Web Resource Partitioning Among Top Predators in a Miocene Food
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aspects of the Functional Morphology in the Cranial and Cervical Skeleton of the Sabre-Toothed Cat Paramachairodus Ogygia (Kaup, 1832) (Felidae
Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 1443 363377 Original Article FUNCTIONAL MORPHOLOGY OF P. OGYGIAM. J. SALESA ET AL. Zoological Journal of the Linnean Society, 2005, 144, 363–377. With 11 figures Aspects of the functional morphology in the cranial and cervical skeleton of the sabre-toothed cat Paramachairodus ogygia (Kaup, 1832) (Felidae, Machairodontinae) from the Late Miocene of Spain: Downloaded from https://academic.oup.com/zoolinnean/article-abstract/144/3/363/2627519 by guest on 18 May 2020 implications for the origins of the machairodont killing bite MANUEL J. SALESA1*, MAURICIO ANTÓN2, ALAN TURNER1 and JORGE MORALES2 1School of Biological & Earth Sciences, Byrom Street, Liverpool John Moores University, Liverpool, L3 3AF, UK 2Departamento de Palaeobiología, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal, 2. 28006 Madrid, Spain Received January 2004; accepted for publication March 2005 The skull and cervical anatomy of the sabre-toothed felid Paramachairodus ogygia (Kaup, 1832) is described in this paper, with special attention paid to its functional morphology. Because of the scarcity of fossil remains, the anatomy of this felid has been very poorly known. However, the recently discovered Miocene carnivore trap of Batallones-1, near Madrid, Spain, has yielded almost complete skeletons of this animal, which is now one of the best known machairodontines. Consequently, the machairodont adaptations of this primitive sabre-toothed felid can be assessed for the first time. Some characters, such as the morphology of the mastoid area, reveal an intermediate state between that of felines and machairodontines, while others, such as the flattened upper canines and verticalized mandibular symphysis, show clear machairodont affinities. -
Chapter 1 - Introduction
EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed. -
Optimizing Phylogenetic Supertrees Using Answer Set Programming Laura Koponen1, Emilia Oikarinen1, Tomi Janhunen1, and Laura Säilä2 1 HIIT / Dept
Optimizing Phylogenetic Supertrees Using Answer Set Programming Laura Koponen1, Emilia Oikarinen1, Tomi Janhunen1, and Laura Säilä2 1 HIIT / Dept. Computer Science, Aalto University 2 Dept. Geosciences and Geography, University of Helsinki Computational logic day 2015 — Aalto, Finland Outline Introduction — the supertree problem ASP Encodings — trees, quartets and projections Experiments — Felidae data Conclusions Koponen et al., Optimizing Phylogenetic Supertrees Using ASP Computational logic day 2015 2/31 I Several measures can be used used I Optimal tree not necessarily unique I Output: a phylogenetic tree that covers all taxa from input and reflects the relationships in input as well as possible The supertree problem I Input: a set of overlapping, possibly conflicting phylogenetic trees (rooted, leaf-labeled) Koponen et al., Optimizing Phylogenetic Supertrees Using ASP Computational logic day 2015 3/31 The supertree problem I Input: a set of overlapping, possibly conflicting phylogenetic trees (rooted, leaf-labeled) I Output: a phylogenetic tree that covers all taxa from input and reflects the relationships in input as well as possible I Several measures can be used used I Optimal tree not necessarily unique Koponen et al., Optimizing Phylogenetic Supertrees Using ASP Computational logic day 2015 4/31 Solving the supertree problem I Typically heuristic methods are used, e.g. matrix representation with Parsimony (MRP) [Baum, 1992; Ragan,1992] I input trees encoded into a binary matrix, and maximum parsimony analysis is then used to construct -
A New, Fast Method to Search for Morphological Convergence with Shape Data
This is a repository copy of A new, fast method to search for morphological convergence with shape data. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/163919/ Version: Published Version Article: Castiglione, Silvia, Serio, Carmela, Tamagnini, Davide et al. (7 more authors) (2019) A new, fast method to search for morphological convergence with shape data. PLoS ONE. e0226949. ISSN 1932-6203 https://doi.org/10.1371/journal.pone.0226949 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ RESEARCH ARTICLE A new, fast method to search for morphological convergence with shape data Silvia Castiglione1, Carmela Serio1, Davide Tamagnini2, Marina Melchionna1, Alessandro Mondanaro1,3, Mirko Di Febbraro4, Antonio Profico2, Paolo Piras5,6, 1 1 Filippo Barattolo , Pasquale RaiaID * 1 Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, University of Naples Federico II, Napoli, Italy, 2 Dipartimento di Biologia Ambientale, Sapienza Università -
