<<

Estimating the entropy of melting from structure

Item Type text; Dissertation-Reproduction (electronic)

Authors Dannenfelser, Rose-Marie, 1959-

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Download date 26/09/2021 04:06:30

Link to Item http://hdl.handle.net/10150/288729 INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fihns the text dvectfy from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter &ce, whfle others may be from any type of computer printer.

The quality of this reproductioii is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, b^inning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographicalfy in this copy. Higher quality 6" x 9" black and i!(^e photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directfy to order. UMI A Bell & Howell Iiifi>niiatioii Compai^ 300 North Zetb Road, Ann Aibor NO 48106-1346 USA 313/761-4700 800/521-0600

ESTIMATING THE ENTROPY OF MELTING FROM STRUCTURE

by

Rose-Marie Dannenfelser

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF PHARMACEUTICAL SCIENCES

In Partial Fulfilment of the Requirements For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1997 UMX Number: 9806833

UMl Microform 9806833 Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI 300 North Zeeb Road Ann Arbor, MI 48103 2

THE DNIVERSITY OF ARIZONA ® GRADUATE COLLEGE

As members of the Final Examination Committee« we certify that we have read the dissertation prepared by Rose-Marie Dannenfelser entitled Estimafno The Entroov Of Melting From Structure

and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctgr gf Philosophy

August 22. 1997 Sarp^H. Yalkowsky, Date August22. 1997 Michael MayersohnJPh.D. Date August 22, 1997 Hsiao-Hui Chow, Ph.D. Date

Date

Date

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College.

1 hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

Dissertatlon/Director Date 3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of this material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED 4

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Samuel H. Yalkowsky for his guidance, encouragement and the opportunity to continue my education. It has been a privilege and an honor to work with Or. Yalkowsky.

I would also like to thank my commitee members Drs. Michael Mayersohn,

Hsiao-Hui Chow. Srini Raghavan and Michael Burke for their encouragement; and all of the past and present graduate students in the pharmaceutics group for their encouragement and friendship.

I am indebted to my husband, Paul, and my daughter, Ruth, for their love, support, and unending patience during graduate school.

And finally I would like to thank God for making this degree possible. 5

TO MY HUSBAND AND DAUGHTER 6

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS 8

LIST OF TABLES 9

ABSTRACT 10

CHAPTER I. INTRODUCTION 11 Significance 11 Entropy 12 Estimation 14

CHAPTER 11. MOLECULAR ROTATIONAL SYMMETRY 17 Introduction 17 Methods 18 Molecular rotational symmetry number 18 Entropy of melting 22 Experimental 25 Data 25 Intercept 25 Entropy of melting 25 Results and Discussion 26 Intercept 26 Entropy of melting 26

CHAPTER III. MOLECULAR FLEXIBILITY 67 Introduction 67 Methods 68 Molecular flexibility number 68 Entropy of melting 71 Experimental 72 Data 72 Entropy of melting 72 Results and Discussion 72 Entropy of melting 72 7

TABLE OF CONTENTS - Continued

Page

CHAPTER IV. ESTIMATION OF THE TOTAL ENTROPY OF MELTING; APPLICATION TO AN INDEPENDENT DATA SET 121 Introduction 121 Methods 121 Molecular rotational symmetry number 121 Molecular flexibility number 122 Entropy of melting 122 Experimental 123 Data 123 Entropy of melting 123 Results and Discussion 124

CHAPTER V. SUMMARY 202 Introduction 202 Methods 203 Entropy of melting 203 Comparison of estimation schemes 203 Experimental 204 Entropy of melting 204 Comparison of estimation schemes 204 Results and Discussion 204 Entropy of melting 204 Comparison of estimation schemes 205

REFERENCES 232 8

LIST OF ILLUSTRATIONS

Page

Figure 2.1. Molecular symmetry for benzene 20

Figure 2.2. Molecular symmetry for tetrachloride 20

Figure 2.3. Symmetry numbers for a variety of molecules 24

Figure 3.1. Observed versus predicted entropy of melting values for flexible compounds 75

Figure 3.2. Observed versus predicted entropy of melting values for linear alkanes 76

Figure 3.3. Observed versus predicted entropy of melting values for large cycloalkanes 77

Figure 4.1. Observed versus predicted entropy of melting for 1277 compounds 126

Figure 5.1. Observed versus predicted entropy of melting values for complex compounds 207 9

LIST OF TABLES

Page

Table 2.1. Comparison of equation 2-6 and Walden's rule 28

Table 2.2. Observed and predicted entropies of melting in J/deg mol 29

Table 3.1. Examples of some molecular flexibilities 69

Table 3.2. Observed and predicted entropies of melting in J/deg mol 78

Table 4.1. Comparison of evaluated data 125

Table 4.2. Observed and predicted entropies of melting in J/K mol 127

Table 5.1. Observed and predicted entropies of melting in J/K mol 208

Table 5.2. Comparison of estimation schemes 231 10

ABSTRACT

The total entropy of melting for a wide variety of compounds is estimated by a modification of Walden's rule. This modification accounts for the effects of both molecular rotational symmetry and molecular flexibility on entropy. These effects are combined into a single simple semi-empirical equation.

The intercept of the equation was modified from Walden's rule (56.5 J/K mol), which uses a small data set, to 50 J/K -mol, which uses a data set of 237 rigid and asymmetrical molecules.

The molecular rotational symmetry number, a, and molecular flexibility number,

((), are separately defined and evaluated for a wide variety of molecules and are shown to be related to the entropy of melting in Chapters II and III, respectively.

The two effects are combined so that a single equation can be used to predict the entropy of melting for any nonelectrolyte compound. This semi-empirical equation is tested on an independent data set. For over 930 different molecules, including those which are both rigid and flexible, the average absolute error between the predicted and observed entropy of melting values is only 12.5 J/deg-mol. This difference is within experimental error. 11

CHAPTER I: INTRODUCTION

Significance

Physico-chemical properties such as , aqueous solubility, and

vapor pressure are important in many scientific fields, including pharmacy and

environmental sciences. These properties provide information about the

potential hazards of chemicals in water and ground systems as well as in the

atmosphere. For instance, a water-soluble compound improperly dumped or

buried in the ground close to a well can become a health hazard when the water

is consumed by the public. Likewise, if a highly toxic compound or even a

potent drug is vaporized it can cause other health problems.

The physical chemical properties of drugs can provide insight into the

formulation of medicines. Their use in formulation development can minimize

both time and money. Aqueous solubility is an important property for all potential drugs. An estimate of this property can aid in facilitating and/or eliminating the need for some experiments. For example, performing cosolvent solubility and stability studies are not relevant for a drug that has an estimated water solubility that is much greater than the required dose. Eliminating such studies will in turn reduce the amount of time and money that would have been devoted to the formulation. 12

Another important property is vapor pressure. The FDA requirement for either

estimated or experimental vapor pressures for new drug applications can add to

the cost of formulating a drug. Estimating this property would substantially lower

the cost as well as decrease the time for product acceptance since it can take

serveral months to obtain vapor pressure data.

Entropy of melting is useful in the prediction of both aqueous solubility and

vapor pressure (Simamora and Yalkowsky, 1993; Simamora and Yalkowsky,

1994; Myrdal et al., 1993; and Yalkowsky et al., 1994). Since entropy of melting

values are usually not available they must be determined experimentally or

estimated.

Entropy

Entropy reflects the disorder of the molecules. It is difficult to measure the

entropy of a particular phase, however, it is relatively easy to measure the

difference in the entropies of two different phases of the same compound.

When the two phases are at equilibrium, their free energy (AG) difference is

zero. Thus the change in entropy, AS, between the two phases is equal to AH/T

(since AG = AH - TAS). The amount of heat needed to melt the compound, AHm, can be experimentally

measured. Melting temperature, Tm. is usually known because it is easily measured. Thus, the entropy of melting, ASm. which is the ratio of the enthalpy

of melting and melting point can be determined. Note that the entropy of melting is the difference between the entropies of two phases, the crystal and liquid.

Molecules in a crystal are tightly packed and have limited motion. However, in the liquid state, these molecules have more room to move. The volume, for most compounds, increases as the compound melts. This expansion in volume allows the molecule to rotate and move more freeely. Flexible molecules can also change conformations more readily. As molecules move about in the liquid their conformations become more random which is seen as an increase in entropy. Thus each of these movements contributes to a portion of the total entropy of melting for a particular compound (Bondi, 1968) by:

= ^S„r + AS„,"^ + ASm"^ (1-1) where ASm*^, ASm"*, and ASm""' are the entropy contributions due to positional, rotational and confomnational disordering of the crystal, respectively.

In the melting process, many compounds go directly from the solid to the liquid phase, however there are some that melt in a series of steps. Each of these steps or transitions have an entropy associated with them, thus, the total entropy of melting can also be defined as the sum of all the entropies of transitions and

the entropy of melting from the least ordered crystal form to the liquid, i.e.:

ASm'^ = AS„, + lASfr (1-2)

where ASm and AStr are the entropies associated with melting and transitions,

respectively.

Estimation

In the early 1900's the entropy of melting for two classes of compounds were

shown to be relatively constant. In 1908, Walden showed that the average

entropy of melting for aromatic compounds with little flexibility (e.g.. diphenyl) Is

constant with an average value of 56.5 J/deg -mol. This value is known as

Walden's rule. According to Richard's rule, the entropy of melting for small

spherical compounds (e.g., methane) is constant at 10.5 J/deg-mol (Bondi,

1968). Unfortunately there are many molecules which do not belong to either of

these categories and hence cannot be reasonably estimated.

Walden's and Richard's rules were the only methods available for estimating the

entropy of melting until the late 1980's and early 1990's when group contribution methods were developed by several investigators including Chickos (1990 and

1991) and Domalski (1988 and 1990). Unfortunately, these latter methods are 15

cumbersome and require the use of numerous group contribution values, many

of which are unavailable.

During this time a simple semi-empirical equation to predict the entropy of

melting for any nonelectrolyte was developed by Yalkowsky and coworkers.

This equation uses only two molecular parameters. The molecular symmetry

parameter defines the rotational symmetry for rigid molecules and the molecular

flexibility parameter defines the conformational flexibility for flexible molecules.

These parameters are discussed individually as they pertain to rigid and flexilbe

molecules in Chapters II and III, respectively. Examples of how the numbers are

assigned for each parameter are also given in these chapters.

A molecule containing flexible and rigid regions is treated as a flexible molecule

and assigned a symmetry number of unity; and, likewise, rigid molecules will

automatically be assigned a flexibility number of unity. In this way the flexibility term in the equation drops out for rigid molecules and the symmetry term drops out for the flexible molecules.

After the symmetry and flexibility parameters have been individually evaluated on data consisting of only rigid and flexible compounds, respectively, they are combined into one simple equation. This equation is then evaluated, in Chapter 16

and flexible. To summarize the ability of the simple semi-empirical estimation

equation, a set of complex pharmaceutical and environmentally relevant

compounds are compiled and evaluated in Chapter V.

This semi-empirical equation allows the total entropy of melting to be estimated from structure alone. No elaborate tables or coefficients are required. 17

CHAPTER II. MOLECULAR ROTATIONAL SYMMETRY

Introduction

In 1908, Walden showed that the average entropy of melting for a number of

"coal tar" derivatives, which consist mainly of aromatic hydrocarbons, is

constant at:

ASm = 56.5 J/deg-mol (2-1)

On the other hand, according to Richard's rule, the entropy of melting for small

spherical molecules is given by:

ASm = 10.5 J/deg-mol (2-2)

Unfortunately, there are many molecules which fall between these two extremes and there are no rules for their estimation. In this chapter, Walden's rule will be modified to yield a single equation which can be used to estimate the entropy of melting for a variety of rigid molecules on the basis of their symmetries. In order to do this a molecular symmetry number, o, (similar to the one used by

Abramowitz and Yalkowsky (1986, 1990a and 1990b), and Mishra and

Yalkowsky (1991)) is defined. 18

Methods

Molecular Rotational Symmetry Number

A molecule can be oriented in many ways by being rigidly rotated about its

center of mass up to 360° about its axes. One of these positions is arbitrarily

chosen as the reference orientation. The number of positions that are identical

to the reference orientation is defined as the molecular rotational symmetry number, CT. The greater the molecular rotational symmetry number the higher the probability of the molecule being in the correct orientation to fit into the crystal lattice. Note that this definition of symmetry differs from that used by crystallographers and that of Domalski and Hearing (1988). Crystallographers use three operations in assigning symmetry: rotation, reflection and inversion, while this text and that of Domalski and Hearing use only the rotational operation. Domalski and Hearing's symmetry number is a sum of the internal and external symmetry numbers while the text uses only external symmetry numbers.

Internal symmetry arises when the groups attached to a bond can be rotated to form an identical orientation.

In assigning a value to a, the structure is suppressed and the following groups are assumed to be radially symmetrical and/or freely rotating: halogens, methyl, hydroxyl, mercapto, amino and cyano. Ail other groups. including nitro and carboxyl, are assumed to be asymmetrical. The molecular

symmetry number cannot be less than unity since every molecule has at least

one identical orientation (produced by a 360° rotation about any axis). On this

basis all flexible molecules are assigned a value of unity. Rings with fewer than

six atoms are considered to be rigid and planar. For example cyclopropane and

cyclopentane have symmetries of 6 and 10, respectively.

Molecules that are conical (e.g., hydrogen cyanide and chloromethane) or

cylindrical (e.g., and ethane) have one infinite rotational axis

and are empirically assigned effective symmetry numbers of 10 and 20.

respectively. Spherical molecules (e.g., neon and methane) with an infinite

number of infinite rotational axes have been empirically assigned an effective

symmetry number of 100.

Figures 2.1 and 2.2 show how the symmetry numbers for benzene and are evaluated. Benzene, in each row of Figure 2.1, can be rotated clockwise in 60** increments giving six identical orientations (Figure 2.1.a through f). It can then be rotated 180" about the plane containing the first and fourth to get its mirror image, which can be rotated in 60" increments to give an additional six orientations (Figure 2.1.g through I). Thus the symmetry number for benzene is 12. Figure 2.1. Molecular symmetry for benzene I 6 6 2 5,^^ I 4-^ ^2 4 3 2 a b C

2 5

Figure 2.2. Molecular symmetry for carbon tetrachloride

2 ^! 3

3'

4 1 / 2 4' 1 g

2 1 ^ / / ^3 3 ^ / 1 Similarly, cyclopentane, cyclobutane and cyclopropane have symmetries of 10,

8, and 6. Note, that by using this definition, cyclohexane has symmetry

numbers of 6 and 2 for the chair and boat conformations, respectively.

Figure 2.2 shows the 12 orientations of carbon tetrachloride with the chlorines

numbered "1" through "4". In the first row, "1" is held in the same position while

the tetrahedron is rotated about the bond containing "1" and the central carbon

atom to produce three identical orientations. Likewise, in the second, third, and fourth rows "2", "3" and "4", respectively, are held in the same position while the tetrahedron is rotated about the axis. Thus, the symmetry number for carbon tetrachloride Is 12.

Adding one radially symmetrical substituent, like CI, OH, or CH3, to benzene results in a molecule with a lower symmetry number, a = 2. For instance, when

CI is added to the first carbon in Figure 2.1, the only orientations possible are

"a" and "g". The 180° rotation about the C-CI bond produces two identical orientations for chlorobenzene. No other rotation can be made to achieve another identical orientation. Thus the symmetry number for chlorobenzene, phenol, and toluene is 2. On the other hand, if the substituent is an asymmetrical group such as a carboxyl or nitro group (i.e., benzoic acid or nitrobenzene), the symmetry number is 1. Replacing "1" in Figure 2.2 (i.e., carbon tetrachloride) with hydrogen or

any other atom reduces the symmetry number to 3. Trichloromethane can be

rotated to give positions a through c in Figure 2.2. Replacing two of the

chlorines with either or methyl groups gives methylene chloride or

2,2-dimethylpropane which have symmetry numbers of 2. While replacing three

of the chlorines with three different substituents produces an asymmetrical

molecule with CT = 1. Additional examples of symmetry numbers for a variety of

molecules are given in Figure 2.3.

Entropy of Melting

For rigid molecules the total entropy of melting is the sum of the entropy

associated with the expansion and randomization of the positions of the

molecular centers of mass, and the entropy associated with the

randomization of the rotational orientation of the molecules, ASm"" (Bondi, 1968;

Yalkowsky, 1979; and Ubbelohde, 1978), by

AS,„"" = AS„'^ + AS„,'"' (2-3)

Since the rotational term is not applicable to spherical molecules the positional

term corresponds to the 10.5 J/deg-mol as indicated by Richard's rule and equation 2-2. The rotational entropy of melting term is therefore equal to 46

J/deg-mol for compounds that obey Walden's rule. Walden's rule, however, does not take into account the fact that the molecule's symmetry affects its 23

rotational entropy of melting. The more symmetrical a molecule the higher its

probability of being in the correct orientation to be incorporated into the crystal

lattice. This in turn decreases the entropy of melting which makes the

compound more likely to stay crystalline as temperature increases.

In the liquid phase a molecule can rotate freely, thus, it may exist in many

different orientations with respect to its neighbor. The molecular rotational

symmetry number, a, expresses the number of indistinguishable orientations

that it can assume and yet be in a correct position to be incorporated into the

crystal. The probability of it being in an orientation suitable for crystallization is

a. And according to the Boltzmann equation, the rotational entropy is

decreased by R In a, where R is the gas constant at 8.314 J/deg mol.

Therefore.

= 46 - R In CT J/deg-mol (2-4)

Thus, the total entropy of melting is obtained by inserting equations 2-2 and 2-4 into equation 2-3 (Tsakanikas and Yalkowsky, 1988; Dannenfelser et al., 1993).

This gives:

= 56.5 - R In a J/deg mol (2-5) 1 ir" 'X 06 .4.CI

2 6 jpi 3 Qi

4 X S F

6 Jp A F TO

F 12 o

(10) HC=N H3C—01

(20) o—o M«P—njw wrij

(100) Ne CH4

Figure 2.3. Symmetry numbers for a variety of molecules. Parentheses indicate effective symmetry numbers for molecules with infinite symmetry. 25

Experimental

Data

A data base of 672 literature entropies of melting for approximately 418 rigid molecules was obtained.

Intercept

The intercept of 56.5 J/deg-mol was determined by Walden in 1908 from a very small data set of twelve different compounds. Utilizing the current data set, the intercept was modified. A set of 237 entropy of melting values which represent rigid, asymmetrical molecules were averaged in determining the intercept.

Entropy of Melting

The compounds in the complete data set are analyzed with respect to their fit to the semi-empirical equation to predict the total entropy of melting. (Those molecules with infinite molecular symmetry were not used.) No correction factors are used. The average absolute error is used to evaluate the predictability of the equation. 26

Results and Discussion

Intercept

The average observed entropy of melting for 237 entropy values representing those compounds that are rigid and asymmetrical, i.e., a - 1, is 51.5 J/deg-moi.

This value is rounded to 50 J/deg-mol for simplicity and replaces the intercept in equation 2-5 giving:

ASm = 50 - R In (T J/deg-mol (2-6)

Entropy of Melting

Equation 2-6 is used to predict the entropy of melting of the complete data set and is compared to Walden's rule in Table 2.1. The table is grouped according to molecular symmetry with the average absolute error given for both the constant and the equation. A small difference between the two is seen for the molecules with a symmetry number of 1 since equation 2-6 is similar to equation

2-1 for such compounds. As the symmetry number increases, equation 2-6, for the most part, predicts the entropy of melting better than the 56.5 J/deg mol estimate.

The greatest differences in the average absolute error is found in the molecules with higher symmetry. This clearly shows that molecular symmetry affects the entropy of melting and is important for its prediction. Nearly 675 observed and predicted entropy of melting values are given In Table

2.2. As can be seen from the table, equation 2-6 predicts the entropy of melting quite well for the diverse data set of rigid molecules without any type of correction factors. The average absolute error is 8.5 J/deg-mol. Observed entropy values that are either too high or too low; or values that are not consistent for a given molecule are preceded by an asterisk, These values were not used in the data analysis. Many of the entropy values that are exceptionally small are missing transition entropies.

The compounds with infinite molecular symmetries can be assigned effective symmetry numbers of 10 for cones; 20 for cylinders; and 100 for spheres

(Figure 2.3). Using the latter value, causes equation 2-6 to nearly reduce to equation 2-2 for spherical molecules. Table 2.1. Comparison of equation 2-6 and Walden's rule

CT number of average average records absolute absolute error error (eq 2-6) (56.5) 1 237 7.7 8.6

2 211 8.1 9.9

3 31 5.2 19.2

4 56 16.2 5.4

6 20 12.8 11.0

8 2 18.8 5.8

12 20 8.0 19.8

finite a 577 8.8 9.8

10 29 5.7 26.7

20 19 10.1 22.1

100 15 2.1 43.5

finite & infinite CT 640 8.5 11.7 Table 2.2. Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

1,1,1-trifluoroethane 3 38.5 40.9 2.4 Weast, 72

1,1-dimethylcyclopent-3-ene 2 56.1 44.2 -11.9 Bondi, 68

1,1-dimethylcyclopentane 2 50.0 44.2 -5.8 Bondi, 68

1,1-dimethylhydrazine 2 46.9 44.2 -2.7 Bondi, 68

1,2,3,4-tetrachlorobenzene 2 53.1 44.2 -8.9 Acree, 91

1,2,3,4-tetramethylbenzene 2 42.6 44.2 1.6 Weast, 72

1,2,3,4-tetramethylben2ene 2 38.9 44.2 5.3 Bondi, 68

1,2,3,5-tetrachlorobenzene 2 58.7 44.2 -14.5 Acree, 91

1,2,3,5-tetramethylbenzene 2 43.2 44.2 1.0 Bondi, 68

1,2,3-trichlorobenzene 2 62.7 44.2 -18.5 Acree, 91

1,2,3-trimethylbenzene 2 42.1 44.2 2.1 Bondi, 68

1,2,3-trimethylbenzene 2 34.0 44.2 10.2 Weast, 72

1,2,4,5-tetrachlorobenzene 4 57.2 38.4 -18.8 Acree, 91

1.2,4,5-tetramethylbenzene 4 60.1 38.4 -21.7 Bondi, 68

1,2,4,5-tetramethylbenzene 4 60.0 38.4 -21.6 Weast, 72

1,2,4-trimethylbenzene 1 57.6 50.0 -7.6 Bondi, 68

1,2,4-trimethylbenzene 1 13.5 50.0 36.5 Weast, 72

1,2-benzanthracene 1 49.2 50.0 0.8 Casellato, 73 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

1,2-benzopyrene 2 36.5 44.2 7.7 Casellato, 73

* 1,2-butadlene 1 51.2 50.0 -1.2 Bondi, 68

1,2-dlbromoben2ene 2 46.0 44.2 -1.8 Martin, 79

1,2-dibromobenzene 2 46.2 44.2 -2.0 Weast, 72

1,2-dichlorobenzene 2 50.6 44.2 -6.4 Martin, 79

1,2-dichlorobenzene 2 50.7 44.2 -6.5 Bondi, 68

1,2-dichlorobenzene 2 50.8 44.2 -6.6 Weast, 72

1,2-dicyanoethane (succinonitrile) 2 38.1 44.2 6.1 Bondi, 68

1,2-dicyanoethane (succinonitrile) 2 38.1 44.2 6.1 McGlashan, 73

* 1,2-dlcyanoethane (succinonitrile) 2 12.1 44.2 32.1 Weast, 72

1,2-dlfluorobenzene 2 60.0 44.2 -15.8 McGlashan, 73

1.2-dihydroxybenzene 2 60.2 44.2 -16.0 Martin, 79

1,2-dlhydroxybenzene 2 60.6 44.2 -16.4 Weast, 72

1,2-dihydroxybenzene 2 60.7 44.2 -16.5 Bondi, 68

1,2-diiodobenzene 2 47.6 44.2 -3.4 Weast, 72

1,2-diiodobenzene 2 47.8 44.2 -3.6 Bondi, 68

1,2-dimethylbenzene (o-xylene) 2 55.2 44.2 -11.0 Martin, 79

1,2-dimethylbenzene (o-xylene) 2 55.3 44.2 -11.1 Weast, 72 Table 2.2 (con't). Observed and predicted entropies of melting In J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

1,2-dimethylbenzene (o-xylene) 2 55.3 44.2 -11.1 Bondi, 68

1,2-dinitrobenzene 1 47.4 50.0 2.6 Weast, 72

1,2-djnitrobenzene 1 56.9 50.0 -6.9 Mortimer, 22

1,2-dinitrobenzene 1 58.6 50.0 -8.6 Martin, 79

1,2-dinitrobenzene 1 59.0 50.0 -9.0 Bondi, 68

1,2-phenylenediamine 2 50.2 44.2 -6.0 Martin, 79

1,2:3,4-dibenzanthracene 2 53.6 44.2 -9.4 Casellato, 73

1,2:3,4-dibenzopyrene 1 49.3 50.0 0.7 Casellato, 73

1,2:4,5-dibenzopyrene 1 58.7 50.0 -8.7 Casellato, 73

1,2:5,6-dibenzanthracene 2 57.3 44.2 -13.1 Casellato, 73

1,3,5,7-tetramethyladamantane 12 30.4 29.2 -1.2 Clark, 77

1,3,5-triazine 6 41.2 35.0 -6.2 Acree, 91

1,3,5-trichloro-2,4,6-trifluorobenzene6 59.2 35.0 -24.2 Acree, 91

1,3,5-trichlorobenzene 6 54.1 35.0 -19.1 Acree, 91

1,3,5-trimethyiadamantane 3 34.4 40.9 6.5 Clark. 77

1,3,5-trimethylbenzene 6 41.9 35.0 -6.9 Weast, 72

1,3,5-trioxane 3 45.3 40.9 -4.4 Acree, 91

1,3-benzenedicarboxylic acid 1 79.1 50.0 -29.1 Martin, 79 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name CT Obs Pred Diff Ref

1,3-butadiene (diacetylene) 1 49.0 50.0 1.0 Weast, 72

1,3-butadiene (diacetylene) 1 49.0 50.0 1.0 Bondi, 68

1,3-butadiene (diacetylene) 1 43.3 50.0 6.7 Bondi, 68

1,3-dibromobenzene 2 49.9 44.2 -5.7 Bondi, 68

1,3-dibromobenzene 2 50.0 44.2 -5.8 Weast, 72

1,3-dlbromoben2ene 2 50.6 44.2 -6.4 Martin, 79

1,3-dichloroben2ene 2 51.3 44.2 -7.1 Weast, 72

1,3-dichlorobenzene 2 51.5 44.2 -7.3 Bondi, 68

1,3-dichlorobenzene 2 51.5 44.2 -7.3 Martin, 79

1.3-difluorobenzene 2 46.9 44.2 -2.7 McGlashan, 73

1,3-dihydroxybenzene (resorcinol) 2 55.6 44.2 -11.4 Martin, 79

1,3-dihydroxybenzene (resorcinol) 2 55.8 44.2 -11.6 Bondi, 68

1,3-dihydroxybenzene (resorcinol) 2 56.0 44.2 -11.8 Weast, 72

* 1,3-dihydroxybenzene (resorcinol) 2 28.2 44.2 16.0 Mortimer, 22

1,3-dilodobenzene 2 52.2 44.2 -8.0 Weast, 72

1,3-diiodobenzene 2 52.3 44.2 -8.1 Bondi, 68

1,3-dimethyladamantane 2 37.1 44.2 7.1 Clark, 77

1,3-dimethylbenzene (m-xylene) 2 51.6 44.2 -7.4 Weast, 72 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

1,3-dimethylbenzene (m-xylene) 2 51.9 44.2 -7.7 Martin, 79

1.3-dimethylbenzene (m-xylene) 2 51.7 44.2 -7.5 Bondi, 68

1,3-dlnitrobenzene 1 52.3 50.0 -2.3 Martin, 79

1,3-dinitrobenzene 1 56.5 50.0 -6.5 Mortimer, 22

1,3-dinltrobenzene 1 56.6 50.0 -6.6 Bondi, 68

* 1,3-dinitrobenzene 1 39.0 50.0 11.0 Weast, 72

1,3-phenylenediamine 2 48.1 44.2 -3.9 Martin, 79

1,4-diazabicyclo(2,2,2)octane 6 47.7 35.0 -12.7 McGlashan, 73

1,4-dibromobenzene 4 56.1 38.4 -17.7 Bondi, 68

1,4-dlbromobenzene 4 56.5 38.4 -18.1 Martin, 79

1,4-dibromobenzene 4 56.5 38.4 -18.1 Mortimer, 22

1,4-dibromobenzene 4 56.9 38.4 -18.5 Weast, 72

1,4-dichlorobenzene 4 55.2 38.4 -16.8 Weast, 72

1,4-dichlorobenzene 4 56.1 38.4 -17.7 Bondi, 68

1,4-dichlorobenzene 4 56.1 38.4 -17.7 Martin, 79

1,4-dichlorobenzene 4 56.5 38.4 -18.1 Mortimer, 22

1,4-dihydronaphthalene 2 41.5 44.2 2.7 Bondi, 68

1,4-dihydroxybenzene (quinol) 4 61.1 38.4 -22.7 Martin, 79 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg-moi

Entropy of Melting

Name a Obs Pred Diff Ref

1,4-dihydroxybenzene (quinol) 4 61-6 38.4 -23.2 Bondi, 68

1.4-dihydroxybenzene (quinol) 4 61.3 38.4 -22.9 Weast, 72

* 1.4-dihydroxybenzene (quinol) 4 30.5 38.4 7.9 Mortimer, 22

1,4-diiodobenzene 4 56.0 38.4 -17.6 Weast, 72

1,4-diiodobenzene 4 56.1 38.4 -17.7 Bondi, 68

1,4-diiodobenzene 4 57.3 38.4 -18.9 Mortimer, 22

1,4-dimethylbenzene (p-xylene) 4 56.1 38.4 -17.7 Mortimer, 22

1,4-dimethylbenzene (p-xylene) 4 59.8 38.4 -21.4 Martin, 79

1,4-dimethylbenzene (p-xylene) 4 59.1 38.4 -20.7 Weast, 72

1,4-dimethylbenzene (p-xylene) 4 60.2 38.4 -21.8 Bondi, 68

1,4-dimethylnaphthalene 2 56.8 44.2 -12.6 Acree, 91

1,4-dlnitrobenzene 1 51.4 50.0 -1.4 Weast, 72

1,4-dinitrobenzene 1 62.8 50.0 -12.8 Martin, 79

1,4-dinitrobenzene 1 63.5 50.0 -13.5 Bondi, 68

1,4-phenylenediamine 4 43.5 38.4 -5.1 Martin, 79

1,12-benzoperylene 2 31.3 44.2 12.9 Acree, 91

1,12-benzoperylene 2 31.3 44.2 12.9 Casellato, 73

1,12-phenyleneperylene 2 31.9 44.2 12.3 Acree, 91 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

