A. Plaisted. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Source-to-source translation of programs from one high level language to another has been shown to be an effective aid to programming in many cases. By the use of this approach, it is sometimes possible to produce software more cheaply and reliably. However, the full potential of this technique has not yet been realized. It is proposed to make source- to-source translation more effective by the use of abstract languages, which are imperative languages with a simple syntax and semantics that facilitate their translation into many different languages. By the use of such abstract lan- guages and by translating only often-used fragments of programs rather than whole programs, the need to avoid writing the same program or algorithm over and over again in different languages can be reduced. It is further proposed that programmers be encouraged to write often-used algorithms and program fragments in such abstract languages. Libraries of such abstract programs and program fragments can then be constructed, and programmers can be encouraged to make use of such libraries by translating their abstract programs into application languages and adding code to join things together when coding in various application languages.
    [Show full text]
  • Volatility: Part 2 – Malware in Hiberfil.Sys
    Patrick Leahy Center for Digital Investigation (LCDI) Volatility: Part 2 – Malware in hiberfil.sys Written by Dan Doonan and Catherine Stamm Researched by Dan Doonan, Connor Hicks, David Leberfinger, and Catherine Stamm The Senator Patrick Leahy Center for Digital Investigation Champlain College December 4, 2012 Version: 0.1 – Volatility: – Review Date: 12/4/2012 Page 1 of 6 Patrick Leahy Center for Digital Investigation (LCDI) Disclaimer: This document contains information based on research that has been gathered by employee(s) of The Senator Patrick Leahy Center for Digital Investigation (LCDI). The data contained in this project is submitted voluntarily and is unaudited. Every effort has been made by LCDI to assure the accuracy and reliability of the data contained in this report. However, LCDI nor any of our employees make no representation, warranty or guarantee in connection with this report and hereby expressly disclaims any liability or responsibility for loss or damage resulting from use of this data. Information in this report can be downloaded and redistributed by any person or persons. Any redistribution must maintain the LCDI logo and any references from this report must be properly annotated. Contents 1 Introduction ................................................................................................................................3 1.1 Background .........................................................................................................................3 1.2 Research Questions ..............................................................................................................3
    [Show full text]
  • Tdb: a Source-Level Debugger for Dynamically Translated Programs
    Tdb: A Source-level Debugger for Dynamically Translated Programs Naveen Kumar†, Bruce R. Childers†, and Mary Lou Soffa‡ †Department of Computer Science ‡Department of Computer Science University of Pittsburgh University of Virginia Pittsburgh, Pennsylvania 15260 Charlottesville, Virginia 22904 {naveen, childers}@cs.pitt.edu [email protected] Abstract single stepping through program execution, watching for par- ticular conditions and requests to add and remove breakpoints. Debugging techniques have evolved over the years in response In order to respond, the debugger has to map the values and to changes in programming languages, implementation tech- statements that the user expects using the source program niques, and user needs. A new type of implementation vehicle viewpoint, to the actual values and locations of the statements for software has emerged that, once again, requires new as found in the executable program. debugging techniques. Software dynamic translation (SDT) As programming languages have evolved, new debugging has received much attention due to compelling applications of techniques have been developed. For example, checkpointing the technology, including software security checking, binary and time stamping techniques have been developed for lan- translation, and dynamic optimization. Using SDT, program guages with concurrent constructs [6,19,30]. The pervasive code changes dynamically, and thus, debugging techniques use of code optimizations to improve performance has necessi- developed for statically generated code cannot be used to tated techniques that can respond to queries even though the debug these applications. In this paper, we describe a new optimization may have changed the number of statement debug architecture for applications executing with SDT sys- instances and the order of execution [15,25,29].