The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More Information
Cambridge University Press 0521640970 - The Evolution of Neogene Terrestrial Ecosystems in Europe Edited by Jorge Agusti, Lorenzo Rook and Peter Andrews Index More information Index Abies, 382, 383 Albanensia grimmi, 157, 158 Abruzzi-Apulia palaeobioprovince, 191–3, Albanohyus, 403 197 Albanohyus pygmaeus, 119 Aceraceae, 184 Alcelaphini, 444 Aceratherium, 217, 221, 223 algal symbionts, 282–3, 311, 315 Aceratherium incivisum, 167, 170 Alicornops alfambrense, 119, 173 Aceratherium kiliasi, 212 Alicornops simorrense, 114, 119 Aceritherium incisivum, 119 Alilepus, 145, 198–9 Aceritherium tetradactylum, 119 Allohyaena kadici, 173 Acerorhinus, 253, 261 Allosoricinae, 392, 394 Acteocemas, 96, 98 Allospalax, 152 Adcrocuta, 104, 114, 209, 212 alluvial sediments Adcrocuta eximia, 118, 167, 173, 209, 211, NE Spain, 398–9 214, 215, 218, 220, 222, 230, 449 Sinap, 243–7 Aden, Gulf of, Pliocene tephra correlation, Tuscany, 365–8 24, 31, 31–51 Alpine foredeep, 13, 15 Aegean, rodent faunas, 17 altitudinal position, 89–90 aeolian deposits, Upper Valdarno basin, altitudinal trees, 379, 383 363–5 Altomiramys,96 Aepycerotini, 444 Alveolinella, 291 Afghanistan, Miocene primate taxa, 458 Amblycoptus, 267, 268, 270, 393 Africa American mammal immigration to Europe climate, 62–4 9, 13, 17, 446;, see also Bering climate/vegetation relationship, 64–8, landbridge 290, 292 American shrews, 392, 393, 394–5 correspondence analysis, recent faunas, Ammonia, 291 419–29 Amphechinus, 265 palaeoenvironment reconstruction, 290, amphibians, Italy, 191 292 Amphicyon, 14, 103 -
Endemism and Migration in the Kochkor Basin? Identification and Description of Adcrocuta Eximia (Mammalia: Carnivora: Hyaenidae) and C.F
Palaeontologia Electronica palaeo-electronica.org Endemism and migration in the Kochkor Basin? Identification and description of Adcrocuta eximia (Mammalia: Carnivora: Hyaenidae) and c.f. Paramachaerodus (Mammalia: Carnivora: Felidae) fossils at the Miocene locality of Ortok, Kyrgyzstan Sophie A. Miller, Paul Z. Barrett, Win N.F. McLaughlin, and Samantha S.B. Hopkins ABSTRACT Dentition from a Miocene hyaenid and a saber-toothed felid are described from the Chu Formation of Kyrgyzstan. Identified as Adcrocuta eximia (UOMNH F-70508) and c.f. Paramachaerodus (UOMNH F-70509), these represent one of the only formal- ized descriptions of fossil taxa from the Miocene in Kyrgyzstan. These specimens were recovered from the Ortok locality at the northwestern corner of the Kochkor Basin, the youngest of the known bone-bed localities in the Chu Formation. Using bio- and mag- netostratigraphy, the Chu Formation is attributed to the late Miocene to Pliocene, deposited approximately at 8 to 4 Ma. The Adcrocuta specimen consists of a partial dentary with condylar and angular processes, one upper, five lower teeth, and the par- tial root and alveoli of a fifth mandibular tooth. The c.f. Paramachaerodus specimen includes a partial M1, P4, and C1, and exhibits the features of the “scimitar-toothed” machairodontines. Preserved diagnostic characters place the Kyrgyz specimen closest to P. ogygia, although with certain features similar to that of P. transasiaticus, such as incipient crenulations on the canine. However, the age of the Kyrgyz specimen, approximately 6 Ma, is substantially younger than what is known for either of these taxa. We therefore hypothesize this Paramachaerodus specimen could be evidence of an endemic taxon in Kyrgyzstan from earlier migrating Asian species, potentially due to geological uplift with the Tien Shan Mountains. -
A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae)
