Experimental Approach of Minimum Miscibility Pressure for CO2 Miscible Flooding: Application to Egyptian Oil Fields
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ordering Tendencies in Pd-Pt, Rh-Pt, and Ag-Au Alloys Z.W
Section I: Basic and Applied Research Ordering Tendencies in Pd-Pt, Rh-Pt, and Ag-Au Alloys Z.W. Lu and B.M. Klein Department of Physics University of California Davis, CA 95616 and A. Zunger National Renewable Energy Laboratory Golden, CO 80401 (Submitted October 7, 1994; in revised form November 9, 1994) First-principles quantum-mechanical calculations indicate that the mixing enthalpies for Pd-Pt and Rh-Pt solid solutions are negative, in agreement with experiment. Calculations of the diffuse-scatter- ing intensity due to short-range order also exhibits ordering tendencies. Further, the directly calcu- lated enthalpies of formation of ordered intermetallic compounds are negative. These ordering tendencies are in direct conflict with a 1959 prediction of Raub that Pd-Pt and Rh-Pt will phase-sepa- rate below ~760 ~ (hence their mixing energy will be positive), a position that has been adopted by all binary alloy phase diagram compilations. The present authors predict that Pdl_xPtx will order in the Llz,Llo, and L12 structures ([001] superstructures)at compositionsx = 4' 2' and 4' respectively, I I while the ordered structures of Rhx_/Ptx are predicted to be superlattices stacked along the [012] di- rections. While the calculated ordering temperatures for these intermetallic compounds are too low to enable direct growth into the ordered phase, diffuse-scattering experiments at higher tempera- tures should reveal ordering rather than phase-separation characteristics (i.e., off-F peaks). The situation is very similar to the case of Ag-Au, where an ordering tendency is manifested both by a dif- fuse scattering intensity and by a negative enthalpy of mixing. -
Measurement and Modeling of Fluid-Fluid Miscibility in Multicomponent Hydrocarbon Systems Subhash C
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Measurement and modeling of fluid-fluid miscibility in multicomponent hydrocarbon systems Subhash C. Ayirala Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Petroleum Engineering Commons Recommended Citation Ayirala, Subhash C., "Measurement and modeling of fluid-fluid miscibility in multicomponent hydrocarbon systems" (2005). LSU Doctoral Dissertations. 943. https://digitalcommons.lsu.edu/gradschool_dissertations/943 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. MEASUREMENT AND MODELING OF FLUID-FLUID MISCIBILITY IN MULTICOMPONENT HYDROCARBON SYSTEMS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the Requirements for the degree of Doctor of Philosophy in The Department of Petroleum Engineering by Subhash C. Ayirala B.Tech in Chemical Engineering, Sri Venkateswara Univeristy, Tirupati, India, 1996 M.Tech in Chemical Engineering, Indian Institute of Technology, Kharagpur, India, 1998 M.S. in Petroleum Engineering, Louisiana State University, 2002 August 2005 DEDICATION This work is dedicated to my wife, Kruthi; my parents; my brother, Dhanuj and my beloved sisters, Hema, Suma and Siri. ii ACKNOWLEDGEMENTS I am deeply indebted to my mentor and advisor Dr. Dandina N. Rao for his able guidance, motivation and moral support throughout this work. -
Fundamentals of Carbon Dioxide-Enhanced Oil Recovery (CO2-EOR)
Fundamentals of Carbon Dioxide-Enhanced Oil Recovery (CO2-EOR)—A Supporting Document of the Assessment Methodology for Hydrocarbon Recovery Using CO2-EOR Associated with Carbon Sequestration By Mahendra K. Verma Open-File Report 2015–1071 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Verma, M.K., 2015, Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR)—A supporting document of the assessment methodology for hydrocarbon recovery using CO2-EOR associated with carbon sequestration: U.S. Geological Survey Open-File Report 2015–1071, 19 p., http://dx.doi.org/10.3133/ofr20151071. ISSN 2331-1258 (online) ii Contents Introduction ................................................................................................................................................................ -
Miscibility in Solids
