Molecular Driving Forces Behind the Tetrahydrofuran−Water Miscibility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experimental Approach of Minimum Miscibility Pressure for CO2 Miscible Flooding: Application to Egyptian Oil Fields
International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-2, Issue-5, May 2016 Pages 105-112 Experimental Approach of Minimum Miscibility Pressure for CO2 Miscible Flooding: Application to Egyptian Oil Fields E.M. Mansour, A.M. Al- Sabagh, S.M. Desouky, F.M. Zawawy, M.R. Ramzi The term of “Enhanced Oil Recovery” (EOR) is defined as Abstract— At the present time, carbon dioxide (CO2) miscible the oil that was recovered by any method beyond the primary flooding has become an important method in Enhanced Oil and secondary stage [2]. Enhanced oil recovery processes are Recovery (EOR) for recovering residual oil, and in addition it divided into three categories: gas miscible flooding, thermal may help in protection of the environment as carbon dioxide flooding and chemical flooding [3]. Figure (1) shows oil (CO2) is widely viewed as an important agent in global production from different (EOR) projects with an increasing warming. This paper presents a study of the effect of carbon dioxide (CO ) injection on miscible flooding performance for in the world oil percentage. [4-7]. 2 Egyptian oil fields and focuses on designing and constructing a new miscibility lab with low cost by setup a favorable system for carbon dioxide (CO2) injection to predict the minimum miscibility pressure (MMP) which was required for carbon dioxide (CO2) flooding projects where every reservoir oil sample has its own unique minimum miscibility pressure (MMP). Experimental data from different crude oil reservoirs carried out by slim tube test that is the most common and standard technique of determining minimum miscibility pressure (MMP) in the industry, but this method is expensive, there for we designed this kind of a favorable system (slim tube test) for carbon dioxide (CO2) injection. -
Energy-Saving Reduced-Pressure Extractive Distillation with Heat
Energy-Saving Reduced-Pressure Extractive Distillation with Heat Integration for Separating the Biazeotropic Ternary Mixture Tetrahydrofuran–Methanol–Water Jinglian Gu, Xinqiang You, Changyuan Tao, Jun Li, Vincent Gerbaud To cite this version: Jinglian Gu, Xinqiang You, Changyuan Tao, Jun Li, Vincent Gerbaud. Energy-Saving Reduced- Pressure Extractive Distillation with Heat Integration for Separating the Biazeotropic Ternary Mixture Tetrahydrofuran–Methanol–Water. Industrial and engineering chemistry research, American Chemical Society, 2018, 57 (40), pp.13498-13510. 10.1021/acs.iecr.8b03123. hal-01957130 HAL Id: hal-01957130 https://hal.archives-ouvertes.fr/hal-01957130 Submitted on 17 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/21066 Official URL: https://doi.org/10.1021/acs.iecr.8b03123 To cite this version: Gu, Jinglian and You, Xinqiang and Tao, Changyuan and Li, Jun and Gerbaud, Vincent Energy-Saving Reduced-Pressure Extractive Distillation with Heat Integration for Separating the Biazeotropic Ternary Mixture Tetrahydrofuran–Methanol–Water. -
Glossary Terms
Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic -
Poly(Ethylene Oxide-Co-Tetrahydrofuran) and Poly(Propylene Oxide-Co-Tetrahydrofuran): Synthesis and Thermal Degradation
Revue Roumaine de Chimie, 2006, 51(7-8), 781–793 Dedicated to the memory of Professor Mircea D. Banciu (1941–2005) POLY(ETHYLENE OXIDE-CO-TETRAHYDROFURAN) AND POLY(PROPYLENE OXIDE-CO-TETRAHYDROFURAN): SYNTHESIS AND THERMAL DEGRADATION Thomas HÖVETBORN, Markus HÖLSCHER, Helmut KEUL∗ and Hartwig HÖCKER Lehrstuhl für Textilchemie und Makromolekulare Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen, Pauwelsstr. 