A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae) Steven C. Wallace1*, Richard C. Hulbert Jr.2 1 Department of Geosciences, Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, Tennessee, United States of America, 2 Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America Abstract South-central Florida’s latest Hemphillian Palmetto Fauna includes two machairodontine felids, the lion-sized Machairodus coloradensis and a smaller, jaguar-sized species, initially referred to Megantereon hesperus based on a single, relatively incomplete mandible. This made the latter the oldest record of Megantereon, suggesting a New World origin of the genus. Subsequent workers variously accepted or rejected this identification and biogeographic scenario. Fortunately, new material, which preserves previously unknown characters, is now known for the smaller taxon. The most parsimonious results of a phylogenetic analysis using 37 cranio-mandibular characters from 13 taxa place it in the Smilodontini, like the original study; however, as the sister-taxon to Megantereon and Smilodon. Accordingly, we formally describe Rhizosmilodon fiteae gen. et sp. nov. Rhizosmilodon, Megantereon, and Smilodon ( = Smilodontini) share synapomorphies relative to their sister-taxon Machairodontini: serrations smaller and restricted to canines; offset of P3 with P4 and p4 with m1; complete verticalization of mandibular symphysis; m1 shortened and robust with widest point anterior to notch; and extreme posterior ‘‘lean’’ to p3/p4. Rhizosmilodon has small anterior and posterior accessory cusps on p4, a relatively large lower canine, and small, non-procumbent lower incisors; all more primitive states than in Megantereon and Smilodon. -
ABSTRACT How Sabertoothed Felids Have Evolved Their Iconic Morphology Remains Unclear Because of the Patchy Fossil Record of Early Machairodontines
Journal of Mammalian Evolution https://doi.org/10.1007/s10914-021-09541-0 Accepted: 8 March 2021 Morphometric analysis of the mandible of primitive sabertoothed felids from the late Miocene of Spain Short title: Morphometric analysis of early sabertoothed felids Narimane Chatar1,*, Valentin Fischer1, Gema Siliceo2, Mauricio Antón2, Jorge Morales2, and Manuel J. Salesa2 1 Evolution and Diversity Dynamics Lab, Université de Liège, Belgium 2 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez Abascal, 2. 28006 Madrid, Spain * Corresponding author: [email protected] ABSTRACT How sabertoothed felids have evolved their iconic morphology remains unclear because of the patchy fossil record of early machairodontines. Batallones localities in the Madrid region (Spain) have the potential to clarify this as two sites have yielded hundreds of fossils of the early machairodontines Promegantereon ogygia and Machairodus aphanistus. Previous analyses suggested that these two sites are not contemporaneous and a morphological drift between cavities was described for these two species; characterizing intraspecific variability is thus important to better understand the evolution of machairodontines. To tackle this issue, we modelled 62 felid mandibles in 3D using a laser scanner. We applied 3D geometric morphometrics (3D GM) and linear morphometrics on these models to test for differences in populations and to better characterize the morphology of early machairodontines. Both linear measurements and 3D data reveal an absence of morphological changes in mandible shape between the two sites. Batallones machairodontines are closer to felines than to other, more derived machairodontines in mandibular morphology, suggesting the existence of rapid shift in the mandibular shape between primitive and derived members of the clade. -
A New Species of Paramachaerodus (Mammalia, Carnivora, Felidae
PalZ (2017) 91:409–426 DOI 10.1007/s12542-017-0371-7 RESEARCH PAPER A new species of Paramachaerodus (Mammalia, Carnivora, Felidae) from the late Miocene of China and Bulgaria, and revision of Promegantereon Kretzoi, 1938 and Paramachaerodus Pilgrim, 1913 1,2 3 Yu Li • Nikolai Spassov Received: 17 March 2016 / Accepted: 10 June 2017 / Published online: 18 August 2017 Ó Pala¨ontologische Gesellschaft 2017 Abstract New Machairodontinae material from the late Keywords Machairodontinae Á Paramachaerodus Miocene localities of Hezheng (China) and Hadjidimovo transasiaticus sp. nov. Á Promegantereon Á Late Miocene Á (Bulgaria) represents a new species of Paramachaerodus China Á Bulgaria Pilgrim. Both localities are similar in age and suggest that the new species had a very large geographic range Kurzfassung Neues Material von Machairodontinae aus extending from northwestern China adjacent to the Tibetan den obermioza¨nen Fundstellen Hezheng (China) und Plateau (Gansu Province) to southeastern Europe or prob- Hadjidimovo (Bulgarien) repra¨sentiert eine neue Art, die ably to all of southern Europe. The new species—Para- der Gattung Paramachaerodus Pilgrim zugeordnet werden machaerodus transasiaticus sp. nov is characterized by a kann. Die beiden Fundstellen sind altersgleich und deuten combination of features of ‘‘Promegantereon’’ and Para- darauf hin, dass die neue Art ein sehr ausgedehntes Areal machaerodus. This specific morphology, as well as the age von Nordwest-China, im benachbarten Hochland von Tibet of the Hezheng and Hadjidimovo (early Turolian, after the (Provinz Gansu), bis Su¨dost-Europa oder mo¨glicherweise European Land Mammal Ages) put the new species in auch ganz Su¨deuropa besiedelt hat. Die neue Art – Para- intermediary position between ‘‘Promegantereon’’ and machaerodus transasiaticus sp. -