Name _________________________ Date ____________ Regents Chemistry Miscibility In Solids I. Introduction: Two substances in the same phases are miscible if they may be completely mixed (in liquids a meniscus would not appear). Substances are said to be immiscible if the will not mix and remain two distinct phases. A. Intro Activity: 1. Add 10 mL of olive oil to 10 mL of water. a) Please record any observations: ___________________________________________________ ___________________________________________________ b) Based upon your observations, indicate if the liquids are miscible or immiscible. Support your answer. ________________________________________________________ ________________________________________________________ 2. Now add 10 mL of grain alcohol to 10 mL of water. a) Please record any observations: ___________________________________________________ ___________________________________________________ b) Based upon your observations, indicate if the liquids are miscible or immiscible. Support your answer. ________________________________________________________ ________________________________________________________ Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. II. Observation Of Perthite A. Perthite Observation: With the hand specimens and hand lenses provided, list as many observations possible in the space below. _________________________________________________________ _________________________________________________________ -
Miscibility Table
Solvent Polarity Boiling Solubility Index Point (°C) in Water (%w/w) Acetic Acid 6.2 118 100 Comparing products in the CBRNE realm just got easier. Acetone 5.1 56 100 Acetonitrile 5.8 82 100 Visit CBRNEtechindex.com to view and lter an independent, comprehensive Benzene 2.7 80 0.18 database of CBRNE detection equipment. n-Butanol 4.0 125 0.43 Butyl Acetate 3.9 118 7.81 Carbon Tetrachloride 1.6 77 0.08 Chloroform 4.1 61 0.815 Cyclohexane 0.2 81 0.01 1,2-Dichloroethane1 3.5 84 0.81 POLARITY CHART Dichloromethane2 3.1 41 1.6 Dimethylformamide 6.4 155 100 Relative Compound Group Representative Solvent Polarity Formula Compounds Dimethyl Sulfoxide3 7.2 189 100 Dioxane 4.8 101 100 Nonpolar R - H Alkanes Petroleum ethers, ligroin, hexanes Ethanol 5.2 78 100 Ethyl Acetate 4.4 77 8.7 Ar - H Aromatics Toluene, benzene Di-Ethyl Ether 2.8 35 6.89 R - O - R Ethers Diethyl ether Heptane 0.0 98 0.0003 R - X Alkyl halides Tetrachloromethane, Hexane 0.0 69 0.001 chloroform Methanol 5.1 65 100 4 R - COOR Esters Ethyl acetate Methyl-t-Butyl Ether 2.5 55 4.8 Methyl Ethyl Ketone5 4.7 80 24 R - CO - R Aldehydes Acetone, methyl ethyl and ketones ketone Pentane 0.0 36 0.004 n-Propanol 4.0 97 100 R - NH Amines Pyridine, triethylamine 2 Iso-Propanol6 3.9 82 100 R - OH Alcohols Methanol, ethanol, Di-Iso-Propyl Ether 2.2 68 isopropanol, butanol Tetrahydrofuran 4.0 65 100 R - COHN2 Amides Dimethylformamide Toluene 2.4 111 0.051 R - COOH Carboxylic acids Ethanoic acid Tichloroethylene 1.0 87 0.11 Water 9.0 100 100 Polar H - OH Water Water Xylene 2.5 139 0.018 4 5 -
In Chemistry, What Is Miscibility? Why Don't They Dissolve? Like Dissolves
In Chemistry, What is Miscibility? Article from Frostburg University Miscibility is the ability of two liquids to mix with each to form a homogeneous solution. Water and ethanol, for example, are miscible. They can be mixed in any proportion, and the resulting solution will be clear and show only one phase. Oil and water, on the other hand, are immiscible. A mixture of vegetable oil and water will always separate into two layers, and won't dissolve in each other. Other solvents are only partially miscible, meaning that only some portion will dissolve in water. Most of the liquids encountered in everyday life are either water-based, called aqueous, or organic, which in the chemical sense means they contain carbon atoms. These can generally be divided into two broad classes. They're either polar or nonpolar. Polar molecules are molecules that have a positive end and a negative end. Nonpolar molecules do not have positive and negative ends. They have the same charge or no charge throughout the molecule. Why don’t they dissolve? Like dissolves Like! Polar solvents are miscible with polar solutes. Nonpolar solvents are miscible with nonpolar solutes. Polar solutes like salt, NaCl, is easily dissolved by polar solvents like water. The figure to the left shows how water molecules dissolve a salt crystal because of the polarity. The positive end of water molecules are attracted to the negative chlorine ions and the negative end of the water molecules are attracted to positive sodium ions. Immiscible solvents are those that do not mix. Water and oil are immiscible because water is polar and oil is nonpolar. -
Liquid–Liquid Extraction of Actinides, Lanthanides, and Fission Products by Use of Ionic Liquids: from Discovery to Understanding