1-adamantanol 3 37.8 40.9 3.1 Chickos, 91

1-bromoadamantane 3 35.2 40.9 5.7 Clark. 77

1-butyne 1 40.8 50.0 9.2 Bondi, 68

1-chloroadamantane 3 35.6 40.9 5.3 Clark. 77

1-iodoadamantane 3 39.6 40-9 1.3 Clark, 77

1-menthol 1 38.7 50.0 11.3 Weast, 72

1 -menthol 1 39.3 50.0 10.7 Mortimer, 22

1-methyladamantane 3 27.7 40.9 13.2 Clark. 77

1 -methylnaphthalene 1 49.8 50.0 0.2 Bondi, 68

2,2,3,3-tetramethylbutane 4 33.7 38.4 4.7 Zwolinski, 84

2,2,3,3-tetramethyIbutane 4 41.9 38.4 -3.5 Bondi, 68

2,2-dimethylbutane 1 46.4 50.0 3.6 Zwolinski, 84

* 2,2-dimethylbutane 1 3.4 50.0 46.6 Weast, 72

2,2-dimethylpropane (neopentane)l 2 31.1 29.2 -1.9 McGlashan, 73

2,2-dimethylpropane (neopentane)l 2 31.4 29.2 -2.2 Bondi, 68

* 2,2-dimethylpropane (neopentane)12 12.8 29.2 16.4 Weast, 72

2,3,5-triiodobenzoic acid 1 64.0 50.0 -14.0 Acree, 91

2,3,6-trichlorobenzoic acid 1 59.2 50.0 -9.2 Acree, 91 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Difr Ref

2.3-dichlorophenol 1 64.7 50.0 -14.7 Acree, 91

2,3-dimethylnaphthalene 2 52.7 44.2 -8.5 Bondi, 68

2,3-dimethylnaphthalene 2 66.4 44.2 -22.2 Acree, 91

2,3-dimethylphenol 1 60.8 50.0 -10.8 Acree, 91

2,3-dinitrophenol 1 62.9 50.0 -12.9 Acree, 91

2,3-pentadlene 2 45.3 44.2 -1.1 McGlashan, 73

2,4,5-trichlorophenol 1 69.8 50.0 -19.8 Acree, 91

2.4,6-tri-tert-butylphenol 2 48.3 44.2 -4.1 Chickos, 91

2,4,6-tribromophenol 2 50.9 44.2 -6.7 Weast, 72

2,4,6-trinitrotoluene 1 60.4 50.0 -10.4 Weast, 72

2,4-dibromophenol 1 52.0 50.0 -2.0 Weast, 72

2,4-dlchloronitrobenzene 1 49.4 50.0 0.6 Mortimer, 22

2,4-dichlorophenol 1 63.2 50.0 -13.2 Acree, 91

2,4-dinitrophenol 1 56.9 50.0 -6.9 Mortimer, 22

2,4-dlnltrophenol 1 62.3 50.0 -12.3 Acree, 91

2,4-dinitrotoiuene 1 56.5 50.0 -6.5 Mortimer, 22

2,4-dinitrotoluene 1 59.0 50.0 -9.0 Weast, 72

2,5-dlchlorophenol 1 67.8 50.0 -17.8 Acree, 91 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

2,5-dimethylphenol 1 67.2 50.0 -17.2 Acree, 91

2,5-dimethylthiophene 2 39.2 44.2 5.0 McGlashan, 73

2,5-dinitrophenol 1 62.3 50.0 -12.3 Acree, 91

2,6-dichlorophenol 2 65.1 44.2 -20.9 Acree, 91

2,6-dimethylnaphthalene 2 63.6 44.2 -19.4 Bondi, 68

2.6-dimethylnaphthalene 2 65.4 44.2 -21.2 Acree, 91

2,6-dimethylphenol 2 59.3 44.2 -15.1 Acree, 91

2.6-dinitrophenol 1 58.3 50.0 -8.3 Acree, 91

2,6-dinitrotoluene 1 56.5 50.0 -6.5 Mortimer, 22

2,7-dimethylnaphthalene 2 63.3 44.2 -19.1 Acree, 91

2-aminobenzoic acid 1 49.7 50.0 0.3 Weast, 72

2-aminobenzoic acid 1 49.0 50.0 1.0 Martin, 79

2-aminopropane 1 41.2 50.0 8.8 Acree, 91

2-aminotoluene (o-toluidine) 1 32.5 50.0 17.5 Acree, 91

2-bromoaniline 1 54.4 50.0 -4.4 Martin, 79

2-bromobenzoic acid 1 55.2 50.0 -5.2 Martin, 79

2-bromoiodobenzene 1 49.4 50.0 0.6 Weast, 72

2-bromonitrobenzene 1 55.2 50.0 -5.2 Mortimer, 22 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name G Obs Pred Diff Ref

2-bromonitrobenzene 1 68.2 50.0 -18.2 Martin, 79

2-bromophenol 1 40.6 50.0 9.4 Martin, 79

2-butene 2 44.1 44.2 0.1 Bondi, 68

2-butyne 20 38.6 25.1 -13.5 Weast, 72

* 2-butyne 20 38.7 25.1 -13.6 Bondi, 68

2-chlorobenzoic acid 1 62.7 50.0 -12.7 Weast, 72

2-chlorobenzoic acid 1 62.3 50.0 -12.3 Martin, 79

2-chloronltrobenzene 1 53.6 50.0 -3.6 Mortimer, 22

2-chloronitrobenzene 1 57.3 50.0 -7.3 Martin, 79

2-chlorophenol 1 38.1 50.0 11.9 Martin, 79

2-chlorophenol 1 44.2 50.0 5.8 Acree, 91

2-fIuorotoluene 1 46.5 50.0 3.5 Acree, 91

2-hydroxyaniline 1 53.6 50.0 -3.6 Martin, 79

2-hydroxybenzoic acid 1 45.2 50.0 4.8 Martin, 79

2-hydroxytoluene (o-cresol) 1 52.3 50.0 -2.3 Bondi, 68

2-hydroxytoluene (o-cresol) 1 52.4 50.0 -2.4 McGlashan, 73

2-hydroxytoluene (o-cresol) 1 51.9 50.0 -1.9 Martin, 79

* 2-hydroxytoluene (o-cresol) 1 29.9 50.0 20.1 Mortimer, 22 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

2-methyl-1,3-butadiene (isoprene) 2 37.9 44.2 6.3 Weast, 72

2-methyl-1,3-butadiene (isoprene) 2 39.0 44.2 5.2 McGlashan, 73

2-methylbenzoic acid 1 53.9 50.0 -3.9 Weast, 72

2-methylbenzoic acid 1 53.6 50.0 -3.6 Martin. 79

2-methylfuran 1 47.4 50.0 2.6 McGlashan, 73

2-methylnaphthalene 1 50.5 50.0 -0.5 Weast, 72

2-methylnaphthalene 1 59.4 50.0 -9.4 Bondi, 68

2-methylphenol 1 46.0 50.0 4.0 Acree, 91

2-methylpropene (isobutene) 2 45.0 44.2 -0.8 Weast. 72

2-methylpropene (isobutene) 2 45.0 44.2 -0.8 Bondi, 68

2-methylpyridine 1 47.5 50.0 2.5 McGlashan, 73

2-methylthia20le (m) 1 46.4 50.0 3.6 McGlashan, 73

2-methylthia2ole (s) 1 49.4 50.0 0.6 McGlashan, 73

2-nitro-5-methylphenol 1 68.7 50.0 -18.7 Acree, 91

2-nitroaniline 1 46.9 50.0 3.1 Martin, 79

2-nitroaniiine 1 46.9 50.0 3.1 Mortimer, 22

2-nitroaniline 1 47.1 50.0 2.9 Weast, 72

2-nitroben2oic acid 1 67.3 50.0 -17.3 Weast, 72 Table 2.2 (con't). Observed and predicted entropies of melting in J/degmol

Entropy of Melting

Name a Obs Pred Diff Ref

2-nitrobenzoic acid 1 66-5 50.0 -16.5 Martin, 79

2-nitrophenol 1 48.5 50.0 1.5 Mortimer, 22

2-nitrophenol 1 49.3 50.0 0.7 Weast, 72

2-nitrophenol 1 52.3 50.0 -2.3 Martin. 79

2-nitrophenol 1 54.9 50.0 -4.9 Acree, 91

* 2-norbornanone 2 9.2 44.2 35.0 Chickos, 91

3,3-dimethyl-2-thiabutane 1 44.5 50.0 5.5 McGlashan, 73

3,4-benzopyrene 1 38.1 50.0 11.9 Casellato, 73

3,4-ben2phenanthrene 2 48.7 44.2 -4.5 Casellato, 73

3.4-dlchlorophenol 1 61.4 50.0 -11.4 Acree, 91

3,4-dimethylphenol 1 54.3 50.0 -4.3 Acree, 91

3,4-dinitrophenol 1 62.3 50.0 -12.3 Acree, 91

3,4-dinitrotoluene 1 56.9 50.0 -6.9 Mortimer, 22

3,4:9,10-dibenzopyrene 1 50.0 50.0 0.0 Casellato, 73

3,5-dichlorophenol 2 60.2 44.2 -16.0 Acree, 91

3,5-dimethylphenol 2 53.5 44.2 -9.3 Acree, 91

3-amlnobenzoic acid 1 48.5 50.0 1.5 Martin, 79

3-aminobenzoic acid 1 48.6 50.0 1.4 Weast, 72 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

3-aminotoluene (m-toluidine) 1 36.4 50.0 13.6 Acree, 91

3-azabicyclo(3,2,2)nonane 1 64.0 50.0 -14.0 Bondi, 68

3-azabicyclo(3,2,2)nonane 1 64.1 50.0 -14.1 McGlashan, 73

3-bromobenzoic acid 1 49.8 50.0 0.2 Martin, 79

3-bromoiodobenzene 1 43.4 50.0 6.6 Weast, 72

3-bromonitrobenzene 1 57.3 50.0 -7.3 Martin, 79

3-chlorobenzoic acid 1 56.2 50.0 -6.2 Weast, 72

3-chlorobenzoic acid 1 55.6 50-0 -5.6 Martin, 79

3-chlorobromobenzene 1 51.0 50.0 -1.0 Martin, 79

3-chloronitrobenzene 1 56.5 50.0 -6.5 Mortimer, 22

3-chloronitrobenzene 1 61.4 50.0 -11.4 Weast, 72

3-chloronitrobenzene 1 67.4 50.0 -17.4 Martin, 79

3-chlorophenol 1 38.5 50.0 11.5 Martin, 79

3-chlorophenol 1 48.8 50.0 1.2 Acree, 91

3-fluorotoluene 1 45.1 50.0 4.9 Acree, 91

3-hydroxyaniline 1 46.9 50.0 3.1 Martin, 79

3-hydroxybenzoic acid 1 61.5 50.0 -11.5 Martin, 79

3-hydroxytoluene (m-cresol) 1 37.8 50.0 12.2 McGlashan. 73 42

Table 2.2 (con't). Observed and predicted entropies of melting In J/deg^ol

Entropy of Melting

Name CT Obs Pred Diff Ref

3-hydroxytoluene (m-cresol) 1 37.7 50.0 12.3 Martin, 79

3-hydroxytoluene (m-cresol) 1 37.8 50.0 12.2 Bondi, 68

* 3-hydroxytoluene (m-cresol) 1 26.4 50.0 23.6 Mortimer, 22

3-methylbenzoic acid 1 41.5 50.0 8.5 Weast, 72

3-methylbenzolc acid 1 41.4 50.0 8.6 Martin, 79

3-methylphenol 1 33.0 50.0 17.0 Acree, 91

3-methylpyridine 1 56.1 50.0 -6.1 McGlashan, 73

3-nltroanlline 1 49.4 50.0 0.6 Mortimer, 22

3-nltroaniline 1 61.5 50.0 -11.5 Martin, 79

3-nitroanlline 1 61.6 50.0 -11.6 Weast, 72

3-nitrobenzoic acid 1 47.3 50.0 2.7 Martin, 79

3-nitrobenzoic acid 1 46.9 50.0 3.1 Weast, 72

3-nitrophenol 1 51.9 50.0 -1.9 Acree, 91

3-nitrophenol 1 56.5 50.0 -6.5 Mortimer, 22

3-nltrophenol 1 57.7 50.0 -7.7 Martin, 79

3-nitrotoluene 1 47.7 50.0 2.3 Martin, 79

3-oxabicyclo(2,2,3)nonane 2 49.9 44.2 -5.7 McGlashan, 73

4,6-dlmethyllndan 1 50.2 50.0 -0.2 Acree, 91 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

4,7-dimethylindan 2 49.6 44.2 -5.4 Acree, 91

4-aminobenzoic acid 1 45.6 50.0 4.4 Martin, 79

4-aminobenzoic acid 1 45.6 50.0 4.4 Weast, 72

4-aminotoluene (p-toluidine) 2 58.0 44.2 -13.8 Weast, 72

4-amlnotoluene (p-toluidine) 2 52.7 44.2 -8.5 Mortimer, 22

4-aminotoluene (p-toiuidine) 2 56.5 44.2 -12.3 Martin, 79

4-aminotoluene (p-toiuidine) 2 56.5 44.2 -12.3 Acree, 91

4-bromoaniline 2 60.2 44.2 -16.0 Martin, 79

4-bromobenzoic acid 1 64.9 50.0 -14.9 Martin, 79

4-bromoiodobenzene 2 48.9 44.2 -4.7 Weast, 72

4-bromonitrobenzene 1 41.8 50.0 8.2 Martin, 79

4-bromonitrobenzene 1 57.7 50.0 -7.7 Mortimer, 22

4-bromophenol 2 43.9 44.2 0.3 Martin, 79

4-bromophenol 2 44.4 44.2 -0.2 Weast, 72

4-bromotoluene 2 49.9 44.2 -5.7 Weast, 72

4-bromotoluene 2 50.2 44.2 -6.0 Martin, 79

4-bromotoluene 2 51.0 44.2 -6.8 Mortimer, 22

4-chloroaniline 2 57.7 44.2 -13.5 Martin, 79 Table 2.2 (con't). Obsen^ed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

4-chlorobenzoic acid 1 63.3 50.0 -13.3 Weast, 72

4-chlorobenzoic acid 1 62-8 50.0 -12.8 Martin, 79

4-chlorobromobenzene 2 55.6 44.2 -11.4 Martin, 79

4-chloronitrobenzene 1 49.0 50.0 1.0 Martin. 79

4-chloronitrobenzene 1 56.9 50.0 -6.9 Mortimer, 22

4-chloronitrobenzene 1 58.7 50.0 -8.7 Weast, 72

4-chlorophenol 2 44.5 44.2 -0.3 Acree, 91

4-chlorophenol 2 46.4 44.2 -2.2 Martin, 79

4-chlorotoluene 2 54.0 44.2 -9.8 Martin, 79

4-fluoronitrobenzene 1 44.8 50.0 5.2 Mortimer, 22

4-fiuorotoluene 2 40.8 44.2 3.4 Acree, 91

4-fluorotoluene 2 43.6 44.2 0.6 McGlashan, 73

4-hydroxybenzoic acid 1 51.0 50.0 -1.0 Martin, 79

4-hydroxybenzoic acid 1 63.3 50.0 -13.3 Acree, 91

4-hydroxytoluene (p-cresol) 2 41.5 44.2 2.7 Bondi, 68

4-hydroxytoluene (p-cresol) 2 40.2 44.2 4.0 Martin, 79

4-hydroxytoluene (p-cresol) 2 41.6 44.2 2.6 McGlashan, 73

4-hydroxytoluene (p-cresol) 2 38.9 44.2 5.3 Weast, 72 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg

Entropy of Melting

Name (T Obs Pred Diff Ref

4-lodonitrobenzene 1 64.0 50.0 -14.0 Mortimer, 22

4-methylbenzoic acid 1 50.6 50.0 -0.6 Weast, 72

4-methylbenzoic acid 1 51.9 50.0 -1.9 Martin, 79

4-methylphenol 2 38.5 44.2 5.7 Acree, 91

4-nltro-5-methylphenol 1 68-3 50.0 -18.3 Acree, 91

4-nitroaniline 1 49.8 50.0 0.2 Mortimer, 22

4-nltroaniline 1 50.2 50.0 -0.2 Martin, 79

4-nitroaniline 1 50.6 50.0 -0.6 Weast, 72

4-nitr0ben20ic acid 1 72.0 50.0 -22.0 Martin, 79

4-nltrobenzoic acid 1 72.6 50.0 -22.6 Weast, 72

4-nitrophenol 1 47.2 50.0 2.8 Acree, 91

4-nitrophenol 1 54.4 50.0 -4.4 Martin, 79

4-nitrophenol 1 56.9 50.0 -6.9 Mortimer, 22

4-nitrophenol 1 63.2 50.0 -13.2 Weast, 72

4-nitrotoluene 1 47.3 50.0 2.7 Mortimer, 22

4-nitrotoluene 1 51.8 50.0 -1.8 Acree, 91

4-nitrotoluene 1 52.7 50.0 -2.7 Martin, 79

4-tert-butylbenzoic acid 1 41.0 50.0 9.0 Chickos, 91 46

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

9,10-diphenylanthracene 4 55.1 38.4 -16.7 Mishra, 90

9-fluorenone 2 50.8 44.2 -6.6 Acree, 91

9-iodotoluene 2 56.1 44.2 -11.9 Weast, 72

acenaphthene 2 56.5 44.2 -12.3 Mishra, 90

acenaphthene 2 56.9 44.2 -12.7 Mortimer, 22

acenaphthene 2 56.9 44.2 -12.7 Ubbelohde, 78

acenaphthene 2 57.3 44.2 -13.1 Bondi, 68

acenaphthene 2 58.8 44.2 -14.6 Acree, 91

acenaphthene 2 60.0 44.2 -15.8 Casellato, 73

acenaphthene 2 60.2 44.2 -16.0 Wauchope, 72

acetamide 1 41.6 50.0 8.4 Bondi, 68

acetamide 1 26.4 50.0 23.6 Mortimer, 22

acetic acid 1 40.1 50.0 9.9 Weast, 72

acetic acid 1 40.0 50.0 10.0 Gamer, 1926

acetic acid 1 21.1 50.0 28.9 Mortimer, 22

acetone 2 32.1 44.2 12.1 Weast, 72

acetone 2 32.7 44.2 11.5 Bondi, 68

acridine 2 43.6 44.2 0.6 Acree, 91 Table 2.2 (con't). Obsen^ed and predicted entropies of melting in J/degHmol

Entropy of Melting

Name a Obs Pred Difr Ref

alpha-aminonaphthalene 1 44.8 50.0 5.2 Acree, 91

alpha-bromonaphthalene 1 55.9 50.0 -5.9 Acree, 91

alpha-chloronaphthalene 1 47.7 50.0 2.3 Acree, 91

alpha-iodonaphthalene 1 56.8 50.0 -6.8 Acree, 91

aipha-naphtholc acid 1 45.8 50.0 4.2 Acree, 91

alpha-naphthol 1 58.2 50.0 -8.2 Mortimer, 22

alpha-naphthol 1 63.5 50.0 -13.5 Acree, 91

alpha-naphthol 1 64.3 50.0 -14.3 Weast, 72

alpha-naphthylamine 1 41.0 50.0 9.0 Mortimer, 22

alpha-naphthylamine 1 41.7 50.0 8.3 Bondi, 68

alpha-naphthylamine 1 41.7 50.0 8.3 Weast, 72

ammonia 10 29.1 30.9 1.8 Bondi, 68

aniline 2 39.7 44.2 4.5 Bondi, 68

aniline 2 39.8 44.2 4.4 Weast, 72

aniline 2 30.4 44.2 13.8 Mortimer, 22

anthracene 4 58.5 38.4 -20.1 Casellato, 73

anthracene 4 58.6 38.4 -20.2 Mortimer, 22

anthracene 4 59.0 38.4 -20.6 Mishra, 90 48

Table 2.2 (con't). Obsen/ed and predicted entropies of melting in J/degHnol

Entropy of Melting

Name

anthracene 4 59.0 38.4 -20.6 Ubbelohde, 78

anthracene 4 59.0 38.4 -20.6 Wauchope, 72

anthracene 4 59-3 38.4 -20.9 Bondi, 68

anthracene 4 59.4 38.4 -21.0 Weast, 72

anthraquinone 4 58.2 38.4 -19.8 Mortimer, 22

anthraquinone 4 58.9 38.4 -20.5 Weast, 72

argon 100 14.1 11.7 -2.4 Bondi, 68

azulene 1 51.7 50.0 -1.7 Bondi, 68

benzene 12 35.0 29.2 -5.8 Mortimer, 22

benzene 12 35.3 29.2 -6.1 Dozen, 78

benzene 12 35.6 29.2 -6.4 Bondi, 68

benzene 12 36.0 29.2 -6.8 Weast, 72

benzo(a)pyrene 1 65.7 50.0 -15.7 Mishra, 90

benzoic acid 1 44.1 50.0 5.9 Weast, 72

benzoic acid 1 45.5 50.0 4.5 Chickos, 91

benzoquinone 4 48.3 38.4 -9.9 Weast, 72

beta-aminonaphthalene 1 61.1 50.0 -11.1 Acree, 91

beta-bromonaphthalene 1 36.1 50.0 13.9 Acree, 91 Table 2.2 (con't). Observed and predicted entropies of melting in J/degmol

Entropy of Melting

Name a Obs Pred Diff Ref

beta-chloronaphthalene 1 44.3 50.0 5.7 Acree, 91

beta-iodonaphthalene 1 49.0 50.0 1.0 Acree, 91

beta-naphthoic acid 1 51.4 50.0 -1.4 Acree, 91

beta-naphthol 1 44.2 50.0 5.8 Acree, 91

beta-naphthol 1 48.3 50.0 1.7 Weast, 72

beta-naphthol 1 55.6 50.0 -5.6 Mortimer, 22

beta-oxynaphthoic acid 1 56.5 50.0 -6.5 Mortimer, 22

bicyclo-2,2,1-heptane 2 44.7 44.2 -0.5 Bondi, 68

bicyclo-2,2,2-octane 6 46.8 35.0 -11.8 Bondi, 68

blcyclo-2,2,2-octane 6 47.0 35.0 -12.0 McGlashan, 73

bicyclo-2,2,2-octene 2 49.5 44.2 -5.3 McGlashan, 73

bicyclooctane 6 18.6 35.0 16.4 Acree, 91

boron trifluoride 10 29.3 30.9 1.6 Bondi, 68

bromine 20 40.7 25.1 -15.6 Bondi, 68

bromobenzene 2 44.1 44.2 0.1 Weast, 72

bromocamphor 1 56.9 50-0 -6.9 Bondi, 68

bromoethane (ethyl bromide) 1 38.2 50.0 11.8 Bondi, 68

bromoethane (ethyl bromide) 1 38.6 50.0 11.4 Weast, 72 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name CT Obs Pred Diff Ref

bromoform 3 41.4 40.9 -0.5 Bondi, 68

bromotrichloromethane 3 9.5 40.9 31.4 Weast, 72

1 43.5 50.0 6.5 Bondi, 68

camphene 1 98.0 50.0 -48.0 Weast, 72

carbazole 2 51.5 44.2 -7.3 Mortimer, 22

carbazole 2 57.0 44.2 -12.8 Acree, 91

carbazole 2 57.4 44.2 -13.2 Weast, 72

carbon tetrabromide 12 31.1 29.2 -1.9 Bondi, 68

carbon tetrachloride 12 30.1 29.2 -0.9 Bondi, 68

carbon tetrachloride 12 13.2 29.2 16.0 Weast, 72

12 28.0 29.2 1.2 McGlashan, 73

carbon tetrafluoride 12 27.3 29.2 1.9 Bondi, 68

carbon monoxide 10 22.8 30.9 8.1 Bondi, 68

carbon oxide sulfide 20 35.5 25.1 -10.4 Bondi, 68

carbon dioxide 20 39.0 25.1 -13.9 Bondi, 68 O carbon disulfide 20 27.4 25.1 C Weast, 72

carbon disulfide 20 27.4 25.1 -2.3 Bondi, 68

carbon suboxide 20 33.9 25.1 -8.8 McGlashan, 73 51

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg

Entropy of Melting

Name CT Obs Pred Diff Ref

carbonyl fluoride 2 41.7 44.2 2.5 McGlashan, 73

chlorine 20 37.4 25.1 -12.3 Bondi, 68

chlorobenzene 2 42-5 44.2 1.7 Weast, 72

chloroethane (ethyl chloride) 1 33.0 50.0 17.0 Weast, 72

chloroethane 1 40.0 50.0 10.0 Wauchope, 72

chloroethane 1 41.0 50.0 9.0 Wauchope, 72

* chloroethane (ethyl chloride) 1 33.1 50.0 16.9 Bondi, 68

chrysene 2 49.2 44.2 -5.0 Casellato, 73

chrysene 2 49.2 44.2 -5.0 Mishra, 90

chrysene 2 62.3 44.2 -18.1 Ubbelohde, 78

chrysene 2 62.8 44.2 -18.6 Bondi, 68

* cls-1,2-dimethylcyclohexane 1 7.4 50.0 42.6 Weast, 72

cls-1,3-dimethylcyclohexane 1 55.2 50.0 -5.2 Weast, 72

cis-1,4-dimethylcyclohexane 1 50.5 50.0 -0.5 Weast, 72

cls-2-butene 1 54.9 50.0 -4.9 Bondi, 68

cis-2-butene 1 56.5 50.0 -6.5 Acree, 91

cls-2-butene 1 56.9 50.0 -6.9 Weast, 72

coronene 12 27.0 29.2 2.2 Acree, 91 52

Table 2.2 (con't). Observed and predicted entropies of melting In J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

cyanamide 10 27.8 30.9 3.1 Weast, 72

cyanoacetylene 2 51.0 44.2 -6.8 Bondi, 68

cyclohexane 6 46.0 35.0 -11.0 Bondi, 68

cyclohexane 6 9.5 35.0 25.5 Weast, 72

cyclohexanethiol 1 53.1 50.0 -3.1 McGlashan, 73

cyclohexanol 1 37.4 50.0 12.6 Bondi, 68

cyciohexanol 1 39.5 50.0 10.5 McGlashan, 73

cyclohexanol 1 5.9 50.0 44.1 Weast, 72

cyclohexene 2 19.5 44.2 24.7 Weast, 72

cyclooctatetraene 4 42.3 38.4 -3.9 Weast, 72

cyclopentanethiol 1 50.8 50.0 -0.8 McGlashan, 73

cyclopentane 10 3.4 30.9 27.5 Weast, 72

cyclopentene 2 24.5 44.2 19.7 Weast, 72

cyclopentylamine 2 43.6 44.2 0.6 Acree, 91

cyclopropane 6 37.6 35.0 -2.6 Weast, 72

cyclopropane 6 37.8 35.0 -2.8 Bondi, 68

cyclopropylamine 2 55.4 44.2 -11.2 Acree, 91

deuteromethane 100 12.2 11.8 -0.4 McGlashan, 73 53

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^nol

Entropy of Melting

Name o Obs Pred Diff Ref

deuteromethane 100 14.2 11.8 -2.4 Weast, 72

dibenzofuran 2 52.3 44.2 -8.1 Acree, 91

dibenzothiophene 2 41.2 44.2 3.0 Acree, 91

dichloromethane 2 34.0 44.2 10.2 Weast, 72

dicyanide (oxalonitrile) 20 33.3 25.1 -8.2 Bondi, 68

dimethyl cadmium 2 36.1 44.2 8.1 Bondi, 68

dimethyl ether 2 37.8 44.2 6.4 Bondi, 68

dimethyl ether 2 37.8 44.2 6.4 Weast, 72

dimethyl sulfoxide 2 49.6 44.2 -5.4 McGlashan, 73

dimethyl sulfoxide 2 48.1 44.2 -3.9 Bondi, 68

dimethyl sulfone 1 56.9 50.0 -6.9 Bondi, 68

dimethyl sulfone 1 48.3 50.0 1.7 McGlashan. 73

dimethyl sulfide 2 46.0 44.2 -1.8 Weast, 72

dimethyl disulfide 2 49.2 44.2 -5.0 Bondi, 68

dimethyl disulfide 2 60.6 44.2 -16.4 Weast, 72

dimethylamine 2 33.1 44.2 11.1 Weast, 72

dimethylmalononitrile 2 46.2 44.2 -2.0 McGlashan, 73

dimethylpyrone 2 72.5 44.2 -28.3 Weast, 72 Table 2.2 (con't). Obsen^ed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

dioxane 2 50.2 44.2 -6-0 Weast, 72

e-caprolactam 1 47.4 50.0 2-6 Bondi, 68

epsilon-caprolactone 1 50.8 50.0 -0.8 Acree, 91

ethane 20 32.0 25.1 -6.9 Bondi. 68

ethane 20 32.1 25.1 -7.0 Weast, 72

ethane 20 40.2 25.1 -15-1 Broadhurst, 62

ethanol 1 31-9 50.0 18-1 Weast, 72

ethanol 1 32.1 50.0 17.9 Bondi, 68

ethene 4 28.6 38-4 9.8 Bondi, 68

2 32-6 44-2 11.6 Bondi, 68

ethylene oxide 2 32-4 44-2 11.8 Weast, 72

fluoranthene 2 49-5 44-2 -5.3 Casellato, 73

fluoranthene 2 49.5 44-2 -5.3 Mishra, 90

fluorene 2 48-5 44-2 -4.3 Casellato, 73

fluorene 2 48-5 44-2 -4.3 Mishra, 90

fluorene 2 50-5 44-2 -6.3 Acree, 91

fluorene 2 50.6 44-2 -6.4 Wauchope, 72

fluorene 2 51.9 44-2 -7.7 Mortimer, 22 55

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name CT Obs Pred Diff Ref

fluorine 20 28.5 25.1 -3.4 Bondi, 68

fluorobenzene 2 49.0 44.2 -4.8 Acree, 91

fluorocyanide 10 33.5 30.9 -2.6 Bondi, 68

fluoroform 3 33-5 40.9 7.4 Bondi, 68

fiuoroform 3 34.7 40.9 6.2 McGlashan, 73

furan 2 34.1 44.2 10.1 Bondi, 68

gemnanium tetrahydride 100 16.7 11.7 -5.0 Bondi, 68

12 47.2 29.2 -18.0 Acree, 91

6 50.0 35.0 -15.0 Bondi, 68

hexafluorobenzene 12 41.4 29.2 -12.2 McGlashan, 73

hexafluorobenzene 12 47.0 29.2 -17.8 McGlashan, 73

6 51.8 35.0 -16.8 Bondi, 68

hexamethylbenzene 12 52.0 29.2 -22.8 Bondi, 68

* hexamethylbenzene 12 9.8 29.2 19.4 McGlashan, 73

hydrazine 20 46.4 25.1 -21.3 Bondi, 68

hydrogen cyanide 10 32.6 30.9 -1.7 Bondi, 68

hydrogen cyanide 10 32.6 30.9 -1.7 Weast, 72

hydrogen bromide 10 22.0 30.9 8.9 Bondi, 68 56

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

hydrogen chloride 10 24.9 30.9 6.0 Bondi, 68

hydrogen fluoride 10 24.3 30.9 6.6 Bondi, 68

hydrogen iodide 10 21.4 30.9 9.5 Bondi, 68

hydrogen sulfide 10 27.6 30.9 3.3 Bondi, 68

hydrogen selenide 10 38.1 30.9 -7.2 Bondi, 68

hydrogen 100 8.7 11.7 3.0 Bondi, 68

i-butane 3 40.3 40.9 0.6 Bondi, 68

i-butane 3 40.5 40.9 0.4 Zwolinski, 84

i-butane 3 40.8 40.9 0.1 Weast, 72

i-butane 3 41.6 40.9 -0.7 Bondi, 68

l-propanol 1 29.3 50.0 20.7 Bondi, 68

i-propanol 1 29.4 50.0 20.6 McGlashan, 73

i-propanol 1 29.5 50.0 20.5 Weast, 72

i-propyl bromide 1 39.8 50.0 10.2 Bondi, 68

i-propyl chloride 1 47.7 50.0 2.3 Weast, 72

i-propyl chloride 1 40.6 50.0 9.4 Bondi, 68

i-propylbenzene 2 44.2 44.2 0.0 Bondi, 68

indane 2 39.1 44.2 5.1 Bondi, 68 Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name CT Obs Pred Diff Ref

indene 1 37.8 50.0 12.2 Bondi, 68

Iodine 20 41.2 25.1 -16.1 Bondi, 68

iodobenzene 2 40.6 44.2 3.6 Weast, 72

Iodoform 3 41.6 40.9 -0.7 Bondi, 68

krypton 100 14.2 11.7 -2.5 Bondi, 68

m-xylenedibromide 1 68.1 50.0 -18.1 Weast, 72

m-xylenedlchloride 1 64.0 50.0 -14.0 Weast, 72

malononitrile 2 40.5 44.2 3.7 McGlashan, 73

methane 100 10.4 11.8 1.4 Broadhurst, 62

methane 100 10.4 11.8 1.4 Weast, 72

methane 100 11.8 11.8 0.0 McGlashan, 73

methane 100 13.5 11.8 -1.7 Bondi, 68

methanethiol (methyl mercaptan) 10 39.1 30.9 -8.2 Weast, 72

methanethiol (methyl mercaptan) 10 39.6 30.9 -8.7 Bondi, 68

10 18.2 30.9 12.7 Weast, 72

methanol 10 22.4 30.9 8.5 Bondi, 68

methanol 10 22.5 30.9 8.4 McGlashan, 73

methyl bromide 10 37.2 30.9 -6.3 Bondi, 68 58

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name ff Obs Pred Diff Ref

methyl bromide 10 33.6 30.9 -2.7 Weast, 72

methyl chloride 10 37.1 30.9 -6.2 Bondi, 68

methyl chloroform 3 11.3 40.9 29.6 Weast, 72

methyl cyanide (acetonitrile) 10 40.2 30.9 -9.3 Bondi, 68

methyl cyanide (acetonitrile) 10 35.9 30.9 -5.0 McGlashan, 73

methylamine 10 34.4 30.9 -3.5 Weast, 72

methylamine 10 34.5 30.9 -3.6 Bondi, 68

methylcyclobutane 2 41.6 44.2 2.6 Acree, 91

methylcyclohexane 1 46.4 50.0 3.6 Bondi, 68

methylcyclohexane 1 46.4 50.0 3.6 Weast, 72

methylcyclopentane 1 53.4 50.0 -3.4 Weast, 72

methylphosphoruldibromide 1 47.7 50.0 2.3 Casellato, 73

methylphosphorylchlorofluoride 1 47.7 50.0 2.3 McGlashan, 73

methylphosphoryldichloride 1 59.5 50.0 -9.5 McGlashan, 73

methylphosphoryldifluoride 1 50.7 50.0 -0.7 McGlashan, 73

monodeuteromethane 100 11.3 11.7 0.4 Wauchope, 72

monodeuteromethane 100 11.3 11.8 0.5 Weast, 72

naphthacene 4 61.9 38.4 -23.5 Mishra, 90 59

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name o Obs Pred Diff Ref

naphthalene 4 52.7 38.4 -14.3 Mortimer, 22

naphthalene 4 53.1 38.4 -14.7 Mishra, 90

naphthalene 4 53.2 38.4 -14.8 Dozen, 78

naphthalene 4 53.6 38.4 -15.2 Weast, 72

naphthalene 4 54.2 38.4 -15.8 Bondi, 68

naphthalene 4 54.3 38.4 -15.9 Casellato, 73

naphthalene 4 54.8 38.4 -16.4 Ubbelohde, 78

naphthalene 4 56.8 38.4 -18.4 Chickos, 91

naphthalene 4 103.3 38.4 -64.9 Wauchope, 72

neon 100 13.7 11.7 -2.0 Bondi, 68

nitrobenzene 1 41.9 50.0 8.1 Weast, 72

nitrogen monoxide 10 21.2 30.9 9.7 Bondi, 68

nitrogen 20 17.7 25.1 7.4 Bondi, 68

nitronaphthalene 1 55.2 50.0 -5.2 Mortimer, 22

nitronaphthalene 1 56.3 50.0 -6.3 Weast, 72

nitrous oxide 20 36.1 25.1 -11.0 Bondi, 68

o-tetrachloroxylene 2 60.2 44.2 -16.0 Weast, 72

o-toluic acid 1 53.5 50.0 -3.5 Acree, 91 Table 2.2 (con't). Obsen^ed and predicted entropies of melting in J/deg^oi