    [Show full text]
  • Disk Clone Industrial
    Disk Clone Industrial USER MANUAL Ver. 1.0.0 Updated: 9 June 2020 | Contents | ii Contents Legal Statement............................................................................... 4 Introduction......................................................................................4 Cloning Data.................................................................................................................................... 4 Erasing Confidential Data..................................................................................................................5 Disk Clone Overview.......................................................................6 System Requirements....................................................................................................................... 7 Software Licensing........................................................................................................................... 7 Software Updates............................................................................................................................. 8 Getting Started.................................................................................9 Disk Clone Installation and Distribution.......................................................................................... 12 Launching and initial Configuration..................................................................................................12 Navigating Disk Clone.....................................................................................................................14
    [Show full text]
  • Virtual Machine Part II: Program Control
    Virtual Machine Part II: Program Control Building a Modern Computer From First Principles www.nand2tetris.org Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 1 Where we are at: Human Abstract design Software abstract interface Thought Chapters 9, 12 hierarchy H.L. Language Compiler & abstract interface Chapters 10 - 11 Operating Sys. Virtual VM Translator abstract interface Machine Chapters 7 - 8 Assembly Language Assembler Chapter 6 abstract interface Computer Machine Architecture abstract interface Language Chapters 4 - 5 Hardware Gate Logic abstract interface Platform Chapters 1 - 3 Electrical Chips & Engineering Hardware Physics hierarchy Logic Gates Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 2 The big picture Some . Some Other . Jack language language language Chapters Some Jack compiler Some Other 9-13 compiler compiler Implemented in VM language Projects 7-8 VM implementation VM imp. VM imp. VM over the Hack Chapters over CISC over RISC emulator platforms platforms platform 7-8 A Java-based emulator CISC RISC is included in the course written in Hack software suite machine machine . a high-level machine language language language language Chapters . 1-6 CISC RISC other digital platforms, each equipped Any Hack machine machine with its VM implementation computer computer Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine,
    [Show full text]
  • Forest Quickstart Guide for Linguists
    Forest Quickstart Guide for Linguists Guido Vanden Wyngaerd [email protected] June 28, 2020 Contents 1 Introduction 1 2 Loading Forest 2 3 Basic Usage 2 4 Adjusting node spacing 4 5 Triangles 7 6 Unlabelled nodes 9 7 Horizontal alignment of terminals 10 8 Arrows 11 9 Highlighting 14 1 Introduction Forest is a package for drawing linguistic (and other) tree diagrams de- veloped by Sašo Živanović. This manual provides a quickstart guide for linguists with just the essential things that you need to get started. More 1 extensive documentation is available from the CTAN-archive. Forest is based on the TikZ package; more information about its commands, in par- ticular those controlling the appearance of the nodes, the arrows, and the highlighting can be found in the TikZ documentation. 2 Loading Forest In your preamble, put \usepackage[linguistics]{forest} The linguistics option makes for nice trees, in which the branches meet above the two nodes that they join; it will also align the example number (provided by linguex) with the top of the tree: (1) CP C IP I VP V NP 3 Basic Usage Forest uses a familiar labelled brackets syntax. The code below will out- put the tree in (1) above (\ex. requires the linguex package and provides the example number): \ex. \begin{forest} [CP[C][IP[I][VP[V][NP]]]] \end{forest} Forest will parse the above code without problem, but you are likely to soon get lost in your labelled brackets with more complicated trees if you write the code this way. The better alternative is to arrange the nodes over multiple lines: 2 \ex.
    [Show full text]
  • A Brief History of Just-In-Time Compilation
    A Brief History of Just-In-Time JOHN AYCOCK University of Calgary Software systems have been using “just-in-time” compilation (JIT) techniques since the 1960s. Broadly, JIT compilation includes any translation performed dynamically, after a program has started execution. We examine the motivation behind JIT compilation and constraints imposed on JIT compilation systems, and present a classification scheme for such systems. This classification emerges as we survey forty years of JIT work, from 1960–2000. Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors; K.2 [History of Computing]: Software General Terms: Languages, Performance Additional Key Words and Phrases: Just-in-time compilation, dynamic compilation 1. INTRODUCTION into a form that is executable on a target platform. Those who cannot remember the past are con- What is translated? The scope and na- demned to repeat it. ture of programming languages that re- George Santayana, 1863–1952 [Bartlett 1992] quire translation into executable form covers a wide spectrum. Traditional pro- This oft-quoted line is all too applicable gramming languages like Ada, C, and in computer science. Ideas are generated, Java are included, as well as little lan- explored, set aside—only to be reinvented guages [Bentley 1988] such as regular years later. Such is the case with what expressions. is now called “just-in-time” (JIT) or dy- Traditionally, there are two approaches namic compilation, which refers to trans- to translation: compilation and interpreta- lation that occurs after a program begins tion. Compilation translates one language execution. into another—C to assembly language, for Strictly speaking, JIT compilation sys- example—with the implication that the tems (“JIT systems” for short) are com- translated form will be more amenable pletely unnecessary.
    [Show full text]
  • Metadata for Everyone a Simple, Low-Cost Methodology Timothy D
    SAS Global Forum 2008 Data Integration Paper 138-2008 Metadata for Everyone A Simple, Low-Cost Methodology Timothy D. Brown, Altoona, IA ABSTRACT In the context of Base SAS® programming, this paper uses “hardcoded” values as an introduction to “metadata” and the reasons for using it. It then describes a low cost and simple methodology for maintaining any kind of metadata. INTRODUCTION This discussion will take an indirect approach to defining metadata. It’ll describe the metadata which might be included, or hard-coded, in a Base SAS program and propose alternatives to storing and using the metadata. Outside of programs “data” and “code” are distinct. However within programs, the distinction gets blurred when data values, called “hardcoded” data, are included within the code. Hardcoded values include, but are not limited to: • Text constants, literals • Names of companies, people, organizations and places • Directory paths and file names • Parameters on SAS procedures such as WHERE, KEEP, DROP, RENAME, VARS, BY etc • Numeric constants including dates* • Statistical constants • Period begin and end dates • Mixed text and numeric values • Expressions in IF and WHERE clauses • What-if scenarios (* excluding dates which are derived logically using a SAS functions such as TODAY(), DATETIME(), INTNX and NXTPD) In addition, many small conversion, cross-reference and look-up tables, which might be hardcoded as SAS formats or read into a program from many different sources, work well as metadata and fit into this framework. Obviously, some hardcoded values might never change in the life of a program. So it might be prudent to leave some hardcoded values in the code.