Anal Bioanal Chem (2011) 400:1555–1566 DOI 10.1007/s00216-010-4478-x REVIEW Liquid–liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding Isabelle Billard & Ali Ouadi & Clotilde Gaillard Received: 13 October 2010 /Revised: 19 November 2010 /Accepted: 25 November 2010 /Published online: 4 January 2011 # Springer-Verlag 2010 Abstract Liquid–liquid extraction of actinides and lantha- policies favor direct disposal in deep geological reposito- nides by use of ionic liquids is reviewed, considering, first, ries. Whatever the choice made nowadays, the future of phenomenological aspects, then looking more deeply at the nuclear energy, stimulated by the world demand for energy, various mechanisms. Future trends in this developing field are will require new waste-management policies, guided by presented. new regulations and economic obligations, centered on future nuclear reactors, most probably emerging from the Keywords Actinides . Lanthanides . Liquid–liquid generation IV program. In this context, ionic liquids, extraction . Ionic liquids already used in various industrial fields [1], may prove useful. Thus, this paper reviews the emerging field of Abbreviations liquid–liquid extraction of actinides (An), lanthanides (Ln), CMPO Carbamoyl-methyl phosphine oxide and fission products (mainly Sr and Cs but in a few cases TBP Tributyl phosphate we will refer to works devoted to other metallic species) by TODGA N,N,N′,N′-Tetra(n-octyl)diglycolamide use of ionic liquids (ILs). Owing to limited space, the TTA Thenoyltrifluoroacetone reader is referred to some recent excellent reviews on ILs or on An and Ln in ILs [2–5]. We simply define ionic liquids as salts with melting points below 100°C. -
Carbon Dioxide Flooding Induced Geochemical Changes in a Saline Carbonate Aquifer Alyssa Boock University of North Dakota
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 2009 Carbon Dioxide Flooding Induced Geochemical Changes in a Saline Carbonate Aquifer Alyssa Boock University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Boock, Alyssa, "Carbon Dioxide Flooding Induced Geochemical Changes in a Saline Carbonate Aquifer" (2009). Theses and Dissertations. 33. https://commons.und.edu/theses/33 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CARBON DIOXIDE FLOODING INDUCED GEOCHEMICAL CHANGES IN A SALINE CARBONATE AQUIFER by Alyssa Boock Bachelor of Science in Geology, University of Wisconsin-River Falls, 2002 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota December 2009 This thesis, submitted by Alyssa Boock in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. _____________________________________ Chairperson _____________________________________ -
CO2 As Injection Gas for Enhanced Oil Recovery (EOR) from Fields In
NTNU – Norwegian University of Science and Technology Department of Petroleum Engineering and Applied Geophysics __________________________________ CO2 as Injection Gas for Enhanced Oil Recovery and Estimation of the Potential on the Norwegian Continental Shelf by Odd Magne Mathiassen Chief Reservoir Engineer Norwegian Petroleum Directorate Trondheim / Stavanger, May 2003 ________________________________ Part I of II CO2 injection for Enhanced Oil Recovery 2 ___________________________________________________________________________ ACKNOWLEDGEMENT I would like to thank my supervisor Professor Ole Torsæter at the Norwegian University of Science and Technology for excellent guiding and help in my work with this thesis. I would also like to thank my employer, the Norwegian Petroleum Directorate, for giving me the opportunity and time to complete the thesis. My thanks also go to my colleagues Mr. Gunnar Einang, Mr. Søren Davidsen and Mr. Jan Bygdevoll for valuable discussions while working with this thesis. Finally, I would like to thank Dr. Eric Lindeberg and senior researcher Idar Akervoll at the Sintef Research for valuable information on CO2 related issues. SUMMARY The main objective of this thesis is to investigate the possibility of using CO2 as injection gas for enhanced oil recovery and estimate the potential of additional oil recovery from mature oil fields on the Norwegian Continental Shelf (NCS). Because of the lack of CO2 data from offshore oil fields, a literature study on CO2 flood experience worldwide was undertaken. In addition, the physical properties of CO2 and CO2 as a solvent have been studied. The literature study makes it possible to conclude that CO2 has been an excellent solvent for enhanced oil recovery from onshore oil fields, especially in the USA and Canada. -
Extraction.Pdf