Entropy of Melting

Name CT Obs Pred Diff Ref

o-xylenedlbromide 1 73.3 50.0 -23.3 Weast, 72

o-xylenedichloride 1 65.3 50.0 -15.3 Weast, 72

oxygen 20 29.0 25.1 -3.9 Bondi, 68

p-tetrachloroxylene 4 61.7 38.4 -23.3 Weast, 72

p-xylenedichioride 2 64.7 44.2 -20.5 Weast, 72

paraldehyde 6 41.4 35.0 -6.4 Mortimer, 22

paraldehyde 6 49.1 35.0 -14.1 Weast, 72

pentacarbonyliron 6 52.7 35.0 -17.7 Bondi, 68

pentachlorobenzene 2 57.6 44.2 -13.4 Acree, 91

pentachloronitrobenzene 1 44.0 50.0 6.0 Acree, 91

pentafluorobenzene 2 48.0 44.2 -3.8 Acree, 91

pentafluorobenzene 2 48.5 44.2 -4.3 McGlashan, 73

pentafluorochiorobenzene 2 54.8 44.2 -10.6 McGlashan, 73

pentafluoronitrobenzene 1 47.2 50.0 2.8 Acree, 91

pentafluorophenol 2 42.0 44.2 2.2 Acree, 91

pentafluorophenol 2 48.5 44.2 -4.3 McGlashan, 73

pentafluorophenol 2 57.2 44.2 -13.0 McGlashan, 73

pentafluorotoluene 2 53.4 44.2 -9.2 Acree, 91 61

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Oiff Ref

pentafluorotoiuene 2 56.8 44.2 -12.6 McGlashan, 73

perylene 4 57.3 38.4 -18.9 Casellato, 73

perylene 4 60.7 38.4 -22.3 Mishra, 90

phenanthrene 2 43.9 44.2 0.3 Wauchope, 72

phenanthrene 2 44.2 44.2 0.0 Acree, 91

phenanthrene 2 45.1 44.2 -0.9 Casellato, 73

phenanthrene 2 50.2 44.2 -6.0 Mishra, 90

phenanthrene 2 50.4 44.2 -6.2 Bondi, 68

phenanthrene 2 50.6 44.2 -6.4 Mortimer, 22

phenanthrene 2 50.6 44.2 -6.4 Ubbelohde, 78

phenanthrene 2 50.8 44.2 -6.6 Weast, 72

phenol 2 30.1 44.2 14.1 Mortimer, 22

phenol 2 36.2 44.2 8.0 Weast, 72

phenol 2 36.9 44.2 7.3 Bondi, 68

phosgene 2 39.7 44.2 4.5 Wauchope, 72

phosgene 2 39.8 44.2 4.4 Bondi, 68

phosgene 2 39.8 44.2 4.4 Weast, 72

phosphine 10 30.2 30.9 0.7 Bondi, 68 62

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name a Obs Pred Diff Ref

phthalic anhydride 2 50.6 44.2 -6.4 Mortimer, 22

picene 2 55.2 44.2 -11.0 Casellato, 73

platinum hexafluoride 8 45.6 32.7 -12.9 Bondi, 68

2 38.8 44.2 5.4 Weast, 72

propane 2 41.0 44.2 3.2 Bhtnagar, 79

propane 2 41.2 44.2 3.0 Broadhurst, 62

propane 2 41.6 44.2 2.6 Bondi, 68

propane 2 41.7 44.2 2.5 Zwolinski, 84

propene 1 34.1 50.0 15.9 Acree, 91

propene 1 34.1 50.0 15.9 Bhtnagar, 79

propene 1 34.3 50.0 15.7 Bondi, 68

propene 1 34.4 50.0 15.6 Weast, 72

pyrene 4 36.0 38.4 2.4 Wauchope, 72

pyrene 4 40.3 38.4 -1.9 Casellato, 73

pyrene 4 40.3 38.4 -1.9 Mishra, 90

* pyrene 4 52.3 38.4 -13.9 Mortimer, 22

pyridine 2 35.6 44.2 8.6 Bondi, 68

pyrrole 2 31.7 44.2 12.5 Acree, 91 63

Table 2.2 (con't). Observed and predicted entropies of melting in J/degnnol

Entropy of Melting

Name a Obs Pred Diff Ref

pyrrole 2 32-0 44.2 12.2 Bondi, 68

pyrrole 2 32-0 44.2 12-2 McGlashan, 73

silicon tetrahydride 100 17-8 11.7 -6-1 Bondi, 68

succinic anhydride 2 52-4 44.2 -8-2 Weast, 72

sulfolane 2 38.1 44.2 6-1 Bondi, 68

sulfur dioxide 20 37.7 25.1 -12-6 Bondi, 68

sulfur trioxide 10 30.0 30.9 0-9 Bondi, 68

t-butanol 3 22.9 40.9 18-0 Weast, 72

t-butanol 3 25-5 40.9 15-4 McGlashan, 73

t-butyl cyanide (trimethylacetonitril) 3 32-1 40.9 8.8 McGlashan, 73

t-butyl cyanide (trimethylacetonitril) 3 41-0 40.9 -0-1 Bondi, 68

t-butylamine 3 34-4 40.9 6.5 Bondi, 68

t-butylchloride 3 45-8 40.9 -4.9 McGlashan, 73

tetrachloroethene 4 42-2 38.4 -3.8 Bondi, 68

tetrafluoroethene 4 54.8 38.4 -16.4 Bondi, 68

tetrahydrofuran 2 51.8 44.2 -7.6 Acree, 91

tetrahydrothiopyran 1 8.1 50.0 41.9 Acree, 91

tetramethyl lead 12 44.9 29.2 -15.7 Bondi, 68 64

Table 2.2 (con't). Observed and predicted entropies of melting in J/degfnol

Entropy of Melting

Name a Obs Pred Diff Ref

tetramethyl silane 12 39.8 29.2 -10.6 Weast, 72

tetramethyl silane 12 39.9 29.2 -10.7 Bondi, 68

tetramethyl tin 12 43.7 29.2 -14.5 Bondi, 68

tetramethylethylene 4 27.7 38.4 10.7 Weast, 72

tetramethylethylene 4 50.0 38.4 -11.6 Bondi. 68

tetramethylspirononane 1 48.2 50.0 1.8 Bondi, 68

thianthrene 2 59.4 44.2 -15.2 Acree, 91

thiophene 2 41.9 44.2 2.3 Bondi, 68

* thiophene 2 21.4 44.2 22.8 Weast, 72

thiophenol (benzenethiol) 2 44.8 44.2 -0.6 Weast, 72

thiophenol (benzenethiol) 2 44.7 44.2 -0.5 Bondi, 68

thioxanthene 2 65.0 44.2 -20.8 Acree, 91

toluene (methylbenzene) 2 37.5 44.2 6.7 Bondi, 68

toluene (methylbenzene) 2 37.6 44.2 6.6 McGlashan, 73

* toluene (methylbenzene) 2 19.0 44.2 25.2 Weast, 72

* trans-1,1-dimethylcyclohexane 2 8.6 44.2 35.6 Weast, 72

trans-1,2-dimethylcyciohexane 2 57.1 44.2 -12.9 Weast, 72

trans-1,3-dimethylcyclohexane 1 54.3 50.0 -4.3 Weast. 72 65

Table 2.2 (con't). Observed and predicted entropies of melting in J/degnnol

Entropy of Melting

Name a Obs Pred Diff Ref

trans-1,4-dimethylcyclohexane 2 52.6 44.2 -8.4 Weast, 72

trans-2-butene 1 58.7 50.0 -8.7 Bondi, 68

tri-tert-butylmethanol 3 8.8 40.9 32.1 Acree, 91

trichloromethane (chloroform) 3 44.3 40.9 -3.4 Bondi, 68

trichloromethane (chloroform) 3 42.3 40.9 -1.4 Weast, 72

triflumethyl cyanide 3 38.9 40.9 2.0 McGlashan, 73

triflumethyl cyanide 3 38.8 40.9 2.1 Bondi, 68

trifluorotrichlorobenzene 2 49.4 44.2 -5.2 Casellato, 73

trifluorotrichlorobenzene 2 59.5 44.2 -15.3 McGlashan, 73

trimethyl indium 3 43.5 40.9 -2.6 Bondi, 68

trimethylamine 3 42.3 40.9 -1.4 Bondi, 68

trimethylamine 3 42.3 40.9 -1.4 Weast, 72

trimethylamine 3 44.4 40.9 -3.5 Bondi, 68

trimethylene diamine 1 59.0 50.0 -9.0 Bondi, 68

trioxane 6 32.6 35.0 2.4 Bondi, 68

triphenylene 6 52-9 35.0 -17.9 Casellato, 73

triphenylene 6 52.9 35.0 -17.9 Mishra, 90

triptycene 6 57.9 35.0 -22.9 McGlashan, 73 66

Table 2.2 (con't). Observed and predicted entropies of melting in J/deg^ol

Entropy of Melting

Name o Obs Pred Diff Ref

uranium hexafluoride 8 57.3 32.7 -24.6 Bondi, 68

urea 2 36.1 44.2 8.1 Bondi, 68

water 10 22.2 30.9 8.7 Bondi, 68

xanthene 2 51.4 44.2 -7.2 Acree, 91

xanthone 2 58.1 44.2 -13.9 Acree, 91

xenon 100 14.3 11.7 -2.6 Bondi, 68

* The value is either less than 9 J/K mol or is clearly out of line with other reported values for the same or related compound. CHAPTER III: MOLECULAR FLEXIBILITY

Introduction

Entropy of melting values for many flexible molecules are generally greater than predicted by Walden's rule, equation 2-1. Walden's rule was the only method available for estimating the entropy of melting until the late 1980's and early

1990's vi/hen group contribution methods were being developed by several investigators including Chickos (1990 and 1991) and Domalski (1988 and

1990). Unfortunately, these latter methods are cumbersome and require the use of numerous group contribution values, many of which are still unavailable.

In an attempt to predict the entropy of melting from a relatively simple equation,

Chapter II focused on rigid molecules. In that chapter Walden's rule was modified to 50 J/deg-mol by using a large database consisting of non­ symmetrical, rigid molecules. A molecular symmetry number was defined to modify the constant for symmetrical molecules, since this type of compound has a lower entropy of melting. Although, the semi-empirical equation (equation 2-

6) does quite well In predicting the total entropy of melting for a large variety of rigid molecules, it cannot be used to estimate the entropy for flexible molecules.

Thus, in this chapter, a molecular flexibility number, (|> (similar to the one used by Mishra and Yalkowsky, 1991; and Tsakanikas and Yalkowsky, 1988), is defined and related to the total entropy of melting. 68

Methods

Molecular Flexibility Number

A flexible molecule must contain at least one torsional angle, where the torsional angle is a string of four atoms that are not rotationally restricted. The number of torsional angles can be related to the number of possible conformations that a molecule can assume. For example, the molecular flexibility number, for simple linear alkanes can be defined as:

«|) = 2.85'c (3-1) where t is the number of torsional angles; and the value 2.85 is based on an equation developed by Temperley (1956) with the assumption that the trans conformation is more stable than the gauche conformation by 2.26 kj/mole.

The number of torsional angles, x, can be calculated by subtracting 1 from the total number of chain atoms present in the molecule. Radially symmetrical end groups such as halogens and cyano, as well as, carbonyl oxygen are not included in the number of chain atoms. Note that methyl, amine, and hydroxy groups are treated as radially symmetrical because the small size of their hydrogens allows for free rotation. Also tertiary carbons that have three radially symmetrical end groups attached to it, such as -C(CH3), -CBra and -CF3, do not add substantially to the flexibility of the molecule and hence are not included in the number of chain atoms. 69

Torsional rotation for all sp^ hybridized atoms is assumed to be restricted to a similar extent. Therefore, C, CH, NH, N, O, and S are included in SP3 along with CH2. The number of effective torsional angles for saturated linear molecules is x - SP3 -1, where SP3 is the number of sp^ atoms in the chain.

For example, 1-chloropropane has a flexibility number of 2.85^'^^ or 2.85, similarly, 1-chloropentane has a flexibility number of 2.85^^^' or 23.1, as shown in Table 3.1.

Table 3.1. Examples of some molecular flexibilities

NAME SP3 SP2 RING t «j>

propane 1 0 0 0 1.00

butane 2 0 0 1 2.85

pentane 3 0 0 2 8.12

1 -chloropropane 2 0 0 1 2.85

1-chlorobutane 3 0 0 2 8.12

1-chloropentane 4 0 0 3 23.10

2-butanone 1 1 0 0.5 1.69

1-butyne 1 0 0 0 1.00

1-butylnaphthalene 3 0 1 2.5 13.70 70

For more complex structures sp^ atoms need to be considered. Since a double bond is less flexible than a single bond, an sp^ atom contributes less to flexibility than an sp^ atom. Two sp^ atoms have been empirically determined to be roughly equivalent in flexibility to one sp^ atom. Thus, in calculating the molecular flexibility number, sp^ and sp^ chain atoms are assigned values of 0.5 and 1.0, respectively. Note that the central atoms of nitro, sulfonyl and carboxyl groups are sp^. Since the bonds of sp atoms do not contribute to flexibility, these atoms are given a value of zero. Ring systems, regardless of size, are counted as a single group and are assigned a value of 0.5 per system. A single ring system consists of a ring or any number of fused rings.

From the above, the effective number of torsional angles is calculated for any compound by using the following equation:

T = SP3 + 0.5 SP2 + 0.5 RING - 1 (3-2) where SP3 is the number of sp' chain atoms, SP2 is the number of sp^ chain atoms, and RING is the number of fused ring systems. Substituting equation 3-2 into equation 3-1 gives:

(t> = 2.85tSP3 + 0.5 SP2 + 0.5 RING - 1] (3.3) which is the general equation for calculating the molecular flexibility number for all molecules. It is important to point out here that t is never less than zero. 71

(The molecular flexibility number for all rigid molecules is assigned a value of unity, i.e., 4) = 1-)

Examples of molecular flexibility numbers, ()>, for a few complex compounds are shown in the second half of Table 3.1. The number of SP3, SP2 and RING groups are also given.

Entropy of Melting

For flexible molecules the total entropy of melting is the sum of the positional and conformational entropies:

ASn,*"* =AS„,'^ + AS„.""' (3-4)

The positional entropy has already been discussed in Chapter II and is incorporated into equation 2-6. The conformational entropy of melting is related to the molecular flexibility number, ({>, by:

ASm'^ = Rln(J) (3-5) where the molecular flexibility number is a measure of the probability of the molecule having the proper conformation for incorporation into the crystal. A highly flexible molecule will have a greater flexibility number and a lower probability of being in the correct position to be incorporated into the crystal lattice. Therefore, it will have a higher entropy of melting than a rigid molecule. 72

The total entropy of melting for flexible, non-symmetrical molecules is obtained by combining equations 2-6 (with In o - 0) and 3-5, to give:

= 50 + R In (j». (3-6)

Experimental

Data

Entropy of melting data were gathered from 26 different sources and entered into a database using dBASE IV. The database contains 738 entropy of melting values for 499 flexible compounds. A molecular flexibility number was defined for each compound as described above.

Entropy of Melting

Each observed entropy value is compared to the predicted value obtained from the semi-empirical equation (equation 3-6). The average absolute error is used to evaluate the predictability of the equation.

Results and Discussion

Entropy of Melting

The observed and predicted entropy of melting values are given in Table 3.2.

From the table it can be seen that equation 3-6 works quite well. The average absolute error between the predicted and observed values is only 14.2 J/deg-mol. This difFerence is well within experimental error that is normally

associated with the observed entrop/ of melting data. Observed values that are

either unrealistically low (ASm < 8 J/deg-mol), unrealistically high, or are not in

agreement with other multiple data points for the same compound are

designated by an asterisk (*) in the table and were not used in the evaluation of

equation 3-6.

The observed versus predicted entropy of melting values are shown in Figure

3.1. Perfect fit is depicted as a solid line with a slope of unity. Nearly all of the

data fall close to this line indicating that equation 3-6 is a good predictor for the

entropy of melting of flexible compounds. A few long chain aliphatic acids and

some long chain alkenes make up the bulk of the data that fall far below the

predicted line.

The observed versus predicted entropy of melting values for the linear alkanes is plotted in Figure 3.2. The solid line indicates a perfect fit. It is known that alkanes exhibit an odd-even alteration in their melting points and phase transitions are observed for the larger odd carbon alkanes. In spite of this, equation 3-6 predicts the total entropy of melting for all alkanes quite well. The average absolute error for the 147 linear alkane observations, excluding the outliers, is 9.8 J/deg mol. 74

The observed versus predicted entropy of melting values for large cycloalkanes

is shown in Figure 3.3. The observed cycloalkane data, as in the case of the

linear alkane data, are consistently lower than the predicted values. The

average absolute error for the cycloalkanes with more than six carbons is 106.2

J/deg mol. This can, for the most part, be explained by the fact that the bonds in

a cycloalkane are less flexible than the bonds in a linear alkane since the ends

are joined. It is interesting to note that reducing the base from 2.85 to 2.4

reduces the error to 65.3 J/deg mol. This observation is based on limited data

that may not account for transition entropies, as seen above with the alkanes.

For this reason the large cycloalkane data were not used in evaluating the

semi-empirical equation.

Overall the semi-empirical equation (equation 3-6) predicts the entropy of melting quite well for various flexible molecules. 600

500

^ 400

X X e 300

S 200

100

X

—\ 1 1— 100 200 300 400 500 600 Observed Entropy of MeKing (J/K mol)

Figure 3.1. Observed versus predicted entropy of melting values for flexible compounds

•>1 O) 450

400

350

300

W II 250 •s

1 150 a 100

0 so 100 160 200 250 300 350 400 450 ObMrved Entropy of Melting (J/K mol)

Figure 3.2. Observed versus predicted entropy of meltin/alues for linear aikanes

O) 900

600

700 i 600

I 500 0 1 400 uie IM 300 I ®" 200

100

0 100 200 300 400 500 600 700 800 Observed Entropy ol Metting (J/K mol)

Figure 3.3. Observed versus predicted entropy of melting values for cylcoalkanes Table 3.2. Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(i> Obs Pred Diff Ref

1,1,1-trichloro-3,3,3-trifluoro- 0.0 60.5 50.0 -10.5 Acree, 91 propane

*1,1,2,2-tetrachlorodifluoroethane 1.0 12.3 59.1 46.8 Acree, 91

1,1,2-tribromoethane 1.0 37.6 59.1 21.5 Weast. 72

1,1,2-trichloroethane 1.0 49.2 59.1 9.9 Weast, 72

* 1,1,2-trichlorotrifluoroethane 1.0 10.4 59.1 48.7 Acree, 91

1,1,3-trimethylurea 1.5 41.5 63.3 21.8 Acree. 91

1,1,4,6-tetramethylindan 0.0 57.5 50.0 -7.5 Acree, 91

1,1,4,7-tetramethylindan 0.0 45.9 50.0 4.1 Acree. 91

1,1-diethylurea 2-6 49.0 72.4 23-4 Acree, 91

1,1 -dimethylazoethane 4.2 39.8 86.6 46.8 Acree, 91

1,1 -dimethylazoxyethane 4.2 40.0 86.6 46.6 Acree, 91

1,1-dimethylindan 0.0 52.7 50.0 -2-7 Acree, 91

1,1-dimethylurea 0.5 77.5 54.2 -23.3 Acree, 91

1,1-diphenylethane 1.0 69.5 59.1 -10.4 Bondi, 68

1,10-decanediol 9.4 120.7 132.3 11.6 Acree. 91

1,2,3,4-naphthalene tetracarboxylic5.7 84.5 97.9 13.4 Dozen, 78 acid tetramethy! ester

1,2,3,4-tetrahydroquinoline 0.0 40.7 50.0 9.3 Acree, 91 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(|i Obs Pred Diff Ref

1,2,3-naphthalene tricarboxylic 4.2 65.3 86.6 21.3 Dozen, 78 acid trimethyi ester

1,2,4,5-naphthalene tetracarboxylic5.7 82.9 97.9 15.0 Dozen, 78 acid tetramethyl ester

1,2,4-naphthalene tricarboxylic 4.2 81.6 86.6 5.0 Dozen, 78 acid trimethyi ester

1.2.5,6-naphthalene tetracarboxylic5.7 89.4 99.9 10.5 Dozen, 78 acid tetramethyl ester

1,2,5-naphthalene tricarboxylic 4.2 70.3 86.6 16.3 Dozen, 78 acid trimethyi ester

1,2,6,7-naphthalene tetracarboxylic5.7 83.8 99.9 16.1 Dozen, 78 acid tetramethyl ester

1,2,6-naphthalene tricarboxylic 4.2 86.1 86.6 0.5 Dozen, 78 acid trimethyi ester

1,2,7-naphthalene tricarboxylic 4.2 84.3 86.6 2.3 Dozen, 78 acid trimethyi ester

1,2,8-naphthalene tricarboxylic 4.2 67.8 86.6 18.8 Dozen, 78 acid trimethyi ester

1.2,3-tribromopropane 2.1 82.8 68.3 -14.5 Weast, 72

1,2-diaminoethane 1.0 69.1 59.1 -10.0 Bondi, 68

1,2-diaminoethane 1.0 79.4 59.1 -20.3 Acree, 91

1,2-dibromo-1.1 -dichloroethane 1.0 40.6 59.1 18.5 Weast, 72 Table 3.2 (con't). Observed and predicted entropies of melting In J/K-mol

Entropy of Melting

Name In ^ Obs Pred Diff Ref

1,2-dlbromoethane 1.0 37.7 59.1 21.4 Mortimer, 22

1,2-dibromoethane 1.0 52.1 59.1 7.0 Bondi, 68

1,2-dibromoethane 1.0 38.6 59.1 20.5 Weast, 72

1,2-dibromotetrafluoroethane 1.0 43.3 59.1 15.8 Acree, 91

1,2-dichloroethane 1.0 37.1 59.1 22.0 Weast, 72

1,2-dichloroethane 1.0 37.4 59.1 21.7 Bondi, 68

1,2-dichloropropane 1.0 37.3 59.1 21.8 Weast, 72

* 1,2-dichlorotetrafluoroethane 1.0 8.4 59.1 50.7 Aaee, 91

1,2-dinaphthylmethane 1.0 82.7 59.1 -23.6 Acree, 91

* 1,2-diphenylhydrazine 2.1 43.7 68.3 24.6 Weast, 72

1,2-naphthalene dicarboxylic acid 2.6 77.3 72.4 -4.9 Dozen, 78 dimethyl ester

1,2-pentadiene 0.5 56.1 54.2 -1.9 McGlashan, 73

* 1,3,5-cycloheptatriene 3.1 5.9 77.4 71.5 Acree, 91

1,3.6-naphthalene tricarboxylic 4.2 64.3 86.6 22.3 Dozen, 78 acid trimethyl ester

1,3,5-tris(dimethylamino)-s-triazine 2.6 51.8 72.4 20.6 Acree, 91

1.3,6-naphthalene tricarboxylic 4.2 79.6 86.6 7.0 Dozen, 78 acid trimethyl ester Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(j> Obs Pred Diff Ref

1,3,7-naphthalene tricarboxylic 4.2 83.4 86.6 3.2 Dozen, 78 acid trimethyl ester

1,3,8-naphthalene tricarboxylic 4.2 71.5 86.6 15.1 Dozen, 78 acid trimethyl ester

1,3-dibromopropane 2.1 57.3 68.3 11.0 Weast, 72

1,3-dibutylurea 7.8 42.9 118.2 75.3 Acree, 91

1,3-dicyanopropane 2.1 51.9 68.3 16.4 Bondi, 68

1,3-dicyanopropane 2.1 51.9 68.3 16.4 McGlashan, 73

1.3-dlethylurea 3.6 32.5 81.6 49.1 Acree, 91

1,3-dimethylurea 1.5 35.9 63.3 27.4 Acree, 91

1,3-diphenylacetone 2.6 65.7 72.4 6.7 Chickos, 91

1,3-diphenylurea 2.6 67.6 72-4 4.8 Acree, 91

1,3-naphthalene dicarboxylic acid 2.6 80.8 72.4 -8.4 Dozen, 78 dimethyl ester

1,4,5,8-naphthalene tetracarboxyllc5.7 75.7 99.9 24.2 Dozen, 78 acid tetramethyl ester

1,4,5-naphthalene tricarboxylic 4.2 65.8 86.6 20.8 Dozen, 78 acid trimethyl ester

1,4,6-naphthalene tricarboxylic 4.2 73.6 86.6 13.0 Dozen, 78 acid trimethyl ester Table 3.2 (con't). Obsen/ed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In (j> Obs Pred Diff Ref

1,4-naphthalene dicarboxylic acid 2.6 60.2 72.4 12-2 Dozen, 78 dimethyl ester

1,4-pentadiene 1.0 49.2 59.1 9.9 Bondi, 68

1,4-pentadiene 1.0 49.8 59.1 9.3 Weast, 72

1.4-pentadiene 1.0 49.4 59.1 9.7 McGlashan, 73

1,5-cyclooctadiene 5.2 48.2 95.7 47.5 Acree, 91

1,5-hexadiene 2.1 70.3 68.3 -2.0 Bondi, 68

1,5-naphthalene dicarboxylic acid 2.6 67.2 72.4 5.2 Dozen, 78 dimethyl ester

1,6-heptadiene 3.1 80.3 77.4 -2.9 Bondi, 68

1,6-hexanediol 5.2 70.6 95.7 25.1 Acree, 91

1,6-naphthalene dicarboxylic acid 2.6 59.4 72.4 13.0 Dozen, 78 dimethyl ester

1,7-heptanediol 6.3 72.2 104.9 32.7 Acree, 91

1,7-naphthalene dicarboxylic acid 2.6 55.1 72.4 17.3 Dozen, 78 dimethyl ester

1,8-octanediol 7.3 108.5 114.0 5.5 Acree, 91

1,9-nonanediol 8.4 113.9 123.2 9.3 Acree, 91

1 -(1 -piperizinyl)-3,5-bis(dimethyl- 2-1 60.2 68.3 8.1 Acree, 91 amino)-s-triazine Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In ^ Obs Pred Diff Ref

1-(4'-formyl-1-piperizinyl)-3,5-bis 2.6 56.5 72.4 15.9 Acree, 91 (dimethylamino)-s-triazine

1-(ethylamino)-3,5-bis(dimethyl- 3.6 50.3 81.6 31.3 Acree, 91 amino)-s-triazine

1-{hexamethyleneimine)-3,5-bis 2.1 48.6 68.3 19.7 Acree, 91 (dimethylamino)-s-triazine

1-(methyl-ethanolamino)-3,5-bis 4.7 46.4 90.7 44.3 Acree, 91 (dimethylamino)-s-triazine

1-(methyl-ethylamino)-3,5-bis(di- 3.6 55.5 81.6 26.1 Acree, 91 methylamino)-s-triazine

1-(methylamino)-3,5-bis(dimethyl- 2.6 59.0 72.4 13.4 Acree. 91 amino)-s-triazine

1-(methylphenethylamino)-3,5-bis 4.2 60.0 86.6 26.6 Acree, 91 (dimethylamino)-s-triazine