(Perissodactyla, Mammalia) from the Late Miocene of Bulgaria. Denis Geraads, Nikolaï Spassov, Dimitar Kovachev
New Chalicotheriidae (Perissodactyla, Mammalia) from the late Miocene of Bulgaria. Denis Geraads, Nikolaï Spassov, Dimitar Kovachev To cite this version: Denis Geraads, Nikolaï Spassov, Dimitar Kovachev. New Chalicotheriidae (Perissodactyla, Mam- malia) from the late Miocene of Bulgaria.. Journal of Vertebrate Paleontology, Society of Vertebrate Paleontology, 2001, 21 (3), pp.596-606. halshs-00067712 HAL Id: halshs-00067712 https://halshs.archives-ouvertes.fr/halshs-00067712 Submitted on 10 May 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NEW CHALICOTHERIIDAE (PERISSODACTYLA, MAMMALIA) FROM THE LATE MIOCENE OF BULGARIA 1 2 3 DENIS GERAADS , NIKOLAÏ SPASSOV and DIMITAR KOVACHEV 1 UPR 2147 CNRS, 44 rue de l'Amiral Mouchez, 75014 PARIS, France; 2 National Museum of Natural History, 1, Tsar Osvoboditel blvd, 1000 SOFIA, Bulgaria; 3 Museum of Paleontology (Branch of the National Museum of Natural History, Sofia), ASSENOVGRAD, Bulgaria Running title: Geraads et al.-Chalicotheriidae from Bulgaria 1 ABSTRACT-Few fossils have been described from the very rich localities of Kalimantsi in southwestern Bulgaria, and none from Hadjidimovo, in the same area. These deposits have produced one of the best collections of Chalicotheriidae from the late Miocene of Europe, increasing the diversity of the family, and providing the first definite evidence of the co- occurrence of both subfamilies, Chalicotheriinae and Schizotheriinae. -
Miocene Carnivorans from the Vallès-Penedès Basin (NE Iberian Peninsula)
Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia Unitat d’Antropologia Biològica Miocene carnivorans from the Vallès-Penedès Basin (NE Iberian Peninsula) Josep Maria Robles Giménez Tesi Doctoral 2014 A mi padre y familia. INDEX Index .......................................................................................................................... 7 Preface and Acknowledgments [in Spanish] ....................................................... 13 I.–Introduction and Methodology ........................................................................ 19 Chapter 1. General introduction and aims of this dissertation .......................... 21 1.1. Aims and structure of this work .............................................................. 21 Motivation of this dissertation ................................................................ 21 Type of dissertation and general overview ............................................. 22 1.2. An introduction to the Carnivora ............................................................ 24 What is a carnivoran? ............................................................................. 24 Biology .................................................................................................... 25 Systematics and phylogeny ...................................................................... 28 Evolutionary history ................................................................................ 42 1.3. Carnivoran anatomy ............................................................................... -
Download Full Article in PDF Format
geodiversitas 2018 ● 40 ● 3 New sabre toothed Felidae (Carnivora, Mammalia) in the hominid-bearing sites of Toros Menalla (late Miocene, Chad) Louis de BONIS, Stéphane PEIGNɆ, Hassane Taisso MACKAYE, Andossa LIKIUS, Patrick VIGNAUD & Michel BRUNET art. 40 (3) — Published on 15 February 2018 www.geodiversitas.com DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) ; Anne Mabille MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (MNHN, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (USTL, Villeneuve d’Ascq) Henning Blom (Uppsala University) Jean Broutin (UPMC, Paris) Gaël Clément (MNHN, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (MNHN, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (UPMC, Paris) Sevket Sen (MNHN, Paris) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres) COUVERTURE / COVER : Réalisée à partir de la Figure 1 de cet article/created from Figure 1 of this article Geodiversitas est indexé dans / Geodiversitas