Extraction A useful technique for purification of mixture Dr. Zerong Wang at UHCL Separation processes Liquid-liquid extraction Adsorption Filtration Solid-liquid extraction (leaching) Elution chromatography Membrane separation processes Distillation Affinity separation processes Drying and evaporation Freeze-drying (lypholyzation) Precipitation Crystallization Electrophoresis Centrifugation Mechanical sieving Dialysis Dr. Zerong Wang at UHCL 1 Extraction Extraction is a purification technique in which compounds with different solubilities are separated using solvents of different polarities. This basic chemical process is often performed in conjunction with reversible acid/base reactions. Dr. Zerong Wang at UHCL Type of Extraction Liquid-Solid Extraction Liquid-Liquid Extraction Dr. Zerong Wang at UHCL 2 Liquid-Solid Extraction Brewing tea Percolating coffee Spices and herbs Dr. Zerong Wang at UHCL Leaching (Liquid-Solid Extraction) Diffusion of the solute out of the solid and into the liquid solvent is mostly the controlling step. Principle of separation: preferential solubility Created or added phase: liquid Separating agent: liquid solvent Dr. Zerong Wang at UHCL 3 Liquid-Liquid Extraction Dr. Zerong Wang at UHCL Liquid-Liquid Extraction Used when distillation is impractical The mixture to be separated is heat sensitive. Volatility differences are much too small. The mixture forms a azeotropic mixture Solute concentration is low Dr. Zerong Wang at UHCL 4 Liquid-Liquid Extraction Principle Different species with different solubilities in the two immiscible liquid phases, i.e., these species have different partition behavior in different phases. Dr. Zerong Wang at UHCL Applications of Liquid-liquid extraction Separation of aromatics from aliphatic hydrocarbons Purification of antibiotics Purification of aromatics such as benzene, xylene and toluene Protein purification using aqueous two-phase systems Purification of natural products Purification of dyes and pigments Metallurgical purifications Dr. -
Experiment 3: Studying Density, Miscibility and Solubility of Liquids
04Lab | Experiment 3: Studying Density, Miscibility and Solubility of liquids Objective The goal of this experiment is to determine the densities of three unknown liquid, test the miscibility of each liquid to each other and the solubility of iodine in each liquid. Materials o Three 13 x 100 mm Test tubes o One 18 x 150 mm Test tubes o 10 mL plastic graduated cylinder o Stirring Rod o Berel Pipets o Liquid- A o Liquid - B o Liquid - C o Iodine Crystals o Distilled water Introduction Reading: Ch 2.4 & Ch 9.3, Chemistry in our Lives Timberlake . “Matter & Energy.” Pay special attention to the sections on solubility found in chapter 9.3. Density, Miscibility and Solubility How do water and oil mix at the molecular level? Does oil sink or float in water? Are the two liquids miscible in each other? The answer to these questions will be investigated in this experiment. Physical properties such as densities and miscibility of various liquids in water may help provide answers to these questions. An observable (or measurable) property of matter i.e., color, bpt, mpt, conductivity, texture, miscibility specific heat and density are important in helping identify different substances and how they interact with each other. Consider what occurs when vinegar and oil are mixed in Italian salad dressing. The oil floats on top and the vinegar and the herbs sinks to the bottom. We say that the oil is less dense than the vinegar. We can also state that oil and vinegar are immiscible. Density (d or �) is defined as the mass per unit volume. -
Molecular Driving Forces Behind the Tetrahydrofuran−Water Miscibility
Article pubs.acs.org/JPCB Molecular Driving Forces behind the Tetrahydrofuran−Water Miscibility Gap † ‡ † § † † † ‡ Micholas Dean Smith, , Barmak Mostofian, , Loukas Petridis, Xiaolin Cheng, and Jeremy C. Smith*, , † Center for Molecular Biophysics, University of Tennessee and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States ‡ Department of Biochemistry and Cellular Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States § Joint Institute for Biological Sciences, University of Tennessee and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States *S Supporting Information ABSTRACT: The tetrahydrofuran−water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self- diffusion of water is significantly altered and the second virial coefficients (pair- interaction strengths) show parabolic-like behavior. Overall, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap. ■ INTRODUCTION presence of voids,9,10,13 a preferred T-like orientation for 9,10 Tetrahydrofuran (THF) is a ubiquitous organic solvent.