1-(morpholinyl)-3,5-bis(dimethyl- 2.1 62.1 68.3 6.2 Acree, 91 amino)-s-triazine

1-(piperidinyl)-3,5-bis(dimethyl- 2.1 64.2 68.3 4.1 Acree, 91 amino)-s-trlazine

1-(pyrrolidinyl)-3,5-bis(dimethyl- 2.1 63.5 68.3 4.8 Acree, 91 amino)-s-triazine

1-(thiomorpholinyl)-3,5-bis(di- 2.1 74.3 68.3 -6.0 Acree, 91 methylamino)-s-triazine

1-acetyl-2-naphthol 0.0 63.3 50.0 -13.3 Acree, 91 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(t> Obs Pred Diff Ref

1 -aminopropane 1.0 58.2 59.1 0.9 Acree, 91

1-benzoyl-2-naphthol 0.5 75.7 54.2 -21.5 Acree, 91

1-chloro-3-bromopropane 2.1 43.4 68.3 24.9 Weast, 72

1-cis-3-pentadiene 0.5 42.9 54.2 11.3 McGlashan, 73

1 -cyclohexyloctadecane 17.2 234.0 200.5 -33.5 Mazee, 48

1 -decene 6.8 106.8 109.0 2.2 McCullough, 57

1-dodecene 8.9 105.1 127.3 22.2 McCullough, 57

1-heptanethiol 5.2 111.3 95.7 -15.6 McGlashan, 73

1-heptene 3.6 83.1 81.6 -1.5 Weast, 72

1-heptene (i) 3.6 80.4 81.6 1.2 McCullough, 57

1 -heptene (ii) 3.6 82.1 81.6 -0.5 McCullough, 57

1-hexadecene 13.1 129.7 163.9 34.2 McCullough, 57

1-hexene 2.6 70.1 72.4 2.3 McCullough, 57

1-hexene 2.6 70.5 72.4 1.9 Bondi, 68

1-octene 4.7 89.3 90.7 1.4 McCullough, 57

1-pentene 1.5 54.8 63.3 8.5 Weast, 72

1-pentene 1.5 54.3 63.3 9.0 Acree, 91

1 -trans-3-pentadlene 0.5 38.8 54.2 15.4 McGlashan, 73 Table 3.2 (con't). Obsen^ed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In (|) Obs Pred Diff Ref

1-undecene 7.8 118.3 118.2 -0.1 McCullough, £

13-methylpentacosane 23.1 236.9 251.2 14.3 Mazee, 48

2.2',3,3',4.4',6-heptachlorobiphenyl 0.0 51.3 50.0 -1.3 Acree, 91

2,2', 3,3' ,4,4'-hexachlorobiphenyl 0.0 68.7 50.0 -18.7 Acree, 91

2,2',3,3',4.5,5',6,6'-nonachloro- 0.0 49.6 50.0 0.4 Acree. 91 biphenyl

2,2'.3,3',5,5',6,6'-octachlorobiphenyl0.0 52.6 50.0 -2.6 Acree, 91

2,2',3.3'.6,6'-hexachlorobiphenyl 0.0 54.8 50.0 -4.8 Acree, 91

2.2',4',5-tetrachlorobiphenyl 0.0 69.0 50.0 -19.0 Acree, 91

2,2',4,4',6,6'-hexachlorobiphenyl 0.0 45.3 50.0 4.7 Acree, 91

2,2',4,5,5'-pentachlorobiphenyl 0.0 53.7 50.0 -3.7 Acree, 91

* 2.2,3,3,4-pentamethylpentane 1.0 11.4 59.1 47.7 Zwolinski, 84

2,2,3,3-tetramethylhexane 2.1 56.9 68.3 11.4 Zwolinski, 84

* 2,2,3,3-tetramethylpentane 1.0 19.4 59.1 39.7 Zwolinski, 84

* 2,2,3,3-tetramethylpentane 1.0 8.8 59.1 50.3 Acree, 91

* 2,2,3,4,4-pentamethylpentane 0.0 15.6 50.0 34.4 Zwolinski, 84

* 2,2,3,4-tetramethylpentane 1.0 3.4 59.1 55.7 Zwolinski, 84

2,2,3-trimethylbutane 0.0 29.5 50.0 20.5 Zwolinski, 84 86

Table 3.2 (cxsn't). Observed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name ln(i> Obs Pred Diff Ref

2,2,3-trimethylbutane 0.0 29.5 50-0 20.5 McGlashan, 73

2,2,3-trimethylbutane 0.0 8.9 50-0 41.1 Weast, 72

2,2,3-trimethylbutane 0.0 9.1 50-0 40.9 Huffman, 61

2.2,3-trimethylpentane 1.0 53.9 59.1 5.2 Zwolinski, 84

2,2,4,4-tetramethylpentane 0.0 47.2 50.0 2.8 Zwolinski, 84

2,2,4,4-tetramethylpentane 0.0 47.2 50.0 2.8 Acree, 91

2,2,4,6,6-pentamethylheptane 2.1 22.3 68.3 46.0 Zwolinski, 84

2,2,4-trimethylhexane 2.1 77.1 68.3 -8.8 Zwolinski, 84

2,2,4-trimethylpentane 1.0 56.0 59.1 3.1 Zwolinski, 84

2,2,4-trimethylpentane 1.0 54.9 59.1 4.2 Weast, 72

2,2,5,5-tetramethylhexane 1.0 37.9 59.1 21.2 Zwolinski, 84

2,2,5-trimethylhexane 2.1 37.5 68.3 30.8 Zwolinski, 84

2,2-dimethyl-n-docosane 18.9 216.0 214.6 -1.4 Mazee, 48

2,2-dimethylheptane 3.1 56.5 77.4 20.9 Zwolinski, 84

2,2-dimethylhexane 2.1 45.1 68.3 23.2 Zwolinski, 84

2,2-dimethylpentane 1.0 39.5 59.1 19.6 Weast, 72

2,2-dimethylpentane 1.0 39.3 59.1 19.8 McGlashan, 73

2,2-dimethylpentane 1.0 39.2 59.1 19.9 Zwolinski, 84 Table 3.2 (con't). Obsen^ed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name In ij> Obs Pred Diff Ref

2,2-dimethylpentane 1.0 39.0 59.1 20.1 Huffman, 61

2,2-diphenylpropane 1.0 60.2 59.1 -1.1 Bondi, 68

2,3,3,4-tetramethylpentane 2.1 52.7 68.3 15.6 Zwolinski, 84

2,3,3-trimethylpentane 2.1 55.6 68.3 12.7 Zwolinski, 84

2,3,4,5.6-pentachlorobiphenyl 0.0 54.8 50.0 -4.8 Acree, 91

2,3,4,5-tetrachlorobiphenyl 0.0 69.3 50.0 -19.3 Acree, 91

2,3,4-trimethylpentane 2.1 56.9 68.3 11.4 Zwolinski, 84

2,3,5-naphthalene tricarboxylic 4.2 102.0 86.6 -15.4 Dozen, 78 acid trimethyl ester

2,3.6,7-naphthalene tetracarboxylic5.7 91.9 99.9 8.0 Dozen, 78 acid tetramethyl ester

2,3,6-naphthalene tricarboxylic 4.2 86.3 86.6 0.3 Dozen, 78 acid trimethyl ester

2,3-dimethyl-2,3-butanediol 1.0 46.3 59.1 12.8 Acree, 91

2,3-dimethy (butane 1.0 5.6 59.1 53.5 Weast, 72

2,3-dimethylbutane 1.0 53.5 59.1 5.6 Zwolinski, 84

2,3-dimethyiheptane 4.2 93.6 86.6 -7.0 Zwolinski, 84

2,3-naphthalene dicarboxylic acid 2.6 62.5 72.4 9.9 Dozen, 78 dimethyl ester

2,4,4-trlmethylhexane 3.1 71.6 77.4 5.8 Zwolinski, 84 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In (j> Obs Pred Diff Ref

2,4,5-trichlorobiphenyl 0.0 65.2 50.0 -15.2 Acree, 91

2,4,6-trichlorobiphenyl 0.0 49.4 50.0 0.6 Acree, 91

2,4-dimethyl-3-pentanone 1.5 55.0 63.3 8.3 McGlashan, 73

2,4-dimethyl-3-thiapentane 2.1 53.8 68.3 14.5 McGlashan, 73

2,4-dimethylpentane 2.1 44.9 68.3 23.4 McGlashan, 73

2,4-dimethylpentane 2.1 44.0 68.3 24.3 Weast, 72

2,4-dlmethylpentane 2.1 44.7 68.3 23.6 Zwolinski, 84

2,4-dimethylpentane 2.1 44.5 68.3 23.8 Huffman, 61

2,5-dimethylhexane 3.1 71.6 77.4 5.8 Zwolinski, 84

2,6-dichlorobiphenyl 0.0 40.9 50.0 9.1 Acree, 91

2,6-dimethylheptane 4.2 79.6 86.6 7.0 Zwolinski, 84

2,6-naphthaiene dicarboxylic acid 2.6 82.8 72.4 -10.4 Dozen, 78 dimethyl ester

2,7-dimethyloctane 5.2 87.7 95.7 8.0 Zwolinski, 84

2,7-naphthalene dicarboxylic acid 2.6 64.8 72.4 7.6 Dozen, 78 dimethyl ester

2-acetyl-1-naphthol 0.0 60.6 50.0 -10.6 Acree, 91

2-benzoyl-1 -naphthol 0.5 58.7 54.2 -4.5 Acree, 91

2-butanol 1.0 32.6 59.1 26.5 McGlashan, 73 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In Obs Pred Diff Ref

2-butanone 0.5 45.3 54.2 8.9 Acree, 91

2-butanone (methyl ethyl ketone) 0.5 45.7 54.2 8.5 McGlashan, 73

2-butanone (methyl ethyl ketone) 0.5 46.0 54.2 8.2 Bondi, 68

2-chlorobiphenyl 0.0 50.1 50.0 -0.1 Acree, 91

2-hexanone 2.6 69.0 72.4 3.4 McGlashan, 73

2-hexanone 2.6 68.5 72.4 3.9 Acree, 91

2-methyl-2-butanethiol 1.0 54.2 59.1 4.9 McGlashan, 73

2-methyl-2-butanol 1.0 30.5 59.1 28.6 Bondi. 68

2-methyl-3-ethylpentane 3.1 72.1 77.4 5.3 Zwolinski, 84

2-methylheptane 4.2 72.9 86.6 13.7 Zwolinski, 84

2-methylhexane 3.1 59.8 77.4 17.6 Zwolinski, 84

2-methylhexane 3.1 59.8 77.4 17.6 McGlashan, 73

2-methylhexane 3.1 57.7 77.4 19.7 Weast, 72

2-methylnonane 6.3 88.9 104.9 16.0 Zwolinski, 84

2-methyloctane 5.2 93.6 95.7 2.1 Zwolinski, 84

2-methylpentane 2.1 52.8 68.3 15.5 Weast, 72

2-methylpentane 2.1 52.7 68.3 15.6 Zwolinski, 84

2-methyltricosane 21.0 222.1 232.9 10.8 Mazee, 48 Table 3.2 (cx)n't). Observed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name ln(j> Obs Pred Diff Ref

2-naphthoic acid methyl ester 0.0 77.4 50.0 -27.4 Dozen, 78

2-pentanone 1.5 56.8 63.3 6.5 McGlashan, 73

2-pentanone 1.5 54.2 63.3 9.1 Acree, 91

2-thiahexane 3.1 71.6 77.4 5.8 McGlashan, 73

3,3,4-trimethylhexane 3.1 47.6 77.4 29.8 Zwolinski, 84

3.3-dlethylpentane 4.2 43.8 86.6 42.8 Zwolinski, 84

3,3-diethylpentane 4.2 48.2 86.6 38.4 Bondi, 68

3,3-diethylpentane 4.2 42.0 86.6 44.6 Acree, 91

3,3-dimethyIhexane 3.1 48.9 77.4 28.5 Zwolinski, 84

3,3-dimethyIpentane 2.1 51.5 68.3 16.8 Weast, 72

3,3-dimethylpentane 2.1 51.4 68.3 16.9 Zwolinski, 84

3-ethyl-2,2,3-trimethylpentane 2.1 25.7 68.3 42.6 Zwolinski, 84

3-ethyl-2,2-dimethylpentane 2.1 59.4 68-3 8.9 Zwolinski, 84

3-ethyl-2,4-dimethylpentane 3.1 48.0 77.4 29.4 Zwolinski, 84

3-ethylheptane 5.2 99.9 95.7 -4.2 Zwolinski, 84

3-ethylpentane 3.1 62.1 77.4 15.3 Bondi, 68

3-ethylpentane 3.1 62.2 77.4 15.2 Weast, 72

3-ethylpentane 3.1 62.4 77.4 15.0 Zwolinski, 84 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name inij> Obs Pred Diff Ref

3-ethylpentane 3.1 62.3 77.4 15.1 McGlashan. 73

3-hexanone 2.6 67.2 72.4 5.2 McGlashan. 73

3-hexanone 2.6 62.0 72.4 10.4 Acree, 91

3-isopropyl-2,4-dimethyl pentane 3.1 2.9 77.4 74.5 Zwolinski, 84

3-methyl-1,2-pentadiene 0.5 50.3 54.2 3.9 McGlashan, 73

3-methyl-2-butanone 0.5 52.3 54.2 1.9 McGlashan, 73

3-methyl-3-ethylpentane 3.1 59.8 77.4 17.6 Zwolinski, 84

3-methylheptane 4.2 76.7 86.6 9.9 Zwolinski, 84

3-methylheptane 4.2 75.1 86-6 11.5 Weast, 72

3-methylhexane 3.1 61.9 77.4 15.5 Bondi, 68

3-methylnonane 6.3 100.3 104.9 4.6 Zwolinski, 84

3-methyloctane 5.2 102.0 95.7 -6.3 Zwolinski, 84

3-pentanone 1.5 50.9 63.3 12.4 McGlashan, 73

3-pentanone 1.5 49.5 63.3 13.8 Acree, 91

3-thiahexane 3.1 68.4 77.4 9.0 McGlashan, 73

4-ben2oyl-1 -naphthol 0.5 65.0 54.2 -10.8 Acree, 91

4-butoxybenzoic acid 4.2 45.4 86.6 41.2 Acree, 91

4-chlorobiphenyl 0.0 38.2 50.0 11.8 Acree, 91 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In ^ Obs Pred Diff Ref

4-ethoxybenzoic acid 2.1 62.2 68.3 6.1 Acree, 91

4-ethoxyphenylacetic acid 3.1 63.9 77.4 13.5 Acree, 91

4-hexylresorcinol 4.7 55-8 90.7 34.9 Acree, 91

4-hydroxyphenylacetic acid 1.0 67.1 59.1 -8.0 Acree, 91

4-hydroxyphenylpropionic acid 2.1 71.8 68.3 -3.5 Acree, 91

4-methoxybenzoic acid 2.1 62.0 68.3 6.3 Acree, 91

4-methoxyphenylacetic acid 2.1 60.9 68.3 7.4 Acree, 91

4-methoxyphenylbutyric acid 4.2 76.5 86.6 10.1 Acree, 91

4-methoxyphenylpropionic acid 3.1 75.6 77.4 1.8 Acree, 91

4-methylheptane 4.2 71.6 86.6 15.0 Zwolinski, 84

4-methylheptane 4.2 71.8 86.6 14.8 Weast, 72

4-methylnonane 6.3 88.1 104.9 16.8 Zwolinski, 84

4-methyloctane 5.2 100.7 95.7 -5.0 Zwolinski, 84

4-thiaheptane 4.2 71.8 86.6 14.8 McGiashan, 73

5,6,7,8-tetrahydroquinoline 0.0 40.8 50.0 9.2 Acree, 91

5-methylnonane 6.3 89.8 104.9 15.1 Zwolinski, 84

5-nonanone 5.7 96.8 99.9 3.1 McGiashan, 73

5-nonanone 5.7 92.6 99.9 7.3 Acree, 91 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In (t> Obs Pred Diff Ref

5-thlanonane 6.3 98.9 104.9 6.0 McGlashan, 73

8-ethyltheophylline 0.5 68.2 54.2 -14.0 Acree, 91

8-heptyltheophylline 5.7 69.8 99.9 30.1 Acree, 91

8-hexyltheophylline 4.7 54.9 90.7 35.8 Acree. 91

8-n-butyltheophylline 2.6 63.4 72.4 9.0 Acree, 91

8-pentadecyItheophylllne 14.1 65.8 173.0 107.2 Acree, 91

8-pentyltheophylline 3.6 70.4 81.6 11.2 Acree, 91

8-propyItheophy II ine 1.5 62.3 63.3 1.0 Acree, 91

8-tert-butyltheophylline 0.0 119.8 50.0 -69.8 Acree, 91

8-unadecyltheophyHine 9.9 59.5 136.5 77.0 Acree, 91

9-octadecenoic acid 15.2 195.2 182.2 -13.0 Weast, 72

acetaldehyde 0.0 46.6 50.0 3.4 Bondi, 68

acrylic acid 0.0 39.4 50.0 10.6 Weast, 72

acrylonitrile 0.0 32.8 50.0 17.2 Acree, 91

adipic acid 4.2 81.7 86.6 4.9 Acree, 91

allocinnamic acid 1.0 50.1 59.1 9.0 Weast, 72

alpha-chloroacetic acid 0.5 37.0 54.2 17.2 Weast, 72

anethole 1.5 54.5 63.3 8.8 Weast, 72 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In Obs Pred Diff Ref

aplol 3.1 79.8 77.4 -2.4 Weast, 72

arachidic acid (eicosanoic acid) 18.3 202.9 209.6 6.7 Gamer, 26

arachidic acid (eicosanoic acid) 18.3 198.7 209.6 10.9 Acree, 91

azelaic acid 7.3 86.0 114.0 28.0 Acree, 91

azobenzene 1.0 65.3 59.1 -6.2 Weast, 72

azoxybenzene 1.0 58.4 59.1 0.7 Weast, 72

benzamide 0.0 51.7 50.0 -1.7 Bondi, 68

benzamide 0.0 46.0 50.0 4.0 Acree, 91

benzene pentacarboxylic acid 7.3 89.5 114.0 24.5 Dozen, 78 pentamethyl ester

benzophenone 0.5 56.3 54.2 -2.1 Weast, 72

benzophenone 0.5 49.4 54.2 4.8 Mortimer, 22

benzophenone 0.5 56.7 54.2 -2.5 Acree, 91

benzothiazole 0.0 46.8 50.0 3.2 McGlashan, 73

benzyl alcohol 0.5 35.0 54.2 19.2 Weast, 72

benzyl alcohol 0.5 35.1 54.2 19.1 Bondi, 68

benzylaniline 2.1 55.3 68.3 13.0 Weast, 72

* beta-chloroacetic acid 0.5 42.5 54.2 11.7 Weast, 72 95

Table 3.2 (con't). Observed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name In it> Obs Pred Diff Ref

beta-propiolactone 0.0 39.2 50.0 10.8 Acree, 91

biphenyl 0.0 54.4 50.0 -4.4 Ubbelohde, 78

biphenyl 0.0 53.6 50.0 -3.6 Mortimer, 22

biphenyl 0.0 54.8 50.0 -4.8 Bondi, 68

biphenyl 0.0 55.2 50.0 -5.2 Wauchope, 72

biphenyl 0.0 45.0 50.0 5.0 Weast, 72

biphenyl 0.0 54.4 50.0 -4.4 Mishra, 90

biphenyl 0.0 54.4 50.0 -4.4 Acree, 91

butane 1.0 34.8 59.1 24.3 Weast, 72

butane 1.0 34.6 59.1 24.5 Broadhurst, 62

butane 1.0 54.2 59.1 4.9 Bondi, 68

butane 1.0 54.4 59.1 4.7 Zwolinski, 84

butane 1.0 54.1 59.1 5.0 Bhtnagar, 79

butanethiol 2.1 66.8 68.3 1.5 Bondi, 68

butanol 2.1 51.2 68.3 17.1 McGlashan, 73

butanol 2.1 51.0 68.3 17.3 Weast, 72

butanol 2.1 49.3 68.3 19.0 Bondi, 68

butene 0.5 43.8 54.2 10.4 Bhtnagar, 79 Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In (j) Obs Pred Diff Ref

butyl p-aminobenzoate 4.2 74.5 86.6 12.1 Yalkowsky, 72

butyl p-aminobenzoate 4.2 61.8 86.6 24.8 Acree, 91

butylbenzene (m) 2.6 61.3 72.4 11.1 McGlashan, 73

butylbenzene (s) 2.6 61.1 72.4 11.3 McGlashan, 73

butylcyclohexane 2.6 72.0 72.4 0.4 McGlashan, 73

butylcyclopentane 2.6 69.1 72.4 3.3 McGlashan, 73

butylurea 3.6 39.4 81.6 42.2 Acree, 91

butyric acid 1.5 41.7 63.3 21.6 Weast, 72

butyric acid 1.5 40.9 63.3 22.4 Garner, 26

caprylic acid (octanoic acid) 5.7 74.3 99.9 25.6 Weast, 72

caprylic acid (octanoic acid) 5.7 73.9 99.9 26.0 Garner, 26

caprylic acid (octanoic acid) 5.7 73.9 99.9 26.0 Garner, 24

caprylic acid (octanoic acid) 5.7 73.8 99.9 26.1 Acree. 91

carbon tetranitrate 2.1 38.5 68-3 29.8 Bondi, 68

chloral hydrate 1.0 58.2 59.1 0.9 Weast, 72

* chloropicrin 0.5 158.2 54.2 -104.0 Weast, 72

chromone 0.0 52.4 50.0 -2.4 Acree, 91

cinnamic acid 1.0 56.1 59.1 3.0 Weast, 72 Table 3.2 (con't). Observed and predicted entropies of melting In J/Kmol

Entropy of Melting

Name In <|> Obs Pred Diff Ref

cinnamic anhydride 4.2 102.8 86.6 -16.2 Weast, 72

cinnamyl alcohol 1.5 51.1 63.3 12.2 Chickos, 91

cls-2-hexene 2.1 67.1 68.3 1.2 Bondi, 68

cls-2-pentene 1.0 58.9 59.1 0.2 Weast, 72

cis-2-pentene 1.0 58.4 59.1 0.7 Acree, 91

cis-3-hexene 2.1 61.3 68.3 7.0 Bondi, 68

cis-crotonic acid 0.5 36.8 54.2 17.4 Weast, 72

crotonic acid 0.5 26.6 54.2 27.6 Weast, 72

cyclodiheptacontane 74.3 619.9 698.5 78.6 Hocker, 77

cyclododecane 11.5 47.4 150.6 103.2 Hocker, 77

cycloheptane 6.3 7.1 104.9 97.8 Acree, 91

cycloheptene 5.2 4.5 95.7 91.2 Acree, 91

cyclohexacontane 61.8 504.5 588.7 84.2 Hocker, 77

cyclohexatriacontane 36.7 272.1 370.1 98.0 Hocker, 77

cyclohexylbenzene 0.0 54.6 50.0 -4.6 Acree, 91

cyclooctane 7.3 8.4 114.0 105.6 Acree, 91

cyclooctatetracontane 49.2 390.0 479.0 89.0 Hocker, 77

cyclotetracosane 24.1 35.3 260.3 225.0 Hocker, 77 Table 3.2 (con't). Observed and predicted entropies of melting In J/Kmol

Entropy of Melting

Name In (j) Obs Pred Diff Ref

* cyclotetradecadiyne 9.4 60.9 132.3 71.4 Acree, 91

cydotetradecadiyne 9.4 61.0 132.3 71.3 Chickos, 90

* cyciotetradecane 13.6 87.5 168.9 81.4 Acree, 91

* cyciotetranonacontane 97.4 731.4 899.7 168.3 Mocker, 77

d-carvoxime 0-5 47.1 54.2 7.1 Weast, 72

d-dimethyl tartrate 4.2 50.1 86.6 36.5 Weast, 72

decachlorobiphenyl 0.0 68.3 50.0 -18.3 Acree, 91

decane 7.3 119.1 114.0 -5.1 Weast, 72

decane 7.3 117.9 114.0 -3.9 Finke, 54

decane 7.3 118.8 114.0 -4.8 Zwolinski, 84

decane 7.3 117.9 114.0 -3.9 Messerly, 67

decane 7.3 117.9 114.0 -3.9 Broadhurst, 62

decane 7.3 118.9 114.0 -4.9 McGlashan, 73

decane 7.3 118.0 114.0 -4.0 Bhtnagar, 79

decanethiol 8.4 135.5 123.2 -12.3 McGlashan, 73

decene 6.8 106.8 109.0 2.2 Bhtnagar, 79

decylcyclohexane 8.9 143.4 127.3 -16.1 McGlashan, 73

decylcyclohexane 8.9 142.2 127.3 -14.9 Acree, 91 Table 3.2 (con't). Obsen^ed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In (|) Obs Pred Diff Ref

decylcyclopentane 8.9 133.1 127.3 -5.8 McGlashan, 73

delta-valerlactone 0.0 40.1 50.0 9.9 Acree, 91

dichloroacetic acid 0.5 27.2 54.2 27.0 Weast, 72

diethyl disulfide 3.1 55.4 77.4 22.0 Bondi, 68

diethyl phthalate 4.7 67.1 90.7 23.6 McGlashan, 73

diethyl sulfide 2-1 70.8 68.3 -2.5 Bondi, 68

dimethoxymethane 2.1 50.0 68.3 18.3 McGlashan, 73

dimethoxymethane 2.1 50.0 68.3 18.3 Bondi, 68

dimethyl isophthalate 2.6 74.3 72.4 -1.9 Dozen, 78

dimethyl naphthalate 2.6 74.0 72.4 -1.6 Dozen, 78

dimethyl phthalate 2.6 57.5 72.4 14.9 Dozen, 78

dimethyl terephthalate 2.6 79.2 72.4 -6.8 Dozen, 78

diphenyl ether 1.0 58.0 59.1 1.1 Bondi, 68

diphenyl sulfone 0.5 91.2 54.2 -37.0 Bondi, 68

diphenylamine 1.0 55.2 59.1 3.9 Weast, 72

diphenylamine 1.0 55.2 59.1 3.9 Bondi, 68

diphenylamine 1.0 51.5 59.1 7.6 Mortimer, 22

diphenylamine 1.0 54.8 59.1 4.3 Acree. 91 100

Table 3.2 (con't). Obsen^ed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(i> Obs Pred Diff Ref

diphenylethanedione (benzil) 2.1 53.3 68.3 15.0 Weast, 72

diphenylethanedione (benzil) 2.1 50.2 68.3 18.1 Mortimer, 22

diphenylethyne 0.0 64.9 50.0 -14.9 Bondi, 68

diphenylmethane 1.0 51.9 59.1 7.2 Mortimer, 22

diphenylmethane 1.0 62.3 59.1 -3.2 Bondi, 68

di-carvoxime 0.5 45.1 54.2 9.1 Weast, 72

dl-dimethyl tartrate 4.2 73.2 86.6 13.4 Weast, 72

docosane 19.9 243.7 223.8 -19.9 Domanska, 91

docosane 19.9 243.5 223.8 -19.7 Broadhurst, 62

docosane 19.9 243.7 223.8 -19.9 Schaerer, 55

* docosane 19.9 155.3 223.8 68.5 Weast, 72

dodecane 9.4 137.4 132.3 -5.1 Zwolinski, 84

dodecane 9.4 139.7 132.3 -7.4 Finke, 54

dodecane 9.4 139.7 132.3 -7.4 Messerly, 67

dodecane 9.4 139.8 132.3 -7.5 Weast, 72

dodecane 9.4 140.9 132.3 -8.6 McGlashan, 73

dodecane 9.4 139.7 132.3 -7.4 Broadhurst, 62

dodecane 9.4 138.7 132.3 -6.4 Bhtnagar, 79 101

Table 3.2 (con't). Observed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name ln(j> Obs Pred Diff Ref

dodecanedioic acid 10.5 125.7 141.5 15.8 Acree, 91

dodecene 8.9 105.1 127.3 22.2 Bhtnagar, 79

dodecyl alcohol 10.5 134.9 141.5 6.6 Chickos, 91

dodecyl p-aminobenzoate 12.6 173.6 159.7 -13.9 Yalkowsky. 72

dotriacontane 30.4 339.9 315.2 -24.7 Broadhurst. 62

eicosane 17.8 227.1 205.5 -21.6 Weast, 72

eicosane 17.8 225.5 205.5 -20.0 Broadhurst, 62

eicosane 17.8 225.5 205.5 -20.0 Schaerer, 55

eicosane 17.8 227.1 205.5 -21.6 Zwolinski, 84

eicosane 17.8 225.6 205.5 -20.1 Bhtnagar. 79

eicosene 17.2 113.7 200.5 86.8 Bhtnagar, 79

ethanethiol (ethyl mercaptan) 0.0 32.9 50.0 17.1 Weast, 72

ethanethiol (ethyl mercaptan) 0.0 40.0 50.0 10.0 McGlashan, 73

ethyl acetate 1.5 55.7 63.3 7.6 Weast, 72

ethyl acetate 1.5 55.9 63.3 7.4 Bondi, 68

ethyl cyanide (propionitrile) 0.0 37.9 50.0 12.1 McGlashan. 73

ethyl cyanide (propionitrile) 0.0 37.8 50.0 12.2 Bondi. 68

ethyl ether () 2.1 46.7 68.3 21.6 Weast. 72 102

Table 3.2 (con't). Obsen^ed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln()> Obs Pred Diff Ref

ethyl ether (diethyl ether) 2.1 47.7 68.3 20.6 Bondi, 68

ethyl ether (m) (diethyl ether) 2.1 45.9 68.3 22.4 McGlashan, 73

ethyl ether (s) (diethyl ether) 2.1 46.2 68.3 22.1 McGlashan, 73

ethyl p-aminobenzoate 2.1 54.8 68.3 13.5 Yalkowsky, 72

ethyl p-aminobenzoate 2.1 64.9 68.3 3.4 Acree, 91

ethyl propionate 2.6 63.7 72.4 8.7 Bondi, 68

ethylbenzene 0.5 51.9 54.2 2.3 Bondi, 68

ethylbenzoic acid 2.1 36.6 68.3 31.7 Chickos, 91

ethylcyclohexane 0.5 51.9 54.2 2.3 Weast, 72

ethylene glycol (glycol) 1.0 44.8 59.1 14.3 Bondi, 68

ethylene glycol (glycol) 1.0 43.2 59.1 15.9 Weast, 72

ethylpentane 3.1 61.8 77.4 15.6 Huffman, 61

ethylurea 1.5 37.9 63.3 25.4 Acree, 91

formamide 0.0 24.3 50.0 25.7 Bondi, 68

formanilide 1.0 45.6 59.1 13.5 Bondi, 68

formic acid 0.0 45.5 50.0 4.5 Weast, 72

formic acid 0.0 37.5 50.0 12.5 Garner, 26

gamma-butyrolactone 0.0 41.7 50.0 8.3 Acree, 91 103

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name Intj) Obs Pred Diff Ref