8, 52056 Aachen, Germany Received January 12, 2006 Copolymers of tetrahydrofuran (THF) and ethylene oxide (EO) (poly(THF-co-EO) and THF and propylene oxide (PO) (poly(THF-co-PO) were obtained by cationic ring opening polymerization of the monomer mixture at 0°C using boron trifluoride etherate (BF3.OEt2) as the initiator. From time conversion plots it was concluded that both monomers are consumed from the very beginning of the reaction and random copolymers are obtained. For poly(THF-co-PO) the molar ratio of repeating units was varied from [THF]/[PO] = 1 to 10; the molar ratio of monomers in the feed corresponds to the molar ratio of repeating units in the copolymer. Thermogravimetric analysis of the copolymers revealed that both poly(THF-co-EO) and poly(THF-co-PO) decompose by ca. 50°C lower than poly(THF) and by ca. 100°C lower than poly(EO); 50% mass loss is obtained at T50 = 375°C for poly(EO), T50 = 330°C for poly(THF) and at T50 = 280°C for both copolymers. The [THF]/[PO] ratio does not influence the decomposition temperature significantly as well. For the copolymers the activation energies of the thermal decomposition (Ea) were determined experimentally from TGA measurements and by density functional calculations on model compounds on the B3LYP/6-31+G* level of theory. -
Membrane Phase Miscibility Gaps and Surface Constraints
SurfaceMembrane constraints phase miscibility and membrane gaps and phase surface miscibility constraints gaps W.A. Hamilton,1 L. Porcar1,2 and G.S. Smith3,1 1 Neutron Scattering Center, Oak Ridge National Laboratory 2 NIST Center for Neutron Research 3 LANSCE, Los Alamos National Laboratory Research supported by the US Department of Energy, Division of Materials Science 2nd American Conference on Neutron Scattering, College Park MD 6-10 June 2004 Self-assembled surfactant membrane phase: L3 “sponge” phase δ ~ 20-30Å bilayer membrane surfactant molecule d ~ 100 –1000 Å 3 “oily-salt” QuartzA surface very fluid aqueous phase over? wide dilution Potentially useful as a mixing stage in (membrane) protein crystallization for structural characterization and as template phaseOur for simply high porosityconstraining structures proximate (as surface per aerogels ... ) What does an isotropic bulk phase do in an anisotropic situation? Same in all directions - manifestly isotropic - so ... A nearby answer in the phase diagram … Generic membrane phase diagram region … A competition between curvature, topology and entropy e r Sponge - L u 3 t a v r ratio, salt d u I+L3 +… 3 hexanol c / c i s L3 n CPCl i r t or L3 + Lα biphasic - miscibility gap n cosurfactant i no single phase solution to competition here g n i s Lα Lamellar - L a α e AOT/brine r c Surfactant/ T ~1% ~50 % n i volume fraction φ dα Stacked lamellar phase would fit nicely against a constraining surface ... Near surface constraint contributes to F Expect local effect on phase transition and miscibility gap (Lα+L3 coexistence) Typical L3 and Lα SANS at highish volume fraction e.g. -
Ordering Tendencies in Pd-Pt, Rh-Pt, and Ag-Au Alloys Z.W
Section I: Basic and Applied Research Ordering Tendencies in Pd-Pt, Rh-Pt, and Ag-Au Alloys Z.W. Lu and B.M. Klein Department of Physics University of California Davis, CA 95616 and A. Zunger National Renewable Energy Laboratory Golden, CO 80401 (Submitted October 7, 1994; in revised form November 9, 1994) First-principles quantum-mechanical calculations indicate that the mixing enthalpies for Pd-Pt and Rh-Pt solid solutions are negative, in agreement with experiment. Calculations of the diffuse-scatter- ing intensity due to short-range order also exhibits ordering tendencies. Further, the directly calcu- lated enthalpies of formation of ordered intermetallic compounds are negative. These ordering tendencies are in direct conflict with a 1959 prediction of Raub that Pd-Pt and Rh-Pt will phase-sepa- rate below ~760 ~ (hence their mixing energy will be positive), a position that has been adopted by all binary alloy phase diagram compilations. The present authors predict that Pdl_xPtx will order in the Llz,Llo, and L12 structures ([001] superstructures)at compositionsx = 4' 2' and 4' respectively, I I while the ordered structures of Rhx_/Ptx are predicted to be superlattices stacked along the [012] di- rections. While the calculated ordering temperatures for these intermetallic compounds are too low to enable direct growth into the ordered phase, diffuse-scattering experiments at higher tempera- tures should reveal ordering rather than phase-separation characteristics (i.e., off-F peaks). The situation is very similar to the case of Ag-Au, where an ordering tendency is manifested both by a dif- fuse scattering intensity and by a negative enthalpy of mixing. -
Measurement and Modeling of Fluid-Fluid Miscibility in Multicomponent Hydrocarbon Systems Subhash C