    [Show full text]
  • Four Ways to Reorder Your Variables, Ranked by Elegance and Efficiency Louise S
    Order, Order! Four Ways To Reorder Your Variables, Ranked by Elegance and Efficiency Louise S. Hadden, Abt Associates Inc. ABSTRACT SAS® practitioners are frequently required to present variables in an output data file in a particular order, or standards may require variables in a production data file to be in a particular order. This paper and presentation offer several methods for reordering variables in a data file, encompassing both DATA step and procedural methods. Relative efficiency and elegance of the solutions will be discussed. INTRODUCTION SAS provides us with numerous methods to control all types of SAS output, including SAS data files, data tables in other formats, and ODS output. This paper focuses solely on output SAS data files (which may then be used to generate SAS data files and other types of output from SAS processes), and specifically on DATA step and PROC SQL methods. This short paper and presentation is suitable for all SAS practitioners at all levels of expertise. Attendees will gain a greater understanding of the processes by which SAS assigns variable attributes, including variable/column order within a data file, and how to obtain information on variable attributes – and in the process, learn how to reorder variables within a SAS data file. KNOW THY DATA It is always important to understand fully and explore the inputs to SAS-created output. SAS has provided users with a variety of possibilities in terms of determining locations of variables or columns (and other important details comprising metadata). These possibilities include, but are not limited to: 1. The CONTENTS Procedure 2.
    [Show full text]
  • S.Ha.R.K. Installation Howto Tools Knoppix Live CD Linux Fdisk HD
    S.Ha.R.K. Installation Tools HowTo • Linux fdisk utility • A copy of Linux installation CD • A copy of Windows® installation CD Tullio Facchinetti University of Pavia - Italy • Some FreeDOS utilities • A copy of S.Ha.R.K. S.Ha.R.K. Workshop S.Ha.R.K. Workshop Knoppix live CD Linux fdisk Command action a toggle a bootable flag Download ISO from b edit bsd disklabel c toggle the dos compatibility flag d delete a partition http://www.knoppix.org l list known partition types m print this menu n add a new partition o create a new empty DOS partition table p print the partition table q quit without saving changes • boot from CD s create a new empty Sun disklabel t change a partition's system id • open a command shell u change display/entry units v verify the partition table • type “su” (become root ), password is empty w write table to disk and exit x extra functionality (experts only) • start fdisk (ex. fdisk /dev/hda ) Command (m for help): S.Ha.R.K. Workshop S.Ha.R.K. Workshop HD partitioning HD partitioning 1st FreeDOS FAT32 FreeDOS must be installed Primary 2nd Windows® FAT32 into the first partition of your HD or it may not boot 3rd Linux / extX Data 1 FAT32 format data partitions as ... Extended FAT32, so that you can share Data n FAT32 your data between Linux, last Linux swap swap Windows® and FreeDOS S.Ha.R.K. Workshop S.Ha.R.K. Workshop 1 HD partitioning Windows ® installation FAT32 Windows® partition type Install Windows®..
    [Show full text]
  • Language Translators
    Student Notes Theory LANGUAGE TRANSLATORS A. HIGH AND LOW LEVEL LANGUAGES Programming languages Low – Level Languages High-Level Languages Example: Assembly Language Example: Pascal, Basic, Java Characteristics of LOW Level Languages: They are machine oriented : an assembly language program written for one machine will not work on any other type of machine unless they happen to use the same processor chip. Each assembly language statement generally translates into one machine code instruction, therefore the program becomes long and time-consuming to create. Example: 10100101 01110001 LDA &71 01101001 00000001 ADD #&01 10000101 01110001 STA &71 Characteristics of HIGH Level Languages: They are not machine oriented: in theory they are portable , meaning that a program written for one machine will run on any other machine for which the appropriate compiler or interpreter is available. They are problem oriented: most high level languages have structures and facilities appropriate to a particular use or type of problem. For example, FORTRAN was developed for use in solving mathematical problems. Some languages, such as PASCAL were developed as general-purpose languages. Statements in high-level languages usually resemble English sentences or mathematical expressions and these languages tend to be easier to learn and understand than assembly language. Each statement in a high level language will be translated into several machine code instructions. Example: number:= number + 1; 10100101 01110001 01101001 00000001 10000101 01110001 B. GENERATIONS OF PROGRAMMING LANGUAGES 4th generation 4GLs 3rd generation High Level Languages 2nd generation Low-level Languages 1st generation Machine Code Page 1 of 5 K Aquilina Student Notes Theory 1. MACHINE LANGUAGE – 1ST GENERATION In the early days of computer programming all programs had to be written in machine code.
    [Show full text]