glutaric acid 3.1 61.3 77.4 16.1 Weast, 72

glutaric acid 3.1 56.3 77.4 21.1 Acree, 91

glycerol 2.1 63.8 68.3 4.5 Bondi, 68

glycerol 2.1 63.9 68.3 4.4 Weast, 72

heneicosane 18.9 202.8 214.6 11.8 Schaerer, 55

heneicosane 18.9 225.5 214.6 -10.9 Mazee, 48

* heneicosane 18.9 153.2 214.6 61.4 Weast, 72

heneicosane 18.9 202.8 214.6 11.8 Broadhurst, 62

heneicosane 18.9 208.4 214.6 6.2 Maroncelli, 82

hentriacontane 29.4 309.7 306.1 -3.6 Mazee, 48

* heptacosane 25.2 183.2 269.5 86.3 Weast, 72

heptacosane 25.2 272.4 269.5 -2.9 Schaerer, 55

heptacosane 25.2 270.7 269.5 -1.2 Broadhurst, 62

heptacosane 25.2 274.0 269.5 -4.5 Maroncelli, 82

heptadecane 14.7 174.6 178.0 3.4 Messerly, 67

heptadecane 14.7 176.2 178.0 1.8 Broadhurst, 62

heptadecane 14.7 175.7 178.0 2.3 Bondi, 68

* heptadecane 14.7 137.0 178.0 41.0 Zwolinski, 84 104

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(j> Obs Pred Diff Ref

heptadecane 14.7 176.0 178.0 2.0 McGlashan, 73

heptadecane 14.7 174.6 178.0 3.4 Bhtnagar, 79

heptadecene 14.1 110.3 173.0 62.7 Bhtnagar, 79

heptane 4.2 76.9 86.6 9.7 Messerly, 67

heptane 4.2 77.5 86.6 9.1 Zwolinski, 84

heptane 4.2 77.5 86.6 9.1 McGlashan, 73

heptane 4.2 78.1 86.6 8.5 Weast, 72

heptane 4.2 76.9 86.6 9.7 Broadhurst, 62

heptane 4.2 77.0 86.6 9.6 Bondi, 68

heptane 4.2 76.5 86.6 10.1 Bhtnagar, 79

heptane 4.2 76.9 86.6 9.7 Huffman, 61

heptanoic acid 4.7 57.2 90.7 33.5 Gamer, 26

heptene 3.6 82.5 81.6 -0.9 Bhtnagar, 79

heptyl p-aminobenzoate 7.3 75.7 114.0 38.3 Yalkowsky, 72

hexacosane 24.1 290.1 260.3 -29.8 Domanska, 91

hexacosane 24.1 285.4 260.3 -25.1 Broadhurst, 62

hexacosane 24.1 279.2 260.3 -18.9 Schaerer, 55

hexadecane 13.6 183.1 168.9 -14.2 Messerly, 67 105

Table 3.2 (con't). Obsen/ed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(t> Obs Pred Diff Ref

hexadecane 13.6 184.7 168.9 -15.8 McGlashan, 73

hexadecane 13.6 183.2 168.9 -14.3 Broadhurst, 62

hexadecane 13.6 184.6 168.9 -15.7 Zwolinski, 84

hexadecane 13.6 183.1 168.9 -14.2 Finke, 54

hexadecane 13.6 183.2 168.9 -14.3 Bhtnagar, 79

hexadecanol (cetyl alcohol) 14.7 165.6 178.0 12.4 Bond!, 68

* hexadecanol (cetyl alcohol) 14.7 107.1 178.0 70.9 Weast, 72

hexadecene 13.1 108.8 163.9 55.1 Bhtnagar, 79

hexadecyl p-aminobenzoate 16.8 232.2 196.3 -35.9 Yalkowsky, 72

hexafluoroacetone 1.5 57.3 63.3 6.0 McGlashan, 73

hexamethyl mellitate 8.9 48.6 127.3 78.7 Dozen, 78

hexamethyldisiloxane 2.1 51.6 68.3 16.7 McGlashan, 73

hexane 3.1 73.5 77.4 3.9 Messerly, 67

hexane 3.1 73.8 77.4 3.6 Bondi, 68

hexane 3.1 74.2 77.4 3.2 Zwolinski, 84

hexane 3.1 74.1 77.4 3.3 Weast, 72

hexane 3.1 73.3 77.4 4.1 Broadhurst, 62

hexane 3.1 74.2 77.4 3.2 McGlashan, 73 106

Table 3.2 (con't). Observed and predicted entropies of melting in J/K-moi

Entropy of Melting

Name In <(> Obs Pred Diff Ref

hexane 3.1 70.6 77.4 6.8 Bhtnagar, 79

hexanethiol 4.2 94.3 86.6 -7.7 McGiashan, 73

hexanol 4.2 68.9 86.6 17.7 Bondi, 68

hexatriacontane 34.6 336.9 351.8 14.9 Mazee, 48

hexatriacontane 34.6 371.6 351.8 -19.8 Schaerer, 55

hexatriacontane 34.6 371.2 351.8 -19.4 Broadhurst, 62

hexene 2-6 73.2 72.4 -0.8 Bhtnagar, 79

hexyl p-aminobenzoate 6.3 106-4 104.9 -0.5 Yalkowsky, 72

hydrocinnamic acid 2.1 55-5 68.3 12.8 Weast, 72

hydroxyacetanilide 1.0 58.7 59.1 0.4 Weast, 72

i-butanol 1.0 37.2 59.1 21.9 McGiashan, 73

i-hexane 2.1 48.4 68.3 19.9 Bondi, 68

i-hexane 2.1 52-9 68.3 15.4 Weast, 72

i-pentane (2-methylbutane) 1.0 45.7 59.1 13.4 McGiashan, 73

i-pentane (2-methylbutane) 1.0 45-9 59.1 13.2 Zwolinski, 84

i-pentane (2-methylbutane) 1.0 45.8 59.1 13.3 Weast, 72

i-propyl ether 2-1 59.6 68.3 8.7 Weast, 72

isopropyiurea 1.5 40.7 63.3 22.6 Acree, 91 107

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In Obs Pred Diff Ref

l-carvoxime 0.5 47.4 54.2 6.8 Weast, 72

lauric acid (dodecanoic acid) 9.9 116.7 136.5 19.8 Weast, 72

lauric acid (dodecanoic acid) 9.9 115.6 136.5 20.9 Gamer, 26

lauric acid (dodecanoic acid) 9.9 115.7 136.5 20.8 Gamer, 24

levulinic acid 2.1 30.3 68.3 38.0 Weast, 72

mannitol 5.2 123.0 95.7 -27.3 Bondi, 68

methyl 4-aminobenzoate 1.0 58.6 59.1 0.5 Acree, 91

methyl 4-hydroxybenzoate 1.0 61.0 59.1 -1.9 Acree, 91

methyl 4-n,n-dimethylamino- 2.1 70.1 68.3 -1.8 Acree, 91 benzoate

methyl cinnamate 2.1 58.7 68.3 9.6 Weast, 72

methyl fumarate 2.1 93.8 68.3 -25.5 Weast, 72

methyl myristate 13.1 171.8 163.9 -7.9 Chickos, 91

methyl oxalate 2.1 64.8 68.3 3.5 Weast, 72

methyl p-aminobenzoate 1.0 63.2 59.1 -4.1 Yalkowsky, 72

methyl p-aminobenzoate 1.0 63.4 59.1 -4.3 Acree, 91

methyl palmitate 14.1 224.2 173.0 -51.2 Chickos, 91

methyl succinate 4.2 75.2 86.6 11.4 Weast, 72 108

Table 3.2 (con't). Observed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name incj) Obs Pred Diff Ref

methyl t-butyl sulfone 0.0 69.0 50.0 -19.0 Bondi, 68

methylbenzoate 1.0 53.3 59.1 5.8 Dozen, 78

methylhexane 3.1 59.3 77.4 18.1 Huffman, 61

methylphenyl propionate 2.1 53.0 68.3 15.3 Weast, 72

methylurea 0.5 42.1 54.2 12.1 Acree, 91

myrlstlc acid 12.0 139.7 154.8 15.1 Weast, 72

myristic acid 12.0 137.5 154.8 17.3 Gamer, 26

myrlstlc acid 12.0 138.7 154.8 16.1 Acree, 91

n-butylbenzene 2.6 60.6 72.4 11.8 Aaee, 91

n-butylcyclohexane 2.6 71.4 72.4 1.0 Acree, 91

n-capric acid (decanoic acid) 7.8 92.5 118.2 25.7 Weast. 72

n-capric acid (decanoic acid) 7.8 91.9 118.2 26.3 Garner, 26

n-capric acid (decanoic acid) 7.8 92.0 118.2 26.2 Gamer, 24

n-caprlc acid (decanoic acid) 7.8 91.8 118.2 26.4 Acree, 91

n-caproic acid (hexanoic acid) 3.6 55.5 81.6 26.1 Gamer. 26

n-isopropylcarbazole 0.5 44.9 54.2 9.3 Acree, 91

n-propylbenzene 1.5 53.4 63.3 9.9 Acree, 91

n-propylcyclohexane 1.5 58.2 63.3 5.1 Acree, 91 109

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In (i> Obs Pred Diff Ref

nonacosane 27.3 286.0 287.8 1.8 Schaerer, 55

nonacosane 27.3 291-6 287.8 -3.8 Broadhurst, 62

nonacosane 27.3 296.6 287.8 -8.8 Maroncelli, 82

nonadecane 16.8 151.2 196.3 45.1 Weast, 72

nonadecane 16.8 151.3 196.3 45.0 Zwolinski, 84

nonadecane 16.8 196.9 196.3 -0.6 Schaerer, 55

nonadecane 16.8 196.9 196.3 -0.6 Broadhurst, 62

nonadecane 16.8 196.8 196.3 -0.5 Bhtnagar, 79

nonadecane 16.8 195.5 196.3 0.8 Maroncelli, 82

nonadecene 16.2 112.8 191.3 78.5 Bhtnagar, 79

nonane 6.3 99.3 104.9 5.6 Messerly, 67

nonane 6.3 100.3 104.9 4.6 Zwolinski, 84

nonane 6.3 99.3 104.9 5.6 Broadhurst, 62

nonane 6.3 99.3 104.9 5.6 Finke, 54

nonane 6.3 100.1 104.9 4.8 McGlashan, 73

nonane 6.3 70.9 104.9 34.0 Weast, 72

nonane 6.3 99.4 104.9 5.5 Bhtnagar, 79

nonene 5.7 93.8 99.9 6.1 Bhtnagar. 79 110

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In (t> Obs Pred Diff Ref

nonyl p-aminobenzoate 9.4 131.4 132.3 0.9 Yalkowsky, 72

o-phenylenepyrene 0.0 49.4 50.0 0.6 Acree, 91

octacosane 26.2 303.4 278.6 -24.8 Domanska, 91

* octacosane 26.2 194.6 278.6 84.0 Weast, 72

octacosane 26.2 300.3 278.6 -21.7 Broadhurst, 62

octacosane 26.2 284.0 278.6 -5.4 Mazee, 48

octacosane 26.2 300.3 278.6 -21.7 Schaerer, 55

octadecanamide 16.8 157.9 196.3 38.4 Chickos, 91

octadecane 15.7 204.8 187.2 -17.6 Messerly, 67

octadecane 15.7 203.6 187.2 -16.4 Schaerer, 55

octadecane 15.7 206.5 187.2 -19.3 McGlashan, 73

octadecane 15.7 205.7 187.2 -18.5 Broadhurst, 62

octadecane 15.7 206.9 187.2 -19.7 Zwolinski, 84

octadecane 15.7 205.2 187.2 -18.0 Bhtnagar, 79

octadecanoic acid (stearic acid) 16.2 163.1 191.3 28.2 Weast, 72

octadecanoic acid (stearic acid) 16.2 165.5 191.3 25.8 Acree, 91

octadecene 15.2 112.2 182.2 70.0 Bhtnagar. 79

octadecyl alcohol 16.8 212-0 196.3 -15.7 Chickos, 91 111

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(|> Obs Pred Diff Ref

* octadiene 4.2 205.2 86.6 -118.6 Weast, 72

2.1 39.9 68.3 28.4 McGlashan, 73

octafluorotoluene 0.5 55.8 54.2 -1.6 Acree, 91

octane 5.2 95.9 95.7 -0.2 Messerly, 67

octane 5.2 95.8 95.7 -0.1 Broadhurst, 62

octane 5.2 96.5 95.7 -0.8 Zwolinski, 84

octane 5.2 95.9 95.7 -0.2 Finke, 54

* octane 5.2 108.8 95.7 -13.1 Bondi, 68

octane 5.2 96.1 95.7 -0.4 Weast, 72

octane 5.2 96.7 95.7 -1-0 McGlashan, 73

octane 5.2 95.3 95.7 0.4 Bhtnagar, 79

octene 4.7 87.9 90.7 2.8 Bhtnagar. 79

octyl p-aminobenzoate 8.4 118.4 123.2 4.8 Yalkowsky, 72

p.p'-dichlorobenzophenone 0.5 71.7 54.2 -17.5 Acree, 91

p-cymene 0.5 47.4 54.2 6.8 Weast, 72

p-quaterphenyl 1.0 64.4 59.1 -5.3 Acree, 91

p-terphenyl 0.5 73.5 54.2 -19.3 Acree, 91

palmitic acid (hexadecanoic acid) 14.1 126.4 173.0 46.6 Weast, 72 112

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln(ji Obs Pred Diff Ref

palmitic acid (hexadecanoic acid) 14.1 161.7 173.0 11.3 Gamer. 26

* pelargonic acid (nonanoic acid) 6.8 71.5 109.0 37.5 Weast, 72

pelargonic acid (nonanoic acid) 6.8 91.2 109.0 17.8 Gamer, 26

pelargonic acid (nonanoic acid) 6.8 90.5 109.0 18.5 Gamer, 24

* pelargonic acid (nonanoic acid) 6.8 71.0 109.0 38.0 Acree, 91

pentacosane 23.1 258.1 251.2 -6.9 Schaerer, 55

* pentacosane 23.1 177.9 251.2 73.3 Weast, 72

pentacosane 23.1 258.1 251.2 -6.9 Broadhurst, 62

pentacosane 23.1 266.9 251.2 -15.7 Maroncelli, 82

pentadecane 12.6 156.0 159.7 3.7 Messerly, 67

pentadecane 12.6 156.0 159.7 3.7 Finke, 54

* pentadecane 12.6 123.1 159.7 36.6 Zwolinski, 84

pentadecane 12-6 156.0 159.7 3.7 Broadhurst, 62

pentadecane 12.6 157.3 159.7 2.4 McGlashan, 73

pentadecane 12.6 156.1 159.7 3.6 Bhtnagar, 79

pentadecanoic acid 13.1 147.8 163.9 16.1 Gamer. 26

* pentadecene 12.0 107.2 154.8 47.6 Bhtnagar, 79

pentane 2.1 58.6 68.3 9.7 Messerly, 67 113

Table 3.2 (con't). Obsen^ed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name In ((> Obs Pred •iff Ref

pentane 2.1 59.1 68.3 9.2 McGlashan. 73

pentane 2-1 59.1 68.3 9.2 Weast, 72

pentane 2.1 58.7 68.3 9-6 Bondl, 68

pentane 2.1 59.0 68.3 9.3 Zwolinski, 84

pentane 2.1 58.9 68-3 9.4 Bondl, 68

pentane 2.1 58.5 68-3 9.8 Broadhurst, 62

pentane 2.1 58.6 68.3 9.7 Bhtnagar, 79

pentanethlol 3.1 89.5 77.4 -12.1 McGlashan, 73

pentanethiol 3.1 89.5 77.4 -12.1 Bondi, 68

pentanol 3.1 50.7 77.4 26.7 Bondl, 68

pentanol 3.1 54.1 77.4 23.3 McGlashan, 73

pentanol 3.1 51.0 77.4 26.4 Weast, 72

pentatriacontane 33.5 337.0 342.7 5.7 Broadhurst, 62

pentatriacontane 33.5 340.6 342.7 2.1 Mazee, 48

pentene 1.5 53.8 63.3 9.5 Bhtnagar, 79

pentyl p-aminobenzoate 5.2 74.5 95.7 21.2 Yalkowsky, 72

pentyl p-amlnobenzoate 5.2 73.6 95.7 22.1 Acree, 91

perfluoroplperidlne 0.0 51.9 50.0 -1.9 McGlashan, 73 114

Table 3.2 (con't). Observed and predicted entropies of melting In J/K-mol

Entropy of Melting

Name In 41 Obs Pred DIff Ref

phenylacetic acid 1.0 41.7 59.1 17.4 Weast, 72

phenyihydrazine 0.5 56.5 54.2 -2.3 Weast, 72

phenylurea 1.0 56.3 59.1 2.8 Acree, 91

picric acid 1.0 43.9 59.1 15.2 Mortimer, 22

pimellc acid 5.2 73.2 95.7 22.5 Acree, 91

propanethlol 1.0 62-6 59.1 -3.5 Bondi, 68

propanol 1.0 35.7 59.1 23.4 Bond!, 68

propanol 1.0 35.6 59.1 23.5 Weast, 72

propanol 1.0 36-4 59.1 22-7 McGlashan. 73

propionic acid 0.5 37.7 54.2 16.5 Garner, 26

* propyl 4-hydroxyben2oate 3.1 18.1 77.4 59.3 Acree, 91

propyl ether 4.2 60.5 86.6 26.1 Weast, 72

propyl p-aminobenzoate 3.1 61.1 77.4 16.3 Yalkowsky, 72

propyl p-aminobenzoate 3.1 59.2 77.4 18.2 Acree, 91

propylbenzene 1.5 53.8 63.3 9.5 McGlashan, 73

propylbenzene 1.5 49.9 63.3 13.4 McGlashan, 73

propylbenzene 1.5 49.4 63.3 13.9 Bondi, 68

propylcyclopentane 1.5 64.9 63.3 -1.6 McGlashan, 73 115

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln<|> Obs Pred DIff Ref

propylene oxide 0.0 40.8 50.0 9.2 McGlashan, 73

propylurea 2.6 38.4 72.4 34.0 Acree, 91

quinoline 0.0 42.2 50.0 7.8 Weast, 72

sebacic acid 8.4 101.0 123.2 22.2 Acree, 91

sec-butylbromide 1.0 43.2 59.1 15.9 Weast, 72

stilbene 1.0 76.5 59.1 -17.4 Weast, 72

stilbene 1.0 75.5 59.1 -16.4 Bondi, 68

suberic acid 6.3 69.4 104.9 35.5 Acree, 91

succinic acid 2.1 72.1 68.3 -3.8 Acree, 91

tert-butylurea 0.5 73.7 54.2 -19.5 Acree, 91

tetra(bromomethyl)methane 4.2 69.2 86.6 17.4 Bondi, 68

tetra(bromomethyl)methane 4.2 65.0 86.6 21.6 McGlashan. 73

tetra(chloromethyl)methane 4.2 61.9 86.6 24.7 Bondi, 68

tetra(chloromethyl)methane 4.2 62.1 86.6 24.5 McGlashan, 73

tetra(fluoromethyl)methane 4.2 67.4 86.6 19.2 Bondi, 68

tetra(fluoromethyl)methane 4.2 67.5 86.6 19.1 McGlashan, 73

tetra(methylthio)methane 4.2 36.1 86.6 50.5 Bondi, 68

tetracontane 38.7 371.6 387.5 15.9 Broadhurst, 62 116

Table 3.2 (con't). Observed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name In (j> Obs Pred Diff Ref

tetracontane 38.7 371.8 387.5 15.7 Mazee, 48

tetracosane 22.0 266.0 242.1 -23.9 Domanska, 91

tetracosane 22.0 266.9 242.1 -24.8 Schaerer, 55

* tetracosane 22.0 170.6 242.1 71.5 Weast, 72

tetracosane 22.0 266.9 242.1 -24.8 Broadhurst, 62

tetracosane 22.0 264.8 242.1 -22.7 Mazee, 48

tetradecane 11.5 161.5 150.6 -10.9 Messerly, 67

tetradecane 11.5 162.8 150.6 -12.2 McGlashan, 73

tetradecane 11.5 162.7 150.6 -12.1 Zwolinski, 84

tetradecane 11.5 161.5 150.6 -10.9 Broadhurst, 62

tetradecane 11.5 161.5 150.6 -10.9 Finke, 54

tetradecane 11.5 161.5 150.6 -10.9 Bhtnagar. 79

tetradecene 11.0 90.0 145.6 55.6 Bhtnagar, 79

tetraethyl germanium 4.2 69.1 86.6 17.5 Bondi, 68

tetraethyl silane 4.2 69.1 86.6 17.5 Bondi, 68

tetraethyl tin 4.2 64.4 86.6 22.2 Bondi, 68

* tetrahydroxybutane (erythritol) 3.1 109.5 77.4 -32.1 Bondi, 68

tetralin 0.0 53.0 50.0 -3.0 Bondi, 68 117

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name In Obs Pred Diff Ref

tetramethyl mellophanate 5.7 83.8 99.9 16.1 Dozen, 78

tetramethyl prehnitate 5.7 99.8 99.9 0.1 Dozen, 78

tetramethyl pyromellitate 5.7 85.4 99.9 14.5 Dozen, 78

tetratriacontane 32.5 371.4 333.5 -37.9 Broadhurst, 62

thiazole 0.0 40.3 50.0 9.7 McGlashan, 73

* thioslnamine 2.1 46.8 68.3 21.5 Weast, 72

thymol 0.5 53.6 54.2 0.6 Weast, 72

thymol 0.5 38.5 54.2 15.7 Mortimer, 22

thymol 0.5 68.4 54.2 -14.2 Chickos, 91

trans-2-hexene 2.1 66.1 68.3 2.2 Bondi, 68

trans-2-pentene 1.0 63.3 59.1 -4.2 Weast, 72

trans-2-pentene 1.0 62.9 59.1 -3.8 Acree, 91

trans-3-hexene 2.1 73.6 68.3 -5.3 Bondi, 68

trans-stilbene 1.0 68.8 59.1 -9.7 Acree, 91

triacontane 28.3 295.0 296.9 1.9 Mazee, 48

triacontane 28.3 315.1 296.9 -18.2 Broadhurst, 62

trichloroacetic acid 0-5 17.9 54.2 36.3 Weast, 72

trichloroacetic acid 0.5 44.8 54.2 9.4 Mortimer, 22 118

Table 3.2 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of Melting

Name ln Obs Pred Diff Ref

tricosane 21.0 253.3 232.9 -20.4 Mazee, 48

tricosane 21.0 131-1 232.9 101.8 Weast, 72

tricosane 21.0 237.7 232.9 -4.8 Broadhurst, 62

tricosane 21.0 237.7 232.9 -4.8 Schaerer, 55

tricosane 21.0 243.2 232.9 -10.3 Maroncelli, 82

tridecane 10.5 107.0 141.5 34.5 Zwolinski, 84

tridecane 10.5 137.5 141.5 4.0 McGlashan, 73

tridecane 10.5 136.5 141.5 5.0 Broadhurst, 62

tridecane 10.5 136.5 141.5 5.0 Messerly, 67

tridecane 10.5 136.5 141.5 5.0 Finke, 54

tridecane 10.5 136.5 141.5 5.0 Bhtnagar, 79

tridecanedioic acid 11.5 116.9 150.6 33.7 Acree, 91

tridecanoic acid 11.0 119.1 145.6 26.5 Gamer, 26

tridecene 9.9 87.0 136.5 49.5 Bhtnagar, 79

triethanolamineborate 6.3 57.8 104.9 47.1 McGlashan, 73

triethylene diamine 4.2 59.0 86.6 27.6 Bondi, 68

trimesic acid trimethyl ester 4.2 54.0 86.6 32.6 Dozen, 78

trimethyl hemimellitate 4.2 87.2 86.6 -0.6 Dozen, 78 119

Table 3.2 (con't). Observed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name ln(j> Obs Pred Diff Ref

trinitroglycerol (nitroglycerin) 6.8 77.2 109.0 31.8 Weast, 72

triphenyl phosphate 4.7 91.8 90.7 -1.1 Acree, 91

triphenylamine 1.5 62.3 63.3 1.0 Chickos, 91

triphenylmethane 1.5 52.7 63.3 10.6 Mortimer, 22

triphenylphosphine 1.5 55.6 63.3 7.7 Acree, 91

triphenylphosphine p-oxide 1.5 56.1 63.3 7.2 Acree, 91

tristearin (glyceryl tristearate) 57.1 523.2 548.0 24.8 Weast, 72

tritetracontane 41.8 400.3 415.0 14.7 Broadhurst, 62

tritetracontane 41.8 400.4 415.0 14.6 Mazee, 48

undecane 8.4 118.6 123.2 4.6 Messerly, 67

undecane 8.4 118.6 123.2 4.6 Broadhurst, 62

undecane 8.4 119.3 123.2 3.9 Zwolinski, 84

undecane 8.4 119.6 123.2 3.6 McGlashan, 73

undecane 8.4 90.8 123.2 32.4 Weast, 72

undecane 8.4 118.6 123.2 4.6 Finke, 54

undecane 8.4 118.7 123.2 4.5 Bhtnagar, 79

undecanedioic acid 9.4 103.0 132.3 29.3 Acree, 91

undecanoic acid 8.9 108.3 127.3 19.0 Garner, 26 120

Table 3.2 (con't). Observed and predicted entropies of melting in J/K-mol

Entropy of Melting

Name In ({> Obs Pred Diff Ref

undecanoic acid 8.9 108.8 127.3 18.5 Gamer, 24

undecene 7.8 118.3 118.2 -0.1 Bhtnagar, 79

undecilic acid 8.9 83.9 127.3 43.4 Weast. 72

• untriacontane 29.4 392.8 306.1 -86.7 Broadhurst, 62

urethane 1.5 47.7 63.3 15.6 Mortimer, 22

urethane 1.5 47.7 63.3 15.6 Weast, 72

valeric acid 2.6 59.6 72.4 12.8 McGlashan, 73

valeric acid 2.6 55.9 72.4 16.5 Weast, 72

vinyl cyanide 0.0 40.6 50.0 9.4 Bondi, 68

* The ASm*"® value is either less than 9 J/K mol or is clearly out of line with other reported values for the same or related compound. 121

CHAPTER IV: ESTIMATION OF THE TOTAL ENTROPY OF MELTING:

APPLICATION TO AN INDEPENDENT DATA SET

Introduction

In the last two chapters it was seen that utilizing a constant, either Walden's or

Richard's rule, to estimate the entropy of melting for either rigid or flexible molecules leads to large errors for molecules that are highly symmetrical or highly flexible. However, semi-empirical equations containing the effects of either symmetry for rigid molecules or molecular flexibility for flexible molecules predict the entropy of melting quite well.

In this chapter the effects of both molecular symmetry and molecular flexibility will be combined to yield a single equation to predict the total entropy of melting for any nonelectrolyte. This semi-empirical equation which consists of only two parameters is also evaluated on an independent data set.

Methods

Molecular Rotational Symmetry Number

The calculation of the molecular symmetry number is described in Chapter II as the number of identical positions that a molecule can assume as it is rigidly 122

rotated about its axis. For flexible molecules the molecular rotational symmetry

number is assigned a value of unity. In general, for rigid molecules, the

symmetry number spans a range of 1 to 100 with an increase in symmetry.

Molecular Flexibility Number

Chapter III gives a full description of how the flexibility number is assigned. For

rigid molecules the molecular flexibility number is assigned a value of unity. For

flexible molecules, in general, the more flexible the molecule the greater the

flexibility number.

Entropy of Melting

As seen in Chapter I, the total entropy of melting is the sum of the rotational, positional, and conformational entropies (equation 1-1). For rigid molecules, the total entropy of melting (Bondi, 1968; Yalkowsky, 1979; and Ubbelohde,

1978) Is related to the molecular symmetry number, a, by equation 2-6. While for flexible molecules the total entropy of melting is related to the molecular flexibility number, (|>, by equation 3-6.

Combining the effects of both symmetry and flexibility on the total entropy of melting for any compound results in the following equation:

ASm"^ = 50 - R In CT + R In (j) J/deg mol (4-1) 123 where R is the gas constant, a and ({> are the molecular symmetry and flexibility numbers, respectively. As mentioned in Chapter II, the intercept represents those molecules which are rigid and asymmetrical, that is In <{> = 0 and In <7 = 0.

Experimental

Data

Evaluated entropy of melting data were obtained from two data compilations by

Domalski and coworkers (1984 and 1990). Using dBASE IV, the data were combined to form a database consisting of 1311 total entropy of melting values.

These values are the sum of all of the reported entropies of transition and the entropy of melting for more than 930 different compounds. Domalski and coworkers assigned ratings to the reported entropy values that range from "A" to "D" indicating "high quality" to "low quality" data. Molecular rotational symmetry and flexibility numbers were assigned to each compound as described in Chapters II and III.

Entropy of Melting

Compounds in the database are analyzed with respect to their fit to the semi- empirical equation (equation 4-1). The average absolute enror is used to evaluate the predictability of the equation. 124

The estimation of the entropy of melting for polymers is calculated slightly

differently. Only the values of the repeating unit are added with no intercept.

For these compounds equation 4-1 can be modified to;

AS,n'* = Rln(j). (4-2)

Results and Discussion

Table 4.1 shows the number of entropy values and the absolute error for each of Domalski's ratings. Note that one entropy value did not have a rating and is not represented in the table. The average absolute error for 1276 entropy values is 12.5 J/K-mol. A slightly Improved absolute error of 11.0 J/K-mol is achieved when only the 743 "high quality" or "A" rated are used. This Is expected since these values should be more reliable than the others.

The observed and predicted entropy of melting data are given In Table 4.2, along with the natural logarithm of the molecular symmetry and flexibility numbers. Thirty-four of the 1311 values in the database were not used In the evaluation of equation 4-1 and are indicated in the table by an asterisk,

These values can be grouped into two categories; those that are outliers and those that are believed to have missing transitions. The outliers include all reported entropy of melting values that are clearly out of line with at least two other reported values for the same compound or are less than 9 J/K-mol. The 125 values with missing transitions include the values of ethanol which do not report a crystal-crystal transition seen by Nikalaev et al. (1967) and Haida et al. (1977) and the values reported for three liquid crystal forming compounds which are not likely to be in their most stable crystal form except at extremely low temperatures.

Predicted versus observed entropy of melting values are shown in Figure 4.1.

Perfect fit is depicted as a solid line with a slope of unity. The fact that nearly all of the data, ranging from 9 to 588 J/K mol, fall close to the line indicates that equation 4-1 provides a reasonable estimate of the total entropy of melting for a wide variety of compounds. The average absolute error for 1277 values for 934 compounds is only 12.5 J/K mol. This is well within the experimental error that is normally associated with observed entropy of melting data.