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Measurement and modeling of fluid-fluid miscibility in multicomponent hydrocarbon systems Subhash C. Ayirala Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Petroleum Engineering Commons Recommended Citation Ayirala, Subhash C., "Measurement and modeling of fluid-fluid miscibility in multicomponent hydrocarbon systems" (2005). LSU Doctoral Dissertations. 943. https://digitalcommons.lsu.edu/gradschool_dissertations/943 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. MEASUREMENT AND MODELING OF FLUID-FLUID MISCIBILITY IN MULTICOMPONENT HYDROCARBON SYSTEMS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the Requirements for the degree of Doctor of Philosophy in The Department of Petroleum Engineering by Subhash C. Ayirala B.Tech in Chemical Engineering, Sri Venkateswara Univeristy, Tirupati, India, 1996 M.Tech in Chemical Engineering, Indian Institute of Technology, Kharagpur, India, 1998 M.S. in Petroleum Engineering, Louisiana State University, 2002 August 2005 DEDICATION This work is dedicated to my wife, Kruthi; my parents; my brother, Dhanuj and my beloved sisters, Hema, Suma and Siri. ii ACKNOWLEDGEMENTS I am deeply indebted to my mentor and advisor Dr. Dandina N. Rao for his able guidance, motivation and moral support throughout this work. -
Miscibility in Solids
Name _________________________ Date ____________ Regents Chemistry Miscibility In Solids I. Introduction: Two substances in the same phases are miscible if they may be completely mixed (in liquids a meniscus would not appear). Substances are said to be immiscible if the will not mix and remain two distinct phases. A. Intro Activity: 1. Add 10 mL of olive oil to 10 mL of water. a) Please record any observations: ___________________________________________________ ___________________________________________________ b) Based upon your observations, indicate if the liquids are miscible or immiscible. Support your answer. ________________________________________________________ ________________________________________________________ 2. Now add 10 mL of grain alcohol to 10 mL of water. a) Please record any observations: ___________________________________________________ ___________________________________________________ b) Based upon your observations, indicate if the liquids are miscible or immiscible. Support your answer. ________________________________________________________ ________________________________________________________ Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. II. Observation Of Perthite A. Perthite Observation: With the hand specimens and hand lenses provided, list as many observations possible in the space below. _________________________________________________________ _________________________________________________________ -
Tetrahydrofuran
SOME CHEMICALS THAT CAUSE TUMOURS OF THE URINARY TRACT IN RODENTS VOLUME 119 This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 6–13 June 2017 LYON, FRANCE - 2019 IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS TETRAHYDROFURAN 1. Exposure Data Boiling point: 65–66 °C (EPA, 2012) Melting point: −108.44 °C (ECHA, 2018) 1.1 Identification of the agent Relative density: 0.883 at 25 °C (water, 1) (ECHA, 2018) 1.1.1 Nomenclature Solubility: Miscible in water (ECHA, 2018) Chem. Abstr. Serv. Reg. No.: 109-99-9 Volatility: Vapour pressure, 19.3 kPa at 20 °C (IPCS, 1997) EC/List No.: 203-726-8 Relative vapour density: 2.5 (air = 1); relative Chem. Abstr. Serv. name: Tetrahydrofuran density of the vapour/air mixture at 20 °C IUPAC systematic name: Oxolane (air = 1): 1.28 (IPCS, 1997) Synonyms: Butane alpha,delta-oxide; butane, Stability: Tetrahydrofuran is prone to oxida- 1,4-epoxy-; cyclotetramethylene oxide; dieth- tion to peroxides, butyric acid, butyralde- ylene oxide; 1,4-epoxybutane; furan, tetra- hyde, and related compounds, mainly on hydro-; furanidine; hydrofuran; oxacyclo- ageing and in the presence of light, heat, pentane; tetramethylene oxide; THF and moisture. The formation of peroxides can be retarded by adding stabilizers such as 1.1.2 Structural and molecular formulae, and hydroquinone or 2,6-di-tert-butyl-p-cresol at relative molecular mass 250 mg/kg (Coetzee & Chang, 1985; Müller, 2012). O Flash point: −14.5 °C -
United States Patent 0 Ice Patented Jan