Table 4.1. Comparison of evaluated data

Evaluation Number of Average absolute values error A 743 11.1 B 249 15.9 C 244 12.7 D 40 17.1 TOTAL 1276 12.5 600

500

^ 400

o 300

S 200

100

0 100 200 300 500 600 Observed Entropy of MeMing (J/K nwl) Figure 4.1. Observed versus predicted entropy of melting for 1277 values 127

Table 4.2. Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS"** DIFF LNcLN REF

1,1,1,2-tetrachlorodifluoroethane A 12.7 50.0 -37.3 0.0 0.0 2

1,1,1,3,5,5,5-heptamethyl-3- A 80.7 50.0 30.7 0.0 0.0 2 phenylt^isiloxane

1,1,1,3-tetrachloropropane A 54.2 67.4 -13.2 0.0 2.1 1

1,1,1,5,5,5-hexamethyl-3,3- A 84.1 76.1 8.0 0.0 3.1 2 diphenyltrisiloxane

1,1,1-trlchloro-3,3,3-trifIuoro- A 60.5 67.4 -7.0 0.0 2.1 1 propane

1,1,1 -trichloroethane C 39.7 40.9 -1.2 0.0 2

1,1,1 -trichloroethane C 42.2 40.9 1.3 1.1 0.0 1

1,1,1 -trichloroethane A 43.0 40.9 2.1 1.1 0.0 1

1,1,1 -trichloroethane A 41.2 40.9 0.3 1.1 0.0 1

1,1,1 -trichlorotrifluoroethane A 14.3 40.9 -26.5 1.1 0.0 2

1,1,1 -trifluoro-3,3-dichloropropane A 51.1 67.4 -16.3 0.0 2.1 1

1,1,1 -trifluoro-3-chloropropane A 56.1 67.4 -11.3 0.0 2.1 1

1,1,1 -trifluoro-3-chloropropane A 54.6 67.4 -12.8 0.0 2.1 1

1,1,1-trifluoroethane A 40.2 40.9 -0.7 1.1 0.0 1

1,1,1 -trihydroxymethylpropane A 64.3 58.7 5.6 0.0 1.0 2

1,1,10,10-tetramethylcycloocta- B 110.3 50.0 60.3 0.0 0.0 2 decane 128

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS"*® DIFF LN o LN(j) REF

1.1,2,2-tetrachloro-1,2-difluoro- B 12.3 44.2 -31.9 0.7 0.0 1 ethane

1,1,2,2-tetrachloro-1,2-difluoro- A 12.3 44.2 -31.9 0.7 0.0 1 ethane

1,1,2,2-tetrachloroethane A 43.1 44.2 -1.2 0.7 0.0 2

1.1,2,2-tetrachloroethane A 42.4 44.2 -1.9 0.7 0.0 2

1,1,2-trichloro-1,2,2-trifluoroethane A 20.5 50.0 -29.5 0.0 0.0 1

1.1,2-trichloro-1,2,2-trifluoroethane A 8.5 50.0 -41.5 0.0 0.0 2

1,1,2-trlchloroethane C 48.0 50.0 -2.0 0.0 0.0 1

1,1.2-trichloroethane A 45.7 50.0 -4.3 0.0 0.0 2

1,1,3,3,5,5-hexaethylcyclotri- 92.5 97.9 -5.4 0.0 5.8 2 siloxane

1,1,3,3,5,5-hexaethylcyclotrl- A 93.6 97.9 -4.3 0.0 5.8 2 siloxane

1,1,3,3,5,5-hexaethylcyclotri- A 93.7 97.9 -4.2 0.0 5.8 2 siloxane

1,1,3,3,5,5-hexaethylcyclotri- A 93.5 97.9 -4.4 0.0 5.8 2 siloxane

1,1,3,3,5,5-hexamethyl-1,3,5- B 61.3 35.1 26.2 1.8 0.0 2 trisilacyclohexane

1,1.3,3,5,5-hexamethyl-7,7- A 140.1 54.4 85.8 0.0 0.5 2 diphenyltetrasiloxane 129

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS'*' DIFF LN a LN (|» REF

1,1,3,3-tetraethyl-5,5-dimethyl- A 37.3 80.5 -43.2 0.0 3.7 2 cyclotrisiloxane

1,1,3,3-tetraethyl-6,5-diphenyl- A 65.8 89.2 -23.3 0.0 4.7 2 cylotrisiloxane

1,1,3,3-tetramethyl-1,3-disila- B 38.6 44.2 -5.7 0.7 0.0 2 cyclobutane

1.1,3,3-tetramethyl-5.5,7,7-tetra- B 83.3 63.1 20.2 0.0 1.6 1 phenylcyclotetrasiloxane

1.1,3-trimethylurea A 41.5 63.1 -21.5 0.0 1.6 2

1.1,4.4.10,10,13,13-octamethyl B 61.8 50.0 11.8 0.0 0.0 2 cyclooctadecane

1,1-dichloroethane A 44.7 50.0 -5.3 0.0 0.0 1

1,1-dichloroethene A 43.3 50.0 -6.8 0.0 0.0 1

1.1-dicyclohexyldodecane B 147.3 145.8 1.5 0.0 11.5 1

1,1-dicyclohexyldodecane A 147.3 145.8 1.5 0.0 11.5 2

1,1-difluoro-1 -chloroethane B 18.9 50.0 -31.1 0.0 0.0 1

1,1 -difluoro-1 -chloroethane B 18.9 50.0 -31.1 0.0 0.0 1

1,1 -dimethyl-1-silacyclobutane B 43.5 44.2 -0.8 0.7 0.0 2

1,1 -dimethylazoethane A 59.9 76.1 -16.2 0.0 3.1 2

1,1 -dimethylazoxyethane A 71.1 76.1 -5.1 0.0 3.1 2

1,1 -dimethylcyclohexane A 47.5 50.0 -2.5 0.0 0.0 1 130

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-moi

NAME EVAL AS"*® DIFF LNa REF

1,1 -dimethylcyclopentane A 49-5 44.2 5.3 0.7 0.0 1

1,1-dimethylurea A 65.2 54.4 10.9 0.0 0.5 2

1,1 -diphenyldodecane B 148.1 145.8 2.4 0.0 11.5 1

1.1-diphenyldodecane A 148.1 145.8 2.4 0.0 11.5 2

1,2'-dinaphthylmethane A 82.7 58.7 24.0 0.0 1.0 1

1,2,3.4,5,6,7.8-octahydroanthra- A 60.7 50.0 10.7 0.0 0.0 2 cene

1.2.3,4,5,6,7,8-octahydroanthra- C 51.8 50.0 1.8 0.0 0.0 1 cene

1,2,3,4-tetrafIuorobenzene A 69.0 44.2 24.8 0.7 0.0 1

1.2.3,4-tetrahydroanthracene A 58.9 50.0 8.9 0.0 0.0 2

1,2,3,4-tetrahydronaphthalene A 52.4 44.2 8.2 0.7 0.0 1

1,2,3.4-tetrahydroquinoline A 40.8 50.0 -9.3 0.0 0.0 2

1,2,3,4-tetrahydroxybutane B 111.0 76.1 34.9 0.0 3.1 1

1.2,3,4-tetramethylbenzene C 42.3 44.2 -1.9 0.7 0.0 1

1,2,3,5-tetrafluorobenzene A 47.2 44.2 3.0 0.7 0.0 1

1,2,3,5-tetramethylbenzene C 52.0 44.2 7.8 0.7 0.0 1

1,2,3-trlhydroxypropane B 62.7 67.4 -4.7 0.0 2.1 1

1,2,3-trihydroxypropane B 62.8 67.4 -4.6 0.0 2.1 2 131

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN cy LN ((» REF

1,2.3-trimethylben2ene A 41.8 44.2 -2.4 0.7 0.0 1

1,2,4,5-tetrafluorobenzene A 54.3 38.5 15.9 1.4 0.0 1

1.2,4.5-tetramethylbenzene C 59.3 38.5 20.8 1.4 0.0 1

1.2,4-tr{methylben2ene A 57.5 50.0 7.5 0.0 0.0 1

1,2,4-trimethylbenzene C 55.3 50.0 5.3 0.0 0.0 1

1,2-ben20fluorene B 49.3 50.0 -0.7 0.0 0.0 2

1,2-butadiene A 50.9 50.0 0.9 0.0 0.0 1

1,2-diaceto-3-stearin C 218.7 245.9 -27.2 0.0 23.6 1

1.2-diamino-2-methylpropane A 73.8 58.7 15.1 0.0 1.0 1

1,2-diaminoethane A 82.0 44.2 37.8 0.7 0.0 1

1,2-diaminopropane A 78.2 58.7 19.5 0.0 1.0 1

1,2-dibenzoylethane B 93.1 76.1 17.0 0.0 3.1 1

1,2-dibromobenzene D 49.4 44.2 5.2 0.7 0.0 2

1,2-dibromoethane A 45.8 44.2 1.5 0.7 0.0 1

1,2-dibromoethane C 46.5 44.2 2.2 0.7 0.0 1

1,2-dibromotetrafluoroethane A 43.2 44.2 -1.0 0.7 0.0 1

1.2-dichloro-1,1,2,2- tetrafluoro- A 39.0 44.2 -5.3 0.7 0.0 1 ethane

1,2-dichlorobenzene D 50.5 44.2 6.3 0.7 0.0 2 132

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-moi

NAME EVAL DIFF LN ct LN (|) REF

1,2-dlchloroethane A 37.3 44.2 -7.0 0.7 0.0 1

1,2-dichloroethane C 53.1 44.2 8.8 0.7 0.0 1

1,2-dicyanobenzene A 48.3 44.2 4.1 0.7 0.0 2

1,2-dicyanobenzene A 48-3 44.2 4.1 0.7 0.0 2

1,2-difluoroben2ene A 48.9 44.2 4.6 0.7 0.0 1

1,2-dihydroxybenzene C 67.4 44.2 23.2 0.7 0.0 1

1,2-dihydroxyethane C 44.6 44.2 0.3 0.7 0.0 1

1,2-dihydroxyethane B 38.2 44.2 -6.0 0.7 0.0 1

1,2-dlhydroxyethane-d2 B 37.7 44.2 -6.6 0.7 0.0 1

1,2-diiodobenzene 0 47.5 44.2 3.2 0.7 0.0 2

1,2-dimethylbenzene A 54.9 44.2 10.6 0.7 0.0 1

1,2-dimethylbenzene C 52.8 44.2 8.5 0.7 0.0 1

1,2-dimethylcyclopentane C 41.6 44.2 -2.6 0.7 0.0 1

1,2-dinitrobenzene C 58.3 54.4 4.0 0.0 0.5 1

1,2-dinitrobenzene C 57.7 54.4 3.3 0.0 0.5 2

1,2-diphenylethane C 70.9 67.4 3.5 0.0 2.1 1

1,2-diphenylethane A 78.3 67.4 10.9 0.0 2.1 2

1,2-pentadiene A 55.6 54.4 1.3 0.0 0.5 1 133

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS*** DIFF LN a LN (j) REF

1,3,5-trl-2-naphthylbenzene C 89.9 58-7 31.2 0.0 1.0 1

1,3,5-trichloro-2,4,6-trifluoro- B 59.4 35.1 24.3 1.8 0.0 1 benzene

1,3,5-trichloro-2,4,6-trifluoro- A 59.2 35.1 24.1 1.8 0.0 1 benzene

1,3.5-trimethylbenzene A 41.7 35.1 6.6 1.8 0.0 1

1,3,5-trinitrobenzene B 34.5 58.7 -24.2 0.0 1.0 1

1,3,5-trinitrobenzene B 37.7 58.7 -21.0 0.0 1.0 1

1.3,5-trlnitrobenzene B 44.1 58.7 -14.6 0.0 1.0 1

1,3,5-triphenylbenzene A 74.9 58.7 16.2 0.0 1.0 2

1,3,6-trlmethyluracil B 55.1 50.0 5.1 0.0 0.0 2

1,3-bis(trimethylsilyl)propane B 71.8 67.4 4.4 0.0 2.1 2

1,3-butadiene A 48.6 44.2 4.4 0.7 0.0 1

1,3-cyclohexadiene B 26.1 44.2 -18.1 0.7 0.0 1

1,3-dibromobenzene D 53.4 44.2 9.2 0.7 0.0 2

1,3-dlbromopropane C 61.4 67.4 -6.1 0.0 2.1 1

1,3-dichlorobenzene D 50.6 44.2 6.4 0.7 0.0 2

1,3-dlethylurea A 87.6 80.5 7.1 0.0 3.7 2

1,3-dif)uorobenzene A 46.5 44.2 2.3 0.7 0.0 1 134

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** DIFF LN CT LN

1,3-dihydroxybenzene B 53.8 44.2 9.6 0.7 0.0 2

1,3-dihydroxybenzene A 58.3 44.2 14.1 0.7 0.0 2

1,3-dihydroxyben2ene C 55.6 44.2 11.4 0.7 0.0 1

1,3-diiodobenzene D 51.9 44.2 7.6 0.7 0.0 2

1,3-dimethylbenzene C 53.4 44.2 9.1 0.7 0.0 1

1,3-dimethylbenzene A 51.4 44.2 7.1 0.7 0-0 1

1,3-dimethyluracil B 58.9 50.0 8.9 0.0 0.0 2

1,3-dimethylurea A 35.9 63.1 -27.1 0.0 1.6 2

1,3-dinitrobenzene C 47.8 54.4 -6.6 0.0 0.5 2

1,3-dinitrobenzene C 47.8 54.4 -6.6 0.0 0.5 1

1,3-dioxolan B 56.1 50.0 6.1 0.0 0.0 2

1,3-diphenylurea A 67.6 71.8 -4.2 0.0 2.6 2

1.3-dithiane B 46.5 50.0 -3.5 0.0 0.0 2

1,3-phenylenediamine A 45.9 44.2 1.7 0.7 0.0 2

1,4-bis(phenylglyoxaloyl)benzene A 76.0 71.8 4.2 0.0 2.6 2

1,4-butanediol A 63.7 76.1 -12.4 0.0 3.1 2

1,4-cyclohexadiene B 29.8 38.5 -8.7 1.4 0.0 1

1,4-cyclohexanedione A 32.2 50.0 -17.7 0.0 0.0 2 136

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS*** DIFF LN

1.4-dibromoben2ene D 57.0 38.5 18.5 1.4 0.0 2

1,4-dibromoben2ene C 55.7 38.5 17.2 1.4 0.0 1

1,4-dichlorobenzene C 55.3 38.5 16.9 1.4 0.0 2

1,4-dichloroben2ene C 55.7 38.5 17.2 1.4 0.0 1

1,4-dichlorobenzene D 55.6 38.5 17.2 1.4 0.0 2

1,4-dichlorobenzene A 61.1 38.5 22.6 1.4 0.0 1

1,4-dichlorobenzene A 61.1 38.5 22.6 1.4 0.0 2

1,4-dihydroxybenzene C 60.9 38.5 22.4 1.4 0.0 1

1,4-diiodobenzene C 55.6 38.5 17.1 1.4 0.0 1

1,4-diiodobenzene 0 55.6 38.5 17.2 1.4 0.0 2

1,4-dimethylbenzene A 59.8 38.5 21.3 1.4 0.0 2

1,4-dimethylbenzene A 59.7 38.5 21.3 1.4 0.0 1

1,4-dimethylbenzene A 59.8 38.5 21.3 1.4 0.0 1

1,4-dimethylbenzene C 59.1 38.5 20.7 1.4 0.0 1

1,4-dimethylcubane dicarboxylate B 93.7 71.8 21.9 0.0 2.6 2

1,4-dinitrobenzene C 62.9 54.4 8.6 0.0 0.5 1

1,4-dinitrobenzene C 63.0 54.4 8.6 0.0 0.5 2

1,4-dioxane C 53.8 38.5 15.4 1.4 0.0 1 136

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS*"® ^S'^ DIFF LN c LN REF

1.4-dioxane C 42.0 38.5 3.5 1.4 0.0 1

1,4-dithiane B 56.2 44.2 11.9 0.7 0.0 2

1,4-pentadiene C 49-4 58.7 -9.3 0.0 1-0 1

1,4-pentadiene A 48.6 58.7 -10.0 0.0 1.0 1

1,5-pentanediol C 63.4 84.8 -21.4 0.0 4-2 1

1,6-hexamethylene diisocyanate A 90.4 93.5 -3.1 0.0 5.2 2

1,6-hexamethylene diisocyanate A 90.4 93.5 -3.1 0.0 5.2 2

1,6-hexanediol A 79.6 93.5 -13.9 0.0 5.2 2

1,8-dimethylnaphthalene A 46.9 44.2 2.6 0.7 0.0 1

1-aceto-3-stearin C 130.3 224.2 -93.8 0.0 20.9 1

1-aminopropane B 56.4 58.7 -2.3 0.0 1.0 1

1-aminopropane A 58.3 58.7 -0.4 0.0 1.0 1

1-azabicyclo[2.2.2]octane A 40.3 40.9 -0.6 1.1 0.0 1

1-bromo-2-chloro-1,1,2-trifluoro- A 30.0 50.0 -20.0 0.0 0.0 2 ethane

1 -bromo-2-chloroethane C 54.6 50.0 4.6 0.0 0.0 1

1 -bromobutane C 57.6 67.4 -9.8 0.0 2.1 1

1 -bromohexane C 96.0 84.8 11.2 0.0 4.2 1

1 -bromopentane B 61.9 76.1 -14.1 0.0 3.1 1 137

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN a LN (|> REF

1-bromopentane C 77.6 76.1 1.5 0.0 3.1 1

1-butanethiol A 66.4 67.4 -1.0 0.0 2.1 1

1-butanol C 50.5 67.4 -16.9 0.0 2.1 1

1-butanol A 50.8 67.4 -16.6 0.0 2.1 1

1-butene A 43.8 50.0 -6.2 0.0 0.0 2

1-butene A 43.8 50.0 -6.2 0.0 0.0 1

1-butyne A 40.9 50.0 -9.1 0.0 0.0 1

1 -cis-2-dimethylcyclohexane A 55.2 50.0 5.2 0.0 0.0 1

1 -cls-2-dimethylcyclopentane A 54.7 50.0 4.7 0.0 0.0 1

1-cis-3-dimethylcyclohexane A 54.8 50.0 4.8 0.0 0.0 1

1-cis-3-pentadiene A 42.6 54.4 -11.7 0.0 0.5 1

1-cls-4-dimethylcyclohexane A 50.1 50.0 0.1 0.0 0.0 1

1 -cyclohexyl-1-phenyldodecane A 127.7 145.8 -18.0 0.0 11.5 2

1-cyclohexyl-1 -phenyldodecane B 127.5 145.8 -18.2 0.0 11.5 1

1-decanethiol A 134.4 119.7 14.7 0.0 8.4 1

1-decene A 106.8 106.6 0.2 0.0 6.8 1

1-dodecene A 105.1 124.0 -18.9 0.0 8.9 1

1-heptanethiol A 110.4 93.5 16.9 0.0 5.2 1 138

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN a LN REF

1-heptanol C 75.6 93.5 -17.9 0.0 5.2 1

1-heptene A 80.4 80.5 -0.1 0.0 3-7 1

1-heptene C 82.5 80.5 2.1 0.0 3-7 1

1-hexadecanol B 181.2 171.9 9.3 0.0 14-7 1

1-hexadecanol (n-cetyl alcohol) C 108.5 171.9 -63.4 0.0 14-7 2

1-hexadecene A 108.8 158.8 -50.0 0.0 13-1 1

1 -hexanethiol A 93.5 84.8 8.7 0.0 4.2 1

1-hexanol B 68.1 84.8 -16.7 0.0 4.2 1

1-hexene A 70-1 71.8 -1.7 0.0 2-6 1

1 -methyl-7-isopropylphenanthrene C 48.9 54.4 -5.5 0.0 0-5 1

1 -methylnaphthalene A 49.3 50.0 -0.7 0.0 0-0 1

1-monostearin C 170.2 219.8 -49.5 0.0 20-4 1

1-octene A 89.3 89.2 0.1 0.0 4.7 1

1-pentadecanol B 172.8 163.2 9.6 0.0 13.6 1

1 -pentanethiol A 88.8 76.1 12.6 0.0 3.1 1

1-pentanol A 53.7 76.1 -22.4 0.0 3.1 1

1-pentanol C 50.6 76.1 -25.5 0.0 3.1 1

1-pentene A 53.8 63.1 -9.2 0.0 1.6 1 139

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN o LN (j) REF

1-pentene A 53.8 63.1 -9.2 0.0 1.6 2

1-propanethiol A 62.2 50.0 12.2 0.0 0.0 1

1-propanol C 35.3 50.0 -14.6 0.0 0.0 1

1 -propanol A 36.1 50.0 -13.9 0.0 0.0 1

1-tetradecanol B 163.1 154.5 8.6 0.0 12.6 1

1 -trans-2-dimethylcyclohexane A 56.7 50.0 6.7 0.0 0.0 1

1-trans-3-dimethylcyclohexane A 53.9 50.0 3.9 0.0 0.0 1

1-trans-3-dimethy(cyciopentane A 53.0 44.2 8.8 0.7 0.0 1

1 -trans-3-pentadiene A 38.5 54.4 -15.8 0.0 0.5 1

1 -trans-4-dimethylcyclohexane A 52.2 44.2 8.0 0.7 0.0 1

1-tridecanol B 147.7 145.8 1.9 0.0 11.5 1

1 -undecene A 118.3 115.3 2.9 0.0 7.9 1

11-cyclohexyleicosane C 180.4 211.1 -30.6 0.0 19.4 1

11 -n-decylheneicosane B 252.2 285.1 -32.8 0.0 28.3 1

11 -phenyleicosane C 220.1 211.1 9.0 0.0 19.4 1

2,11-dicyclohexyldodecane B 147.3 145.8 1.5 0.0 11.5 1

2,2'-dimethylbiphenyl A 7.8 50.0 -42.2 0.0 0.0 2

2,2,3,3-tetramethylbutane A 33.3 44.2 -10.9 0.7 0.0 1 140

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS'^ DIFF LN ct LN

2,2,3,3-tetramethylpentane A 50.8 58.7 -7.9 0.0 1.0 2

2,2.3-trimethylbutane C 28.5 50.0 -21.4 0.0 0.0 1

2,2,4,4-tetramethylpentane A 47.2 50.0 -2.8 0.0 0.0 2

2,2,4-trimethylpentane A 55.6 58.7 -3.2 0.0 1.0 1

2,2,4-trimethylpentane C 54.7 58.7 -4.0 0.0 1.0 1

2,2,5,5-tetramethy lhex-3-ene A 61.1 58.7 2.3 0.0 1.0 2

2,2-bis(4-cyanatophenyi)propane A 75.0 76.1 -1.1 0.0 3.1 2

2,2-bis(4-cyanatophenyl)propane A 75.0 76.1 -1.1 0.0 3.1 2

2,2-bis(bromomethyl)-1,3-dibromo- A 64.5 84.8 -20.3 0.0 4.2 1 propane

2,2-bis(fluoromethyl)-1,3-difluoro- A 66.9 84.8 -17.9 0.0 4.2 1 propane

2,2-bls(hydroxymethyl)-1,3-di- B 87.2 84.8 2.4 0.0 4.2 2 hydroxypropane

2,2-bls(hydroxymethyl)-1,3-di- B 108.6 84.8 23.8 0.0 4.2 1 hydroxypropane

2,2-dichloropropane B 41.6 44.2 -2.7 0.7 0.0 1

2,2-dimethyl-1 -propanol C 31.1 50.0 -18.9 0.0 0.0 1

2,2-dlmethylbutane C 38.7 50.0 -11.2 0.0 0.0 1

2,2-dimethylbutane A 48.0 50.0 -2.0 0.0 0.0 2 141

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN a LN ((> REF

2,2-dimethylbutane A 47.9 50.0 -2.1 0.0 0.0 1

2,2-dimethylpentane C 39.6 58.7 -19.1 0.0 1.0 1

2,2-dimethylpentane A 39.0 58.7 -19.7 0.0 1.0 1

2,2-dlmethylpropanal A 38.6 54.4 -15.7 0.0 0.5 2

2,2-dimethylpropane A 31.1 29.3 1.8 2.5 0.0 1

2,2-dimethylpropane A 30.7 29.3 1.4 2.5 0.0 1

2,2-dimethylproplonitrile A 41.1 40.9 0.2 1.1 0.0 1

2,2-dinitropropane B 57.4 58.7 -1.3 0.0 1.0 2

2,2-dlnitropropane B 57.5 58.7 -1.3 0.0 1.0 1

2.3,4,5,6-pentafluorotoluene A 54.5 44.2 10.3 0.7 0.0 1

2,3,4-trimethylpentane B 56.7 67.4 -10.7 0.0 2.1 1

2,3,6,7,10,11 -hexa-n-octanoyloxy A 108.9 437.5 -329.0 0.0 46.6 2 triphenylene

2.3-ben2ofluorene B 47.8 44.2 3.6 0.7 0.0 2

2,3-diazabicyclo[2.2.2]oct-2-ene A 43.0 50.0 -7.0 0.0 0.0 2 n-oxide

2,3-dlchlorophenol A 64.7 50.0 14.7 0.0 0.0 2

2,3-dimethyl-2-butene A 50.4 38.5 11.9 1.4 0.0 1

2,3-d[methyl-2-butene C 50.8 38.5 12.3 1.4 0.0 1 142

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS*** DIFF LN ci LN (|> REF

2,3-dimethylbutane A 52.7 58.7 -6.0 0.0 1.0 1

2,3-dimethylbutane A 53.2 58.7 -5.5 0.0 1.0 1

2,3-dlmethylnaphthalene A 51.3 44.2 7.0 0.7 0.0 2

2,3-dimethylphenol A 60.8 50.0 10.8 0.0 0.0 2

2,3-dinitrophenol A 62.9 54.4 8.6 0.0 0.5 2

2,3-dithlabutane A 48.8 58.7 -9.9 0.0 1.0 1

2,3-pentadiene A 41.6 44.2 -2.7 0.7 0.0 1

2,4,4-trlmethyl-1-pentene C 49.0 54.4 -5.4 0.0 0.5 1

2,4,4-trlmethyl-2-pentene C 40.9 50.0 -9.1 0.0 0.0 1

2,4,5-trinitrotoluene C 83.5 58.7 24.8 0.0 1.0 1

2,4,6-trimethyl-1,3,5-trioxane C 54.4 35.1 19.3 1.8 0.0 1

2.4,6-trinitro-n-(methylnitro)-m- C 51.5 76.1 -24.6 0.0 3.1 1 toluidine

2,4,6-trlnitrophenylethyl nitramine C 63.7 80.5 -16.7 0.0 3.7 1

2,4-dibromophenol D 47.9 50.0 -2.1 0.0 0.0 1

* 2,4-dichloro-4'-nitrodiphenyl ether C 7.9 63.1 -55.1 0.0 1.6 2

2,4-dichlorophenol C 88.0 50.0 38.0 0.0 0.0 2

2,4-dichlorophenol A 63.2 50.0 13.2 0.0 0.0 2

2,4-dlmethyl-3-oxapentane A 64.1 67.4 -3.3 0.0 2.1 1 143

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS"** AS^ DIFF LN o LN (j) REF

2,4-dimethyl-3-oxapentane C 59.2 67.4 -8.2 0.0 2.1 1

2,4-dimethyl-3-pentanone A 54.6 63.1 -8.5 0.0 1.6 1

2,4-dimethyl-3-thiapentane A 53.4 67.4 -14.0 0.0 2.1 1

2,4-dimethylpentane C 43.9 67.4 -23.5 0.0 2.1 1

2,4-dimethylpentane A 44.5 67.4 -22.9 0.0 2.1 1

2,4-dinitrophenol A 62.3 54.4 8.0 0.0 0.5 2

2.4-dinitrotoluene D 60.6 54.4 6.2 0.0 0.5 1

2,5,8,11 -tetraoxadodecane C 103.4 128.4 -24.9 0.0 9.4 1

2,5,8-trioxanonane C 85.1 50.0 35.1 0.0 0.0 1

2,5-dichlorophenol A 67.8 50.0 17.8 0.0 0.0 2

2,5-dimethylphenol A 67.2 50.0 17.2 0.0 0.0 2

2,5-dimethylpyrrole A 33.1 44.2 -11.1 0.7 0.0 2

2,5-dimethylpyrrole A 33.1 44.2 -11.1 0.7 0.0 2

2,5-dimethylthiophene A 38.9 44.2 -5.4 0.7 0.0 1

2,5-dinitrophenol A 62.3 54.4 7.9 0.0 0.5 2

2,6-dichlorophenol A 65.1 44.2 20.9 0.7 0.0 2

2,6-dimethylnaphthalene A 65.4 44.2 21.1 0.7 0.0 1

2,6-dimethylphenol A 59.3 44.2 15.0 0.7 0.0 2 144

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** DIFF LN a LN <|) REF

2,6-dinitrophenol A 58.3 54.4 3.9 0.0 0.5 2

2.7-dimethyInaphthalene A 63.3 44.2 19.1 0.7 0.0 1

2-amlnobenzoic acid C 48.8 50.0 -1.2 0.0 0.0 1

2-aminopropane A 41.2 44.2 -3.1 0.7 0.0 1

2-bromo-2-chloro-1,1,1-trifluoro- A 30.8 50.0 -19.2 0.0 0.0 2 ethane

2-bromo-2-methylpropane B 39.3 40.9 -1.6 1.1 0.0 1

2-bromoiodobenzene D 52.5 50.0 2.5 0.0 0.0 2

2-bromonaphthalene A 61.9 50.0 11.9 0.0 0.0 1

2-bromopropane B 35.5 44.2 -8.8 0.7 0.0 1

2-butanethiol A 48.7 58.7 -10.0 0.0 1.0 1

2-butanol A 33.8 58-7 -24.8 0.0 1.0 1

2-butanol A 32.3 58.7 -26.3 0.0 1.0 1

2-butyne A 38.3 25.1 13.3 3.0 0.0 1

2-chloro-1-(trichloromethyl)- B 60.2 50.0 10.2 0.0 0.0 2 pyridine

2-chloro-2-methylpropane A 45.4 40.9 4.6 1.1 0.0 1

2-chloro-2-methylpropane B 44.0 40.9 3.1 1.1 0.0 1

2-chloro-2-nitropropane C 50.0 50.0 -0.1 0.0 0.0 1 145

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** DIFF LN ct LN

2-chlorobenzoic acid C 62.2 50.0 12.2 0.0 0.0 1

2-chlorobiphenyl A 47.6 50.0 -2.4 0.0 0.0 1

2-chlorobiphenyl B 47.6 50.0 -2.4 0.0 0.0 1

2-chlorobromoben2ene D 47.5 50.0 -2.5 0.0 0.0 2

2-chloroisonitrosoacetanilide D 69.2 67.4 1.8 0.0 2.1 2

2-chlorophenol A 44.3 50.0 -5.8 0.0 0.0 2

2-cyanoblcyclo[2.2.1 ]heptane(endo)A 21.6 50.0 -28.3 0.0 0.0 1

2-cyanobicyclo[2.2.1]heptane(exo) A 43.2 50.0 -6.8 0.0 0.0 1

2-ethoxyisonitrosoacetanilide D 56.8 84.8 -28.0 0.0 4.2 2

2-ethylbiphenyl A 7.7 58.7 -50.9 0.0 1.0 2

2-hexanone A 68.4 76.1 -7.7 0.0 3.1 1

2-hydroxypropanoic acid (dl) C 39.1 54.4 -15.2 0.0 0.5 1

2-hydroxypropanoic acid (dl) B 39.1 54.4 -15.2 0.0 0.5 2

2-methoxyisonitrosoacetanilide 0 65.9 76.1 -10.2 0.0 3.1 2

2-methyl-1,3-butadiene A 38.7 50.0 -11.3 0.0 0.0 1

2-methyl-1,3-butadiene A 38.2 50.0 -11.7 0.0 0.0 1

2-methyl-1 -butene A 58.3 54.4 4.0 0.0 0.5 2

2-methyl-1-butene A 58.3 54.4 4.0 0.0 0.5 1 146

Table 4.2 (cx>n't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS"^ AS^ DIFF LN ct LN (j> REF

2-methyl-1-propanethioi A 38.8 58.7 -19.8 0.0 1.0 1

2-methyl-1-propanol A 36.9 58.7 -21.7 0.0 1.0 1

2-methyl-2-aminopropane A 35.4 40.9 -5.4 1.1 0.0 1

2-methyl-2-butanethiol A 53.8 58.7 -5.0 0-0 1.0 1

2-methyl-2-butene C 53.5 50.0 3.5 0.0 0.0 1

2-methyl-2-butene A 54.4 50.0 4.4 0.0 0.0 2

2-methyl-2-butene A 54.5 50.0 4.5 0.0 0.0 1

2-methyl-2-propanethiol A 44.9 40.9 4.0 1.1 0.0 1

2-methyl-2-propanol C 22.7 40.9 -18.1 1.1 0.0 1

2-methyl-2-propanol A 27.0 40.9 -13.8 1.1 0.0 1

2-methylbicyclo[2.2.1 ]heptane(endo)A 36.7 50.0 -13.2 0.0 0.0 1

2-methylbicyclo[2.2.1 ]heptane(exo) A 51.1 50.0 1.1 0.0 0.0 1

2-methylbutane A 45.2 58.7 -13.4 0.0 1.0 1

2-methylbutane C 45.4 58.7 -13.3 0.0 1.0 1

2-methylbutane A 45.5 58.7 -13.2 0.0 1.0 1

2-methyldecane A 111.9 111.0 0.9 0.0 7.3 1

2-methylfuran A 47.0 50.0 -3.0 0.0 0.0 1

2-methylheptane A 72.6 84.8 -12.2 0.0 4.2 1 147

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS'"' DIFF LN a LN

2-methylhexane A 69.3 76.1 -16.8 0.0 3.1 1

2-methylhexane C 57.6 76.1 -18.5 0.0 3.1 1

2-methylhexane C 57.6 76.1 -18.5 0.0 3.1 1

2-methylnaphthalene C 39.0 50.0 -11.0 0.0 0.0 1

2-methylnaphthalene A 59.3 50.0 9.3 0.0 0.0 1

2-methylnonane C 88.0 102.2 -14.2 0-0 6.3 1

2-methylpentane A 52.4 67.4 -15.0 0.0 2.1 1

2-methylpentane C 3.1 67.4 -64.3 0.0 2.1 1

2-methylphenol A 46.0 50.0 -4.0 0.0 0.0 2

2-methylpiperidine A 69.0 50.0 19.0 0.0 0.0 2

2-methylplperidine A 69.0 50.0 19.0 0.0 0.0 2

2-methylpropane C 39.7 40.9 -1.1 1.1 0.0 1

2-methylpropane A 39.9 40.9 -0.9 1.1 0.0 1

2-methylpropene C 44.7 44.2 0.5 0.7 0.0 1

2-methylpyridine A 47.1 50.0 -2.9 0.0 0.0 1

2-methylthiazole A 49.0 50.0 -1.1 0.0 0.0 1

2-methylthiazole A 49.0 50.0 -1.0 0.0 0.0 1

2-methylthiazole A 49.0 50.0 -1.0 0.0 0.0 1 148

Table 4.2 (con't). Observed and predicted entropies of melting In J/K mol

NAME EVAL AS"*" DIFF LN CT LN (j) REF

2-methylthiolane A 51.5 50.0 1.5 0.0 0.0 1

2-methylthiophene A 53.6 50.0 3.6 0.0 0.0 1

2-nltroanillne C 47.0 50.0 -3.0 0.0 0.0 1

2-n[tr0ben20ic acid C 66.8 54.4 12.5 0.0 0.5 1

2-nitrophenol A 54.9 50.0 4.9 0.0 0.0 2

2-octanone A 96.6 89.2 7.4 0.0 4.7 1

2-oxa-3-methylbutane A 45.7 58.7 -12.9 0.0 1.0 1

2-oxadodecane A 130.3 128.4 1.9 0.0 9.4 1

2-oxahexane A 68.9 76.1 -7.2 0.0 3.1 1

2-oxapentane A 57.2 67.4 -10.1 0.0 2.1 1

2-oxapropane A 37.5 44.2 -6.8 0.7 0.0 1

2-pentadecanone B 174.8 150.1 24.7 0.0 12.0 1

2-pentanone A 54.1 63.1 -9.0 0.0 1.6 1

2-pentanone A 56.3 63.1 -6.7 0.0 1.6 1

2-propanethiol A 40.7 44.2 -3.6 0.7 0.0 1

2-propanol C 28.7 44.2 -15.5 0.7 0.0 1

2-propanol C 28.7 44.2 -15.5 0.7 0.0 1

2-propanol A 29.1 44.2 -15.1 0.7 0.0 1 149

Table 4.2 (cxin't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** DIFF LN a LN <|> REF

2-propanol A 29.2 44.2 -16.0 0.7 0.0 1

2-tetradecanone B 160.2 141.4 18.7 0.0 11.0 1

2-thiahexane A 71.0 76.1 -5.1 0.0 3.1 1

2-thlapentane A 61.9 67.4 -5.5 0.0 2.1 1

3,3',4,4'-tetraaminodiphenyl ether A 62-8 58.7 4.1 0.0 1.0 2

3,3-bls-(chloromethyl)oxacyclo- A 58.0 63.1 -5.1 0-0 1.6 1 butane

3,3-diethylpentane B 47.8 84.8 -36.9 0.0 4.2 2

3,3-diethylpentane A 48.2 84.8 -36.6 0.0 4.2 2

3,3-dimethyl-1-butene C 41.7 50.0 -8.3 0.0 0.0 1

3.3-dimethyl-2-butanone A 51.1 50.0 1.1 0.0 0.0 1

3,3-dimethyl-2-oxabutane A 46.2 50.0 -3.8 0.0 0.0 1

3,3-d[methyl-2-thiabutane A 44.1 50.0 -5.9 0.0 0.0 1

3,3-dimethylpentane C 51.1 67.4 -16.2 0.0 2.1 1

3,3-dimethylpentane A 55.3 67.4 -12.1 0.0 2.1 2

3,4-dichlorophenol A 61.4 50.0 11.4 0.0 0.0 2

3,4-dimethylphenol A 54.3 50.0 4.3 0.0 0.0 2

3,4-dinitrophenol A 62.4 54.4 8.0 0.0 0.5 2

3,5-dichlorophenol A 60.1 44.2 15.9 0.7 0.0 2 150

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-moi

NAME EVAL AS"*" AS^ DIFF LN ct LN

3,5-dimethylphenol A 53-4 44.2 9.2 0.7 0.0 2

3-aminobenzoic acid C 48.2 50.0 -1.8 0.0 0.0 1

3-azabicyclo[3.2.2]nonane A 14.8 50.0 -35.1 0.0 0.0 1

3-bromoiodobenzene D 46.2 50.0 -3.8 0.0 0.0 2

3-chloro-1,1,1,3,3-pentafluoro- A 63.3 67.4 -4.1 0.0 2.1 1 propane

3-chlorobenzoic acid C 55.8 50.0 5.8 0.0 0.0 1

3-chlorobromobenzene D 48.8 50.0 -1.2 0.0 0.0 2

3-chlorophenol A 48.7 50.0 -1.3 0.0 0.0 2

3-ethylpentane A 61.8 76.1 -14.3 0.0 3.1 1

3-ethylpentane C 61.3 76.1 -14.8 0.0 3.1 1

3-hexanone A 66.7 71.8 -5.1 0.0 2.6 1

3-methyl-1,2-butadiene A 49.9 44.2 5.6 0.7 0.0 1

3-methyl-1-butanethiol A 53.1 67.4 -14.3 0.0 2.1 1

3-methyl-1-butene A 51.2 54.4 -3.2 0.0 0.5 2

3-methyl-1-butene A 51.2 54.4 -3.2 0.0 0.5 1

3-methyl-2-butanethiol A 53.0 58.7 -5.7 0.0 1.0 1

3-methyl-2-thiabutane A 54.5 58.7 -4.2 0.0 1.0 1

3-methylbutanone A 51.9 54.4 -2.4 0.0 0.5 1 151

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS"*® AS^ DIFF LN c LN (t» REF

3-methylheptane A 76.6 84.8 -8.3 0.0 4.2 1

3-methylnonane(dl) C 99.2 102.2 -3.1 0.0 6.3 1

3-methylpentane A 48.1 67.4 -19.3 0.0 2.1 1

3-methylphenol A 33.0 50.0 -16.9 0.0 0.0 2

3-methylpyridine A 55.6 50.0 5.6 0.0 0.0 1

3-methylthiolane A 54.0 50.0 4.0 0.0 0.0 1

3-nitroaniline C 61.3 50.0 11.3 0.0 0.0 2

3-nitroanillne C 61.5 50.0 11.5 0.0 0.0 1

3-nitrobenzoic acid C 46.7 54.4 -7.7 0.0 0.5 1

3-nltrophenol C 57.6 50.0 7.6 0.0 0.0 2

3-nitrophenol A 51.9 50.0 1.9 0.0 0.0 2

3-oxabicyclo[3.2.21nonane A 48.7 50.0 -1.3 0.0 0.0 1

3-oxahexane A 57.6 76.1 -18.5 0.0 3.1 1

3-oxapentane C 46.6 67.4 -20.8 0.0 2.1 1

3-oxapentane A 45.8 67.4 -21.5 0.0 2.1 1

3-pentanone A 50.5 63.1 -12.5 0.0 1.6 1

3-thiahexane A 67.8 76.1 -8.3 0.0 3.1 1

3-thiapentane A 70.4 67.4 2.9 0.0 2.1 1 152

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS^ DIFF LN CT LN 4» REF

3-thiolpropanoic acid C 58.2 63.1 -4.9 0.0 1.6 1

4'-nitrophenyl-4-n-octyloxyben- B 107.4 137.1 -29.6 0.0 10.5 2 zoate

4.4'-bis(n-heptyloxy)azoxybenzene B 82.5 171.9 -89.4 0.0 14.7 1

4,4'-diaminodiphenyl ether D 16.6 58.7 -42.0 0.0 1.0 1

4,4'-dibutanoyloxydiphenyldi - A 85.1 111.0 -25.9 0.0 7.3 2 acetylene

4,4'-dichlorodiphenyl sulphone A 57.8 54.4 3.5 0.0 0.5 2

4,4'-didecanoyloxydiphenyldi- A 250.5 215.4 35.1 0.0 19.9 2 acetylene

4,4'-didodecanoy loxydiphenyldi-- A 244.0 250.3 -6.3 0.0 24.1 2 acetylene

4,4'-diheptanoyioxydiphenyldi- A 122.9 163.2 -40.3 0.0 13.6 2 acetylene

4,4'-dlhexanoyloxydiphenyldi- A 123.7 145.8 -22.0 0.0 11.5 2 acetylene

4.4'-dihydroxydiphenyl-2,2- A 69.5 58.7 10.8 0.0 1.0 2 propane

4,4'-dinitrodiphenyl ether D 24.6 67.4 -42.7 0.0 2.1 1

4,4'-dinonanoyloxydiphenyldi- A 143.6 198.0 -54.4 0.0 17.8 2 acetylene

4,4'-dioctanoyloxydinphenyldi- A 182.4 180.6 1.7 0.0 15.7 2 acetylene 153

Table 4.2 (con't). Observed and predicted entropies of melting In J/K-mol

NAME EVAL DIFF LN CT LN REF

4.4'-dipentanoyloxydiphenyldi- A 70-7 128-4 -57.7 0.0 9.4 2 acetylene

4,4'-diphenyl methane diiso- A 87-1 58.7 28.3 0.0 1.0 2 cyanate

4,4'-dipropanoyloxydipheny[di- A 67.8 93.5 -25.7 0.0 5.2 2 acetylene

4,4'-diundecanoyloxydiphenyldi- A 165.3 232.9 -67.6 0.0 22.0 2 acetylene

4,5-dithiaoctane A 73-6 93.5 -19-9 0.0 5.2 1

4-aminobenzoic acid C 45.3 50.0 -4.7 0.0 0.0 1

4-bromoiodobenzene D 54.0 44.2 9.8 0.7 0.0 2

4-brGmophenol 0 38.6 44.2 -5.7 0.7 0.0 1

4-bromophenol C 49.3 44.2 5.1 0.7 0.0 2

4-chlorobenzoic acid C 62.9 50.0 12.9 0.0 0.0 1

4-chlorobiphenyl B 38.2 50.0 -11-8 0.0 0.0 1

4-chlorobiphenyl A 38.2 50.0 -11.7 0.0 0.0 2

4-chlorobromobenzene D 55.5 44.2 11.3 0.7 0.0 2

4-chlorophenol A 44.5 44.2 0.3 0.7 0.0 2

4-ethoxyisonitrosoacetanilide D 15.5 84-8 -69.3 0.0 4.2 2

4-fluorotoluene A 43.2 44.2 -1.1 0.7 0.0 1 154

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN CT LN (j) REF

4-methoxy-4'-butoxy-trans-stilbene B 89.7 102.2 -12.5 0.0 6.3 1

4-methoxy-4*-dodecoxy-trans- 8 141.4 171.9 -30.5 0.0 14.7 1 stilbene

4-methoxy-4'-heptoxy-trans- 8 101-1 111.0 -9.9 0.0 7.3 1 stilbene

4-methoxy-4'-hexoxy-trans-stilbeneB 96.2 119.7 -23.4 0.0 8.4 1

4-methoxy-4'-octoxy-trans-stilbene 8 98.9 137.1 -38.1 0.0 10.5 1

4-methoxy-4'-pentoxy-trans- B 94.6 111.0 -16.3 0.0 7.3 1 stilbene

4-methoxyisonltrosoacetanillde D 18.1 76.1 -58.0 0.0 3.1 2

4-methylaniline C 54.8 44.2 10.5 0.7 0.0 2

4-methylnonane(dl) C 86.9 102.2 -15.3 0.0 6.3 1

4-methylphenanthrene A 43.5 50.0 -6.6 0.0 0.0 2

4-methylphenol C 39.6 44.2 -4.6 0.7 0.0 2

4-methylphenol A 38.5 44.2 -5.8 0.7 0.0 2

4-methylpyridine A 45.4 44.2 1.2 0.7 0.0 2

4-methylpyrldine A 45.5 44.2 1.2 0.7 0.0 2

4-n-pentylphenyl-4'-n-heptyloxy- A 101.9 158.8 -56.9 0.0 13.1 1 thiobenzoate

4-nitroaniline C 50.1 50.0 0.1 0.0 0.0 2 155

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN a LN <|> REF

4-nitroaniline C 50.3 50.0 0.3 0.0 0.0 1

4-nitrobenzoic acid C 72.0 54.4 17.7 0.0 0.5 1

4-nitrobenzoic acid C 72.0 54.4 17.7 0.0 0.5 2

4-nitrochlorobenzene C 33.4 50.0 -16.5 0.0 0.0 1

4-nltrochlorobenzene C 50.4 50.0 0.4 0.0 0.0 2

4-nitrophenol A 47.2 50.0 -2.8 0.0 0.0 2

4-nitrophenol C 62.7 50.0 12.7 0.0 0.0 2

4-nltrophenol C 52.3 50.0 2.3 0.0 0.0 2

4-nitrophenol A 78.2 50.0 28.2 0.0 0.0 2

4-nitrophenyl-4'-octyloxybenzoate B 106.4 137.1 -30.7 0.0 10.5 2

4-nitrotoluene A 51.8 50.0 1.8 0.0 0.0 1

4-nitrotoluene B 222.2 50.0 172.2 0.0 0.0 1

4-oxaheptane A 63.9 84.8 -20.9 0.0 4.2 1

4-propionyl-4'-n-butanoyloxyazo- A 80.6 80.5 0.1 0.0 3.7 2 benzene

4-propionyl-4'-n-decanoyloxyazo- A 109.0 132.7 -23.7 0.0 9.9 2 benzene

4-propionyl-4'-n-dodecanoyloxy- A 120.8 150.1 -29.3 0.0 12.0 2 azobenzene

4-propionyl-4'-n-heptadecanoyl- A 175.9 193.7 -17.7 0.0 17.3 2 oxyazobenzene 156

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** AS'^ DIFF LN a LN (|) REF

4-propionyl-4'-n-heptanoyloxyazo- A 87.6 106.6 -19.0 0.0 6.8 2 benzene

4-propionyl-4'-n-hexadecanoyloxy- A 161.0 185.0 -23.9 0-0 16.2 2 azobenzene

4-propionyl-4'-n-hexanoyloxyazo- A 99.2 97.9 1.3 0.0 5.8 2 benzene

4-propionyl-4'-n-nonanoyloxyazo- A 103-9 124.0 -20.1 0.0 8.9 2 benzene

4-proplonyl-4'-n-octadecanoyl- A 178.5 202.4 -23.8 0.0 18.3 2 oxyazobenzene

4-propionyl-4'-n-octanoyloxyazo- A 93.6 115.3 -21.7 0.0 7.9 2 benzene

4-propionyl-4'-n-pentadecanoyl- A 157.2 176.3 -19.0 0.0 15.2 2 oxyazobenzene

4-propionyl-4'-n-tetradecanoyloxy- A 141.8 167.6 -25.7 0.0 14.1 2 azobenzene

4-propionyl-4'-n-tridecanoyloxy- A 138.9 158.8 -19.9 0.0 13.1 2 azobenzene

4-proplonyl-4'-n-undecanoyloxy- A 119.3 141.4 -22.1 0.0 11.0 2 azobenzene

4-thlaheptane A 71.3 84.8 -13.5 0.0 4.2 1

5,6,7,8-tetrahydroquinollne A 40.8 50.0 -9.3 0.0 0.0 2

5-methylnonane C 89.1 102.2 -13.1 0.0 6.3 1 157

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS^ DIFF LN ct LN <|» REF

5-nonanone A 96.0 97.9 -1.9 0.0 5.8 1

5-thianonane A 98.1 102.2 -4.2 0.0 6.3 1

6,7-diazatricyclo[3.2.2.0(2,4)Jnon- A 48.7 50.0 -1.3 0.0 0.0 2 6-ene n-oxide

7,8-benzoquinoline A 43.5 50.0 -6.5 0.0 0.0 2

7,8-benzoquinoline A 43.5 50.0 -6.5 0.0 0.0 2

9,10-dihydroanthracene A 62.4 44.2 18.1 0.7 0.0 2

9,10-dihydrophenanthrene A 41.7 44.2 -2.5 0.7 0.0 1

acenaphthene C 55.2 44.2 11.0 0.7 0.0 1

acenaphthene A 58.5 44.2 14.3 0.7 0.0 1

* acenaphthene C 68.2 44.2 24.0 0.7 0.0 1

acenaphthylene C 19.1 44.2 -25.1 0.7 0.0 1

acetamide A 44.1 50.0 -5.9 0.0 0.0 2

acetamide A 44.2 50.0 -5.9 0.0 0.0 2

acetamide A 37.1 50.0 -12.8 0.0 0.0 2

acetanilide A 55.9 58.7 -2.8 0.0 1.0 1

acetic acid 0 38.4 50.0 -11.6 0.0 0.0 2

acetic acid (ethanoic acid) A 39.2 50.0 -10.7 0.0 0.0 1

acetic acid (ethanoic acid) C 40.5 50.0 -9.5 0.0 0.0 1 158

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN cr LN (|) REF

acetone A 32.4 44.2 -11.8 0.7 0.0 1

acetonitrile A 39.8 30.9 8.9 2.3 0.0 1

acetonitrile C 32.8 30.9 2.0 2.3 0.0 2

acetylacetone B 56.9 58.7 -1.8 0.0 1.0 2

acrldine A 54.0 44.2 9.7 0.7 0.0 2

acridine A 54.0 44.2 9.7 0.7 0.0 2 1

acrylic acid A 33.3 50.0 O) 0.0 0.0 2

acrylcnitrile A 40.2 50.0 -9.8 0.0 0.0 1

aipha-(trlf!uoromethoxy)-alpha,- A 50.8 89.2 -38.3 0.0 4.7 2 alpha-difluoromethyl acetate

alpha-d-glucose B 75.9 54.4 21.5 0.0 0.5 1

alpha-methylstyrene B 47.5 50.0 -2.5 0.0 0.0 2

alpha-naphthol C 62.9 50.0 12.9 0.0 0.0 1

alpha-naphthol C 63.7 50.0 13.7 0.0 0.0 1

alpha-pipehdone B 47.0 50.0 -3.0 0.0 0.0 2

alpha-pyrrolidone B 46.5 50.0 -3.5 0.0 0.0 2

aminomethane A 34.1 30.9 3.3 2.3 0.0 1

amyl butyrate A 99.8 106.6 -6.8 0.0 6.8 2

aniline C 39.6 44.2 -4.7 0.7 0.0 1 159

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS'^ DIFF LN CT LN (j) REF

aniline B 40.9 44.2 -3.4 0.7 0.0 1

anisaldazine B 67.3 84.8 -17.5 0.0 4.2 1

anisole C 58.1 54.4 3.7 0.0 0.5 2

anisole A 48.0 54.4 -6.4 0.0 0.5 2

anthracene C 58.1 38.5 19.6 1.4 0.0 1

anthracene A 60.1 38.5 21.6 1.4 0.0 1

anthracene B 59.1 38.5 20.6 1.4 0.0 1

anthracene C 58.8 38.5 20.4 1.4 0.0 1

anthraquinone C 59.0 38.5 20.5 1.4 0.0 1

azacymantrene A 47.5 67.4 -19.9 0.0 2.1 2

azobenzene C 65.4 44.2 21.2 0.7 0.0 2

benzaldehyde A 43.2 50.0 -6.9 0.0 0.0 1

benzene A 35.4 29.3 6.1 2.5 0.0 1

benzene C 35.5 29.3 6.1 2.5 0.0 1

benzene C 33.3 29.3 4.0 2.5 0.0 2

benzene C 35.9 29.3 6.6 2.5 0.0 1

benzene C 35.2 29.3 5.9 2.5 0.0 1

benzene B 35.6 29.3 6.2 2.5 0.0 1 160

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS^ DIFF LN ct LN (J) REF

benzene C 32.1 29.3 2.8 2.5 0.0 1

* benzene hexa-n-octanoate A 293.8 437.5 -144.0 0.0 46.6 2

benzene-d6 B 35.0 29.3 5.6 2.5 0.0 1

* benzene-hexa-n-heptanoate A 159.7 385.2 -226.0 0.0 40.3 1

* benzene-hexa-n-heptanoate A 149.6 385.2 -236.0 0.0 40.3 2

* benzene-hexa-n-hexanoate A 281.7 333.0 -51.3 0.0 34.0 2

* benzene-hexa-n-hexanoate A 281.6 333.0 -51.3 0.0 34.0 1

* benzene-hexa-n-octanoate A 345.7 437.5 -91.7 0.0 46.6 1

benzil C 61.6 58.7 2.9 0.0 1.0 2

benzoic acid A 45.7 50.0 -4.3 0.0 0.0 1

benzoic acid C 43.9 50.0 -6.2 0.0 0.0 1

benzoic acid A 45.5 50.0 -4.5 0.0 0.0 1

benzoic acid A 45.5 50.0 -4.5 0.0 0.0 1

benzoic acid D 44.1 50.0 -6.0 0.0 0.0 1

benzoic acid C 41.1 50.0 -8.9 0.0 0.0 1

benzonitrile A 42.2 44.2 -2.1 0.7 0.0 2

benzonitrile A 42.2 44.2 -2.1 0.7 0.0 2

benzonitrile A 42.2 44.2 -2.1 0.7 0.0 2 161

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** DIFF LN cr LN 4> REF

benzonitrile A 42.2 44.2 -2.1 0.7 0.0 2

benzophenone A 56.7 54.4 2.3 0.0 0.5 2

benzophenone C 55.0 54.4 0.7 0.0 0.5 2

benzothiazole A 46.4 50.0 -3.6 0.0 0.0 1

benzothiophene A 38.8 50.0 -11.1 0-0 0.0 1

benzotrichloride A 59.1 44.2 14.9 0.7 0.0 2

benzotrifluoride A 56.5 54.4 2.1 0.0 0.5 1

benzyl alcohol C 34.8 54.4 -19.5 0.0 0.5 1

beta, beta'-binaphthy 1 B 84.4 50.0 34.4 0.0 0.0 2

beta-naphthol C 47.7 50.0 -2.3 0.0 0.0 1

beta-propiolactone A 39.2 50.0 -10.7 0.0 0.0 2

beta-selenodiglycol A 0.7 84.8 -84.1 0.0 4.2 2

beta-trichlorosilylpropionitrile A 69.0 67.4 1.6 0.0 2.1 2

bicyclo[2.2.2]octane B 46.6 35.1 11.5 1.8 0.0 1

bicyclo[2.2.2]octene-2 B 47.5 44.2 3.3 0.7 0.0 1

bicyclohexyl A 59.1 50.0 9.1 0.0 0.0 2

biphenyl B 54.6 50.0 4.6 0.0 0.0 1

biphenyl A 54.3 50.0 4.3 0.0 0.0 2 162

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS'^ AS"'® DIFF LN cr LN ((> REF

biphenyl B 58.0 50.0 8.0 0.0 0.0 2

biphenyl C 54.4 50.0 4.4 0.0 0.0 1

biphenyl C 60.3 50.0 10.3 0.0 0.0 2

biphenyl C 54.2 50.0 4.2 0.0 0.0 1

biphenyl A 54.3 50.0 4.3 0.0 0.0 2

* biphenyl A 6.5 50.0 -43.4 0.0 0.0 2

bls(4-(n-maleiclmido)phenyl)- D 42.3 67.4 -25.1 0.0 2.1 1 methane

bis(4-aminophenyi)methane D 25.4 58.7 -33.3 0.0 1.0 1

bis(4-isocyanatophenyl)methane A 87.1 58.7 28.3 0.0 1.0 1

bis-(tetrafluoropropyl)carbonate A 162.0 115.3 46.7 0.0 7.9 1

bis-hydroxyethylpiperazine B 64.0 80.5 -16.5 0.0 3.7 2

bromobenzene C 44.2 44.2 -0.1 0.7 0.0 1

bromobenzene A 43.8 44.2 -0.4 0.7 0.0 1

bromomethane A 36.0 30.9 5.2 2.3 0.0 1

bullvalene A 41.6 44.2 -2.6 0.7 0.0 2

butanal C 62.8 63.1 -0.3 0.0 1.6 1

butanoic acid A 48.7 63.1 -14.4 0.0 1.6 1

butanoic acid C 41.4 63.1 -21.6 0.0 1.6 1 163

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS**® AS^ DIFF LN a LN (j) REF

butanone A 45.3 54.4 -9.1 0.0 0.5 1

butanone A 45.0 54.4 -9.4 0.0 0.5 1

butanone C 45.6 54.4 -8.8 0.0 0.5 1

butyl acrylate A 82.6 84.8 -2.2 0.0 4.2 2

butyl butanoate A 82.2 97.9 -15.7 0.0 5.8 2

butyl methacrylate A 70.9 84.8 -13.9 0.0 4.2 2

butyl octanoate A 132.8 132.7 0.0 0.0 9.9 2

butyl pentanoic acid A 92.9 106.6 -13.6 0.0 6.8 2

butylurea A 64.4 80.5 -16.1 0.0 3.7 2

caffeine B 13.1 50.0 -36.8 0.0 0.0 2

caffeine, anhydrous B 52.2 50.0 2.2 0.0 0.0 1

camphor C 15.1 40.9 -25.7 1.1 0.0 1

carbazole B 52.2 44.2 8.0 0.7 0.0 1

carbazole B 52.2 44.2 8.0 0.7 0.0 1

carbon diselenide B 27.7 25.1 2.6 3.0 0.0 1

carbon disulfide A 27.2 25.1 2.2 3.0 0.0 1

carbonyl chloride A 39.5 44.2 -4.8 0.7 0.0 1

carbonyl chloride A 39.5 44.2 -4.7 0.7 0.0 1 164

Table 4.2 (con't). Obsen^ed and predicted entropies of melting in J/K mol

NAME EVAL AS*** ^S'^ DIFF LN ct LN (|) REF

carbonyl sulfide A 35.2 25.1 10.1 3.0 0.0 1

carbopropoxy methyl methacrylate A 71.9 97.9 -26.0 0.0 5.8 2

carvoxime(dl) B 46.6 54.4 -7.7 0.0 0.5 1

carvoxime(l) B 65.5 54.4 11.2 0.0 0.5 1

chlorobenzene C 41.9 44.2 -2.3 0.7 0.0 1

chlorodlfluoromethane A 36.8 44.2 -7.5 0.7 0.0 1

chloroethane A 33.0 50.0 -16.9 0.0 0.0 1

chloroethyl methacrylate A 72.3 76.1 -3.8 0.0 3.1 2

chloromethane A 36.7 30.9 5.8 2.3 0.0 1

chlorotrifluoroethene A 48.3 50.0 -1.7 0.0 0.0 1

chlorotrifluoroethene A 44.7 50.0 -5.4 0.0 0.0 2

chlorotrimethylsilane B 48.2 40.9 7.3 1.1 0.0 2

chlorprothixene C 75.1 76.1 -1.0 0.0 3.1 2

cholesteryl myristate A 136.7 163.2 -26.5 0.0 13.6 2

cholesteryl myristate B 134.6 163.2 -28.5 0.0 13.6 1

cholesteryl oleate A 9.0 189.3 -180.0 0.0 16.8 2

cholesteryl palmitate A 160.4 180.6 -20.2 0.0 15.7 2

cholesteryl stearate A 189.9 198.0 -8.1 0.0 17.8 2 165

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS°^ DIFF LN ct LN (() REF O o C cinnamic acid • A 55.7 58.7 0.0 1.0 2

cis-1,4-polybutadiene B 15-1 17.4 -2.3 0.0 2.1 1

cis-2-butene A 54.4 44.2 10.2 0.7 0.0 1

cis-2-butene A 54.4 44.2 10.2 0.7 0.0 2

cls-2-butene C 54.7 44.2 10.5 0.7 0.0 1

cis-2-pentene A 58.4 58.7 -0.3 0.0 1.0 1

cis-2-pentene A 58.4 58.7 -0.3 0.0 1.0 2

cls-3-chloro-2-butenoic acid C 41.4 54.4 -12.9 0.0 0.5 1

cis-cycloheptene A 53.1 50.0 3.1 0.0 0.0 2

cis-decahydronaphthalene B 48.6 50.0 -1.4 0.0 0.0 2

cis-decahydronaphthalene A 59.4 50.0 9.4 0.0 0.0 1

cis-hexahydroindan A 53.4 50.0 3.4 0.0 0.0 1

cis-perfluorodecalin B 56.9 44.2 12.7 0.7 0.0 1

cis-polypentenamer B 22.4 34.8 -12.4 0.0 4.2 2

cis-tri(methylphenyl)trisiloxane A 126.6 124.0 2.6 0.0 8.9 2

cyanamid A 22.8 25.1 -2.3 3.0 0.0 2

cyanoacetamide B 59.5 54.4 5.1 0.0 0.5 2

cyanogen A 33.1 25.1 8.0 3.0 0.0 1 166

Table 4.2 (con't). Observed and predicted entropies of melting In J/K mol

NAME EVAL AS'*' ^S^ DIFF LN ct LN ((> REF

cyclobutane A 45.1 32.7 12.4 2.1 0.0 1

cycioheptane A 47.5 50.0 -2.5 0.0 0.0 1

cycloheptanol A 29.2 50.0 -20.8 0.0 0.0 1

cycloheptatriene A 21.1 28.1 -7.0 2.6 0.0 1

cyclohexane A 45.3 35.1 10.2 1.8 0.0 1

cyclohexane C 42.2 35.1 7.1 1.8 0.0 1

cyclohexane B 46.4 35.1 11-3 1.8 0.0 1

cyclohexane A 45.8 35.1 10.7 1.8 0.0 1

cyclohexanethiol A 52.7 50.0 2.7 0.0 0.0 1

cyclohexanol B 74.5 50.0 24.5 0.0 0.0 1

cyclohexanol B 36.9 50.0 -13.1 0.0 0.0 1

cyclohexanone A 44.6 50.0 -5.4 0.0 0.0 2

cyclohexene C 48.8 44.2 4.6 0.7 0.0 1

cyclohexene A 49.9 44.2 5.6 0.7 0.0 1

cyclohexene A 50.1 44.2 5.8 0.7 0.0 1

cyclohexene oxide A 53.9 44.2 9.6 0.7 0.0 2

cyclohexylbenzene A 54.4 50.0 4.4 0.0 0.0 2

cycloocta-1,5-diene A 46.2 44.2 1.9 0.7 0.0 2 167

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS"** DIFF LN a LN REF

cycloocta-1,5-diene A 46.2 44.2 2.0 0.7 0.0 1

cyclooctadecane B 126.8 50-0 76.8 0.0 0.0 2

cyclooctane A 48.8 50-0 -1.2 0.0 0.0 1

cyclooctatetraene A 42-0 27-0 15.0 2.8 0.0 1

cyclooctene A 10.3 50.0 -39.6 0.0 0.0 2

cyclopentadiene A 45-4 44.2 1.1 0.7 0.0 2

cyclopentane A 45.8 30.9 14.9 2.3 0.0 1

cyclopentane A 45.7 30.9 14.8 2.3 0-0 1

cyclopentane A 45.8 30.9 14.9 2.3 0-0 1

cyclopentane C 45.0 30.9 14.2 2.3 0.0 1

cyclopentanethiol A 50.4 50.0 0.4 0.0 0.0 1

cyclopentanol C 24.3 44.2 -19.9 0.7 0-0 1

cyclopentene A 29.9 44.2 -14.3 0.7 0.0 1

cyclopentyl-1-thiaethane A 59.7 54.4 5.4 0.0 0.5 1

cyclopentylamine A 46.2 44.2 2.0 0-7 0.0 1

cyclopropane A 37.4 35.1 2.3 1.8 0.0 1

cyclopropylamine A 55.4 44.2 11.2 0.7 0.0 1

cymantrene A 55.1 63.1 -7.9 0.0 1.6 2 168

Table 4.2 (con't). Obsen/ed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN ct LN (|> REF