3,489,528 United States Patent 0 ice Patented Jan. 13, 1970 1 2 number of (BHZNHZ) groups, but the product is con 3,489,528 PREPARATION OF POLYAMINOBORANES sistent in composition, as shown by infra-red and ele William E. Zanieski, Pittsburgh, Pa., assignor to Mine mental analyses, and the average value of n is about 4. Safety Appliances Company, a corporation of In another example a solution of THF-EH3 contain— Pennsylvania ing 2.99 g. of B2H6 in 150 ml. of THF was prepared N0 Drawing. Filed Apr. 5, 1965, Ser. No. 445,707 in the same manner as the previous example and the Int. Cl. C01b 21/00 solution was warmed to -30° C. 3.12 g. of gaseous US. Cl. 23—358 6 Claims ammonia was bubbled into and dissolved in the solution at —30° C. and the resultant clear solution was warmed to 0° C, at which temperature hydrogen was evolved and polyaminoborane, identical to that obtained in the ABSTRACT OF THE DISCLOSURE previous example, precipitated from the reaction mix Ammonia and diborane are reacted in tetrahydrofuran ture. at a temperature below about —30° C.; polyaminoboranes ‘Although the invention is not limited to any particular are precipitated when the reaction mixture is warmed. 15 reaction mechanism, it appears that the reaction of NH3 Aging of an ammonia solution of the polyaminoboranes and BZHS in THF forms an intermediate that is formed so produced yields an ammonia insoluble, more highly and is stable only at temperatures below about —30° C. polymerized polyaminoborane. and that this intermediate decomposes at temperatures above about —30° C. -
Contact Melting and the Structure of Binary Eutectic Near the Eutectic Point
Contact melting and the structure of binary eutectic near the eutectic point Bystrenko O.V. 1,2 and Kartuzov V.V. 1 1 Frantsevich Institute for material sсience problems, Kiev, Ukraine, 2 Bogolyubov Institute for theoretical physics, Kiev, Ukraine Abstract. Computer simulations of contact melting and associated interfacial phenomena in binary eutectic systems were performed on the basis of the standard phase-field model with miscibility gap in solid state. It is shown that the model predicts the existence of equilibrium three-phase (solid-liquid-solid) states above the eutectic temperature, which suggest the explanation of the phenomenon of phase separation in liquid eutectic observed in experiments. The results of simulations provide the interpretation for the phenomena of contact melting and formation of diffusion zone observed in the experiments with binary metal-silicon systems. Key words: phase field, eutectic, diffusion zone, phase separation 1. Introduction. Phenomenon of contact (eutectic) melting (CM) is rather common for multicomponent systems and has important industrial implications [1], which motivate its experimental and theoretical studies. The aim of this work is a theoretical study of the properties of CM in binary eutectic systems and the interpretation of the results of recent experiments particularly focused on the investigation of the interfacial phenomena associated with CM [2, 3]. In these experiments, the binary systems consisting of metal Au, Al, Ag, and Cu particles (of 5 10-6 m size) placed on amorphous or crystalline -
Temperature-Dependent Phase Behaviour of Tetrahydrofuran–Water
UC Riverside 2018 Publications Title Temperature-dependent phase behaviour of tetrahydrofuran-water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass Permalink https://escholarship.org/uc/item/6m38c36c Journal Green Chemistry, 20(7) ISSN 1463-9262 1463-9270 Authors Smith, Micholas Dean Cai, Charles M Cheng, Xiaolin et al. Publication Date 2018 DOI 10.1039/C7GC03608F Peer reviewed eScholarship.org Powered by the California Digital Library University of California Green Chemistry View Article Online PAPER View Journal | View Issue Temperature-dependent phase behaviour of tetrahydrofuran–water alters solubilization of Cite this: Green Chem., 2018, 20, 1612 xylan to improve co-production of furfurals from lignocellulosic biomass† Micholas Dean Smith, a,b Charles M. Cai, c,d Xiaolin Cheng,a Loukas Petridisa,b and Jeremy C. Smith*a,b Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidence, we reveal how the unique temperature-dependent phase behaviour of water–tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ‘good’ solvents for xylan. Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF–water is dependent on the temperature-phase behaviour.