decacyclene B 80.4 35.1 45.3 1.8 0.0 2

decanal B 113.5 115.3 -1.8 0.0 7.9 2

decanoic acid B 92.0 115.3 -23.3 0.0 7.9 1

decanoic acid B 91.3 115.3 -24.0 0.0 7.9 1

decanoic acid C 97.4 115.3 -17.9 0.0 7.9 2

decyl methacrylate A 121.9 137.1 -15.2 0.0 10.5 2

delta-valerolactone A 47.2 50.0 -2.8 0.0 0.0 2

di(p-methoxyphenyl)-trans-cyclo- A 88.2 97.9 -9.7 0.0 5.8 1 hexane-1,4-dicarboxylate

diamantane A 48.0 32.7 15.3 2.1 0.0 1

dibenzothiophene A 58.2 44.2 13.9 0.7 0.0 2

dichioroacetic acid D 26.9 54.4 -27.4 0.0 0.5 2

dichlorodimethylsilane A 44.4 50.0 -5.6 0.0 0.0 2

dichloroethanoic acid B 43.1 54.4 -11.2 0.0 0.5 1

diethyl disulfide A 54.8 76.1 -21.3 0.0 3.1 1

diethyl mercury A 57.9 67.4 -9.5 0.0 2.1 2

diethyl o-phthalate A 66.6 89.2 -22.5 0.0 4.7 1

diethylaminoethyl methacrylate A 63.0 102.2 -39.2 0.0 6.3 2

diethynyldiphenylgermane A 62.8 58.7 4.1 0.0 1.0 2 169

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS*** DIFF LN a LN (j) REF

diethynyldiphenylgermane A 62.8 58.7 4.1 0.0 1.0 2

dihydrosulfide carbon sulfide D 34.2 30.9 3.3 2-3 0.0 1

dimethyl cadmium A 35.0 44.2 -9.3 0.7 0.0 1

dimethyl fumarate C 93.7 76.1 17.6 0.0 3.1 1

dimethyl maleate C 57.6 76.1 -18-4 0.0 3.1 1

dimethyl o-phthalate B 61.8 71.8 -10.0 0.0 2.6 2

dimethyl o-phthalate C 61.8 71.8 -10.0 0.0 2.6 1

dimethyl sulfone A 47.9 44.2 3.7 0.7 0.0 1

dimethyl sulfoxide A 49.3 44.2 5.0 0.7 0.0 1

dimethyl terephthalate 8 76.4 71.8 4.7 0.0 2.6 1

dimethyl terephthalate B 77.6 71.8 5.8 0.0 2.6 1

dimethylamine A 32.8 44.2 -11.4 0.7 0.0 1

dimethylaminoethyl methacrylate A 70.9 84.8 -13.9 0.0 4.2 2

dimethylmalonitrile A 45.8 44.2 1.6 0.7 0.0 1

dimethylsulfide A 45.7 44.2 1.4 0.7 0.0 1

dimethyltetraphenylcyclotrisiloxaneB 78.1 63.1 15.0 0.0 1.6 1

diphenyl oxide A 57.4 58.7 -1.3 0.0 1.0 1

diphenyl oxide A 57.4 58.7 -1.3 0.0 1.0 1 170

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS^ DIFF LN ct LN <|) REF

diphenylacetic acid A 74.4 63.1 11.3 0.0 1.6 1

diphenyicarbodiimide A 64.5 67.4 -2.9 0.0 2.1 2

diplienylene-2,2'-disulfide-s-oxide B 44.2 44.2 0.0 0.7 0.0 1

diphenylmethane C 63.6 58.7 4.9 0.0 1.0 2

diphenylmethane C 62.3 58.7 3.5 0.0 1.0 1

diphenyltetramethylcyclotrisiloxaneB 65.7 54.4 11.3 0.0 0.5 1

dodecanoic acid B 115.7 132.7 -17.0 0.0 9.9 1

dodecanoic acid B 114.5 132.7 -18.2 0.0 9.9 1

dodecanoic acid D 137.4 132.7 4.7 0.0 9.9 1 o O < C eicosanoic acid B 198.8 202.4 1 0.0 18.3 1

endo-dicyciopentadiene A 52.0 50.0 2.0 0.0 0.0 2

epsilon-caprolactam B 47.0 50.0 -3.0 0.0 0.0 2

epsilon-caprolactone A 50.9 50.0 0.9 0.0 0.0 2

epsilon-caprolactone A 50.8 50.0 0.8 0.0 0.0 2

ethanal A 22.7 50.0 -27.3 0.0 0.0 2

ethane A 31.2 25.1 6.1 3.0 0.0 1

ethane A 31.9 25.1 6.8 3.0 0.0 1

ethane A 31.8 25.1 6.7 3.0 0.0 2 171

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN CT LN (j) REF

+ ethanethiol A 39.7 50.0 -10.2 0.0 0.0 1

ethanol A 57.4 50.0 7.4 0.0 0.0 1

ethanol A 36.2 50.0 -13.8 0.0 0.0 1

* ethanol B 31.3 50.0 -18.7 0.0 0.0 2

* ethanol C 31.3 50.0 -18.7 0.0 0.0 1

* ethanol B 31.7 50.0 -18.3 0.0 0.0 1

ethanol-d1 A 57.0 50.0 7.0 0.0 0.0 1

ethyl azoxybenzenedicarboxylate B 53.0 93.5 -40.5 0.0 5.2 1

ethyl carbamate A 52.3 54.4 -2.1 0.0 0.5 2

ethyl carbamate A 65.0 54.4 10.6 0.0 0.5 2

ethyl cyanoacetate A 47.7 71.8 -24.0 0.0 2.6 2

ethyl ethanoate C 55.4 63.1 -7.7 0.0 1.6 1

ethyl phenylcarbamate B 49.9 67.4 -17.5 0.0 2.1 1

ethylbenzene A 51.4 54.4 -2.9 0.0 0.5 1 0 0 ethylbenzene A 51.5 54.4 0.0 0.5 1

ethylbenzene C 51.5 54.4 -2-9 0.0 0.5 1

ethylcyclohexane A 51.5 54.4 -2.9 0.0 0.5 1

ethylcyclohexane C 51.3 54.4 -3.1 0.0 0.5 1 172

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** DIFF LN a LN (j) REF

ethylcyclopentane A 51.0 54.4 -3.4 0.0 0.5 1

ethylene B 32.2 25.1 7.1 3.0 0.0 2

ethylene A 32.2 25.1 7.1 3.0 0.0 2

ethylene carbonate B 43.0 44.2 -1.3 0.7 0.0 1

ethylene oxalate A 32.3 44.2 -11.9 0.7 0.0 2

ethylurea A 37.9 63.1 -25.1 0.0 1.6 2

fluoranthene A 48.9 44.2 4.6 0.7 0.0 1

fluorene A 50.5 44.2 6.2 0.7 0.0 1

fluorene C 51.3 44.2 7.1 0.7 0.0 1

fluorobenzene C 45.0 44.2 0.8 0.7 0.0 1

fluorobenzene A 49.0 44.2 4.7 0.7 0.0 1

fluorotrichloromethane A 42.4 40.9 1.5 1.1 0.0 1

fluorotrichloromethane C 47.8 40.9 6.9 1.1 0.0 2

fonnamide A 31.5 50.0 -18.5 0.0 0.0 2

furan A 33.9 44.2 -10.3 0.7 0.0 1

furfural C 61.1 50.0 11.1 0.0 0.0 1

furfuryl alcohol C 58.4 54.4 4.1 0.0 0.5 1

furfuryl alcohol C 50.8 54.4 -3.6 0.0 0.5 1 173

Table 4.2 (con't). Obsen/ed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN o LN (|) REF

gamma-butyrolactone A 41.6 50.0 -8.4 0.0 0.0 2

glutaronitrile A 51.5 67.4 -15.8 0-0 2.1 1

glycolide B 47.4 44.2 3-1 0.7 0.0 1

glycolide A 47-5 44.2 3.2 0-7 0.0 2

glycolide A 47.5 44-2 3-2 0.7 0.0 2

glycolide A 47-4 44-2 3.1 0.7 0.0 2

glycolide A 47.4 44.2 3-1 0.7 0-0 2

heptadecanoic acid A 176.2 176-3 -0-1 0.0 15-2 1

heptanal C 102.6 89.2 13.5 0.0 4.7 1

heptanoic acid B 67.1 89.2 -22.0 0.0 4-7 1

hexa-o-decanoyl-scyllo-inositol A 148.6 542.0 -393.0 0.0 59.2 2

hexa-o-hexanoyl'scyllo-inositol A 61.9 333.0 -271.0 0.0 34.0 2

hexa-o-octanoyl-scyllo-inositol A 124.3 437.5 -313.0 0.0 46.6 2

hexachloroethane A 53.2 35.1 18.1 1.8 0-0 2

hexadecanoic add C 163.5 167.6 -4.1 0.0 14.1 1

hexadecanoic acid C 163.5 167.6 -4.0 0.0 14.1 1

hexadecanoic acid B 160.0 167.6 -7.6 0.0 14.1 1

hexafluorobenzene A 41.7 29.3 12.3 2.5 0.0 1 174

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS"*® DIFF LN ct LN (J) REF

hexafluorobenzene A 41.6 29.3 12.3 2.5 0.0 1

hexafluoroethane A 51.4 35.1 16.3 1.8 0.0 1

hexafluoropropanone A 56.8 44.2 12.5 0.7 0.0 1

hexamethylbenzene B 51.7 29.3 22.3 2.5 0.0 1

hexamethylcyclotrisiloxane B 49.6 35.1 14.5 1.8 0.0 1

hexamethyldlsllane C 54.4 35.1 19.3 1.8 0.0 2

hexamethyldisilane B 54.5 35.1 19.4 1.8 0.0 1

hexamethyldisiloxane A 58.2 67.4 -9.2 0.0 2.1 1

hexamethyldisiiylmethane B 79.0 58.7 20.3 0.0 1.0 2

hexamethyldisilylmethane A 79.0 58.7 20.3 0.0 1.0 2

hexamethyltrisiiazane A 59.6 35.1 24.5 1.8 0.0 2

hexyl ethanoate A 93.5 97.9 -4.4 0.0 5.8 2

hexyl phenylcarbamate B 99.9 111.0 -11.0 0.0 7.3 1 hydrogen cyanide A 32.4 30.9 1.6 2.3 0.0 1 imidazole A 35.4 50.0 -14.6 0.0 0.0 2 imidazole B 35.4 50.0 -14.6 0.0 0.0 2 indan A 38.8 44.2 -5.5 0.7 0.0 1 indene A 37.6 50.0 -12.4 0.0 0.0 1 175

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS^ DIFF LN

iodobenzene C 40.3 44.2 -3.9 0.7 0.0 1

isonitrosoacetanilide D 23.2 67.4 -44.2 0.0 2.1 2

isopropylbenzene A 41.4 54.4 -12.9 0-0 0.5 1

isopropylurea A 46.9 63.1 -16.2 0.0 1.6 2

isoquinoline A 45.2 50.0 -4.8 0.0 0.0 2

m-carborane A 27.7 44.2 -16.5 0.7 0.0 2

m-hydroxytoluene A 37.5 50.0 -12.4 0.0 0.0 1

m-toluic acid C 41.2 50.0 -8.8 0.0 0.0 1

maleic anhydride D 37.6 44.2 -6.6 0.7 0.0 1

maleic anhydride C 39.8 44.2 -4.5 0.7 0.0 1

maleic anhydride B 41.8 44.2 -2.4 0.7 0.0 2

maleic anhydride A 41.6 44.2 -2.6 0.7 0.0 2

malononitrile A 35.4 44.2 -8.9 0.7 0.0 1

mannitol B 123.7 93.5 30.1 0.0 5.2 1

methacrylic acid A 28.0 54.4 -26.3 0.0 0.5 2

methanamide B 28.9 50.0 -21.0 0.0 0.0 1

methane A 14.9 11.7 3.2 4.6 0.0 2

methanethiol A 40.9 30.9 10.0 2.3 0.0 1 176

Table 4.2 (con't). Observed and predicted entropies of melting in J/K moi

NAME EVAL AS*** DIFF LN ct LN (t> REF

methanoic acid A 45.1 50.0 -5.0 0.0 0.0 1

methanol B 22-2 30-9 -8.7 2.3 0.0 1

methanol B 22-5 30.9 -8.3 2.3 0.0 1

methanol C 21-8 30.9 -9.1 2.3 0.0 1

methanol A 22-4 30.9 -8.5 2.3 0.0 1

methanol C 12-5 30.9 -18.3 2.3 0.0 1

methanol-d1 B 21.6 30.9 -9.3 2.3 0.0 1

methyl 2-methylpropenoate A 59-7 54.4 5.3 0.0 0.5 2

methyl 2-methylpropenoate B 64.0 54.4 9.6 0.0 0.5 2

methyl carbamate A 50.8 50.0 0.8 0.0 0.0 2

methyl perfluorobutanoate A 61.5 80.5 -18.9 0.0 3.7 2

methyl phenyl sulfide A 57.9 50.0 7.9 0.0 0.0 1

methyl phenylcarbamate B 44-8 58.7 -13.9 0.0 1.0 1

methyl propenoate A 49.3 58.7 -9.5 0.0 1.0 2

methyl trichlorothioacrylate A 71.2 63.1 8.1 0.0 1.6 2

methylal A 49.6 67.4 -17.8 0.0 2.1 1

methylcyclohexane A 46.1 50.0 -4.0 0.0 0.0 1

methylcyclohexane C 45.6 50.0 -4.4 0.0 0.0 1 177

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS"** DIFF LN ct LN (j) REF

methylcyclopentane A 53.0 50.0 3.0 0.0 0.0 1

methylcyclopentane C 52.9 50.0 2.9 0.0 0.0 1

methylenecyclobutane A 41.5 44.2 -2.7 0.7 0.0 2

methyienecyclobutane A 41.5 44.2 -2.7 0.7 0.0 2

methylenecyclobutane A 42.3 44.2 -1.9 0.7 0.0 2

methylenecyclobutane A 41.5 44.2 -2.7 0.7 0.0 1

methyihydrazine A 47.2 44.2 2.9 0.7 0.0 1

methylphosphonyl chlorofluoride A 47.3 50.0 -2.7 0.0 0.0 1

methylphosphonyl dichloride A 59.1 50.0 9.1 0.0 0.0 1

methylphosphonyl difluoride A 50.3 50.0 0.3 0.0 0.0 1

methylurea A 42.1 54.4 -12.2 0.0 0.5 2

monochloroacetic acid D 48.8 54.4 -5.6 0.0 0.5 2

n,n'-di-n-hexyladipamide C 94.4 189.3 -94.9 0.0 16.8 1

n,n'-di-n-hexylsebacamlde C 129.3 224.2 -94.8 0.0 20.9 1

n, n'-di-n-propy ladipamide C 79.9 137.1 -57.1 0.0 10.5 1

n.n'-dibutyiurea A 78.5 115.3 -36.8 0.0 7.9 2

n.n'-dimethylhydrazine A 51.6 44.2 7.4 0.7 0.0 2

n,n-diethylurea B 51.4 71.8 -20.3 0.0 2.6 2 178

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS^"^ DIFF LN a LN <|) REF

n.n-diethylurea A 49.0 71.8 -22.7 0.0 2.6 2

n,n-dimethyl-1.3-propanediamine A 63.7 67.4 -3.7 0.0 2.1 1

n.n-dimethylhydrazine A 46.6 44.2 2.4 0.7 0.0 1

n-(2-hydroxy-4-methoxyben2yl- A 77.6 89.2 -11.5 0.0 4.7 1 idene)-p-butylanil!ne

n-(4-methoxybenzylidene)-p-butyl- A 111.3 93.5 17.7 0.0 5.2 2 aniline

n-(4-methoxybenzylidene)-p-butyl- A 99.4 93-5 5.9 0.0 5.2 1 aniline

n-(beta-trimethylsilylethyl)- A 60.2 54.4 5.8 0.0 0.5 2 ethylenimine

n-(beta-trimethylsilylethyl)tri- A 64.7 63.1 1.6 0.0 1.6 2 methylenimine

n-allyl-n'-phenylthiourea B 73.6 80.5 -6.8 0.0 3.7 2

n-butane C 52.4 58.7 -6.3 0.0 1.0 1

n-butane A 53.8 58.7 -5.0 0.0 1.0 1

n-butylbenzene C 59.5 71.8 -12.3 0.0 2.6 1

n-butylbenzene A 60.8 71.8 -10.9 0.0 2.6 1

n-butylcyclohexane A 71.4 71.8 -0.4 0.0 2.6 1

n-butylcyclopentane A 68.5 71.8 -3.3 0.0 2.6 1

n-decacyclohexane A 142.2 124.0 18.2 0.0 8.9 1 179

Table 4.2 (con't). Observed and predicted entropies of melting in J/K moi

NAME EVAL AS*** DIFF LN ct LN

n-decane C 118.4 111.0 7.4 0.0 7.3 1

n-decane A 117.9 111.0 7.0 0.0 7.3 1

n-decylcyclopentane A 132-0 124.0 8.0 0.0 8.9 1

n-docosane B 243.5 215.4 28.1 0.0 19.9 2

n-docosane B 245.3 215.4 29.9 0.0 19.9 2

n-docosane B 244.9 215.4 29.5 0.0 19.9 2

+ n-docosane B 245.3 215.4 29.9 0.0 19.9 1

n-dodecane C 138.8 128.4 10.5 0.0 9.4 1

n-dodecane A 139.7 128.4 11.4 0.0 9.4 1

n-dodecylcyclohexane C 177.1 141.4 35.7 0.0 11.0 1

n-dotriacontane B 345.1 302.5 42.6 0.0 30.4 2

n-eicosane B 225.5 198.0 27.5 0.0 17.8 2

n-eicosane B 225.5 198.0 27.5 0.0 17.8 2

n-eicosane B 229.8 198.0 31.8 0.0 17.8 2

n-eicosane A 219.6 198.0 21.5 0.0 17.8 2

* n-eicosane C 198.5 198.0 0.5 0.0 17.8 1

n-ethanol isatoxine D 57.2 67.4 -10.1 0.0 2.1 2

n-henicosane B 202.8 206.7 -3.9 0.0 18.9 2 180

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN ct LN (t» REF

n-heptacosane B 272.4 259.0 13.4 0.0 25.1 2

n-heptadecane A 174.6 171.9 2.7 0.0 14.7 1

n-heptane B 76.8 84.8 -8.0 0.0 4.2 1

n-heptane B 76.8 84.8 -8.0 0.0 4.2 1

n-heptane A 76.9 84.8 -8.0 0.0 4.2 1

n-heptane A 77.0 84.8 -7.9 0.0 4.2 1

n-heptane A 76.9 84.8 -8.0 0.0 4.2 1

n-heptane A 76.8 84.8 -8.0 0.0 4.2 2

n-heptane B 77.0 84.8 -7.9 0.0 4.2 1

n-heptane A 76.9 84.8 -7.9 0.0 4.2 1

n-heptane C 77.7 84.8 -7.1 0.0 4.2 1

n-heptane A 76.8 84.8 -8.0 0.0 4.2 1

n-heptane C 77.7 84.8 -7.1 0.0 4.2 1

n-heptylcyclohexane C 95.5 97.9 -2.4 0.0 5.8 1

n-hexacosane A 287.0 250.3 36.7 0.0 24.1 1

n-hexacosane B 279.2 250.3 29.0 0.0 24.1 2

n-hexacosane B 285.3 250.3 35.0 0.0 24.1 2

+ n-hexacosane B 284.5 250.3 34.2 0.0 24.1 1 181

Table 4.2 (con't). Observed and predicted entropies of melting In J/K-mol

NAME EVAL DIFF LN CT LN (j) REF

n-hexadecane A 183.2 163.2 20.0 0.0 13.6 1

n-hexadecane C 177.1 163.2 13.9 0.0 13.6 1

n-hexane C 73.3 76.1 -2.9 0.0 3.1 1

n-hexane A 73.6 76.1 -2.6 0.0 3.1 1

n-hexane C 70.4 76.1 -5.7 0.0 3.1 1

n-hexane C 69.4 76.1 -6.7 0.0 3.1 1

n-hexatriacontane B 371.2 337.3 33.8 0.0 34.6 2

* n-hexatriacontane B 490.9 337.3 153.6 0.0 34.6 2

n-methylcarbazole A 47.3 44.2 3.1 0.7 0.0 2

n-methylcarbazole A 47.3 44.2 3.1 0.7 0.0 2

n-methylpyrrole A 36.1 44.2 -8.2 0.7 0.0 2

n-methylpyrrole A 36.1 44.2 -8.2 0.7 0.0 2

n-nonacosane B 286.0 276.4 9.6 0.0 27.2 2

n-nonadecane B 202.1 189.3 12.8 0.0 16.8 2

n-nonadecane B 196.8 189.3 7.4 0.0 16.8 2

n-nonane C 100.9 102.2 -1.3 0.0 6.3 1

n-nonane A 99.3 102.2 -2.9 0.0 6.3 1

n-octacosane B 300.3 267.7 32.6 0.0 26.2 2 182

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN ct LN (|) REF

n-octacosane B 300.2 267.7 32.5 0.0 26.2 2

n-octadecane B 203.7 180.6 23.0 0.0 15.7 2

n-octadecane C 200.7 180.6 20.1 0.0 15.7 1

n-octadecane A 204.8 180.6 24.2 0.0 15.7 1

n-octadecane A 201.9 180.6 21.3 0.0 15.7 2

n-octane C 95.7 93.5 2.2 0.0 5.2 1

n-octane C 93.2 93.5 -0.4 0.0 5.2 1

n-octane A 95.8 93.5 2.3 0.0 5.2 1

n-p-ethoxybenzylidene-p'-butyl- B 88.7 102.2 -13.5 0.0 6.3 2 aniline

n-p-ethoxybenzylidene-p'-butyl- A 88.7 102.2 -13.5 0.0 6.3 2 aniline

n-p-n-hexyloxybenzylidene-p'-n- A 76.0 137.1 -61.1 0.0 10.5 2 butylaniline

n-p-n-pentyloxybenzy 1idene-p'-n- A 75.7 128.4 -52.6 0.0 9.4 2 butylanlline

n-pentacosane B 252.4 241.6 10.8 0.0 23.0 2

n-pentacosane B 258.1 241.6 16.6 0.0 23.0 2

• n-pentacosane B 243.1 241.6 1.5 0.0 23.0 1

n-pentadecane A 156.0 154.5 1.5 0.0 12.6 1 183

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN cr LN <|) REF

n-pentane C 58.4 67.4 -9.0 0.0 2.1 1

n-pentane A 58.5 67.4 -8.9 0.0 2.1 1

n-pentane A 58.6 67.4 -8.8 0.0 2.1 1

+ n-pentatriacontane B 386.8 328.6 38.2 0.0 33.5 1

n-perfluorohexane A 46.4 35.1 11.3 1.8 0.0 1

n-propylbenzene A 53.4 63.1 -9.7 0.0 1.6 1

n-propylcyclohexane A 73.3 63.1 10.3 0.0 1.6 1

n-propylcyclopentane A 64.4 63.1 1.3 0.0 1.6 1

n-tetracosane B 266.9 232.9 34.0 0.0 22.0 2

n-tetracosane B 266.9 232.9 34.1 0.0 22.0 2

n-tetracosane C 253.9 232.9 21.0 0.0 22.0 2

n-tetradecane A 161.5 145.8 15.8 0.0 11.5 1

n-tetradecane C 154.3 145.8 8.5 0.0 11.5 1

n-tetratriacontane B 371.2 319.9 51.3 0.0 32.5 2

+ n-tetratriacontane B 370.0 319.9 50.1 0.0 32.5 1

n-triacontane B 315.0 285.1 29.9 0.0 28.3 2

+ n-triacontane B 310.6 285.1 25.5 0.0 28.3 1

n-tricosane B 237.7 224.2 13.5 0.0 20.9 2 184

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS**® AS®"® DIFF LN a LN (|> REF

n-tridecane A 136.5 137.1 -0.6 0.0 10.5 1

n-tritriacontane B 306.2 311.2 -6.1 0.0 31.4 1

n-undecane A 118.6 119.7 -1.1 0.0 8.4 1

n-undecane C 117.1 119.7 -2.6 0.0 8.4 1

naphthalene C 53.9 38.5 15.4 1.4 0.0 1

naphthalene B 54.4 38.5 15.9 1.4 0.0 1

naphthalene C 53.2 38.5 14.7 1.4 0.0 1

naphthalene A 53.9 38.5 15.4 1.4 0.0 1

naphthalene C 53.2 38.5 14.8 1.4 0.0 1

naphthalene C 53.8 38.5 15.3 1.4 0.0 2

naphthalene A 53.7 38.5 15.2 1.4 0.0 1

naphthalene C 54.0 38.5 15.6 1.4 0.0 1

naphthalene D 54.5 38.5 16.1 1.4 0.0 1

naphthalene C 53.7 38.5 15.2 1.4 0.0 1

naphthalene A 51.6 38.5 13.1 1.4 0.0 1

naphthalene-1,8-disulfide-s-oxide B 36.9 44.2 -7.4 0.7 0.0 1

nitramine C 57.0 71.8 -14.8 0.0 2.6 1

nitrobenzene C 43.5 50.0 -6.5 0.0 0.0 1 185

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS*** DIFF LN o LN (|> REF

nitrobenzene C 38.8 50.0 -11.2 0.0 0.0 1

nitroethane A 53.6 50.0 3.6 0.0 0.0 1

nitromethane A 39.6 50.0 -10.3 0.0 0.0 1

nonadecanoic acid B 196.0 193.7 2.4 0.0 17.3 1

nonanoic acid B 100.4 106.6 -6.2 0.0 6.8 1

nonanoic acid B 91.8 106.6 -14.8 0.0 6.8 1

nonyl acrylate A 98.8 128.4 -29.5 0.0 9.4 2

nonyl phenylcarbamate B 85.8 137.1 -51.2 0.0 10.5 1

northindrone A 82.7 50.0 32.7 0.0 0.0 2

northindrone 4-cyclohexylbenz- A 76.4 67.4 8.9 0.0 2.1 2 oate

northindrone acetate A 56.9 58.7 -1.8 0.0 1.0 2

northindrone benzoate A 78.2 63.1 15.1 0.0 1.6 2

northindrone biphenyl-4-carboxy- A 68.4 67.4 1.0 0.0 2.1 2 late

northindrone dimethylpropionate A 75.6 76.1 -0.5 0.0 3.1 2

northindrone heptanoate A 63.5 102.2 -38.7 0.0 6.3 2

northindrone pentamethyldisiloxyl A 64.5 63.1 1.5 0.0 1.6 2 ether

northindrone trans-3-(4-butylcyclo- A 60.2 106.6 -46.4 0.0 6.8 2 hexyOpropionate 186

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS*** DIFF LN o LN REF

northindrone trans-4-hexylcyclo- A 56.8 106.6 -49.8 0.0 6.8 2 hexylcarboxylate

northindrone-6-(4-chlorophenyl)- A 69.7 106.6 -36.8 0.0 6.8 2 hexanoate

o,o'-bis-trichlorosilylbiphenyl A 61.3 50.0 11.3 0.0 0.0 2

o-hydroxyacetanilide C 58.3 58.7 -0.4 0.0 1.0 1

o-hydroxybiphenyl B 49.0 50.0 -1.0 0.0 0.0 1

o-hydroxyblphenyl A 49.0 50.0 -1.0 0.0 0.0 1

o-hydroxytoluene A 52.0 50.0 2.0 0.0 0.0 1

o-terphenyl A 52.2 44.2 8.0 0.7 0.0 1

o-toluic acid C 53.5 50.0 3.5 0.0 0.0 1

o-trichlorosilylbiphenyl B 61.1 58.7 2.4 0.0 1.0 1

octadecanoic acid C 198.2 185.0 13.3 0.0 16.2 2

octadecanoic acid B 181.2 185.0 -3.8 0.0 16.2 2

octadecanoic acid C 199.7 185.0 14.8 0.0 16.2 1

* octadecanoic acid B 178.7 185.0 -6.3 0.0 16.2 1

octaethylcyclotetrasiloxane A 122.9 115.3 7.6 0.0 7.9 2

octafluorocyclobutane A 11.9 32.7 -20.8 2.1 0.0 1

octafluorotoluene A 55.3 54.4 1.0 0.0 0.5 1 187

Table 4.2 (con't). Obsen^ed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN ct LN (|) REF

octamethyltetrasilazane A 68.1 50.0 18.1 0.0 0.0 2

octamethyitetrasiloxane A 81.9 50.0 31.9 0.0 0.0 2

octanal B 104.4 97.9 6.5 0.0 5.8 2

octanoic acid B 73.7 97.9 -24.1 0.0 5.8 1

octanoic acid B 73.9 97.9 -24.0 0.0 5.8 1

octyl methacrylate A 104.6 119.7 -15.0 0.0 8.4 2

octylcyanobiphenyl B 87.3 128.4 -41.1 0.0 9.4 2

oligoethylene butylene glycol A 112.5 154.5 -41.9 0.0 12.6 2 adipate

oxalyl fluoride A 51.4 44.2 7.2 0.7 0.0 2

oxirane A 32.2 44.2 -12.0 0.7 0.0 1

p-azoxyanisole B 77.7 67.4 10.3 0.0 2.1 1

p-azoxyanisole A 78.9 67.4 11.4 0.0 2.1 2

p-cymene C 47.3 54.4 -7.0 0.0 0.5 1

p-diacetylbenzene diethyl ketal A 79.8 132.7 -52.9 0.0 9.9 2

p-diacetylbenzene diethyl ketal A 79.7 132.7 -53.0 0.0 9.9 2

p-diacetylbenzene diethyl ketal A 79.8 132.7 -52.9 0.0 9.9 2

p-hydroxytoluene A 41.3 44.2 -3.0 0.7 0.0 1

p-methacryloyloxybenzoic acid A 74.7 58.7 16.0 0.0 1.0 2 188

Table 4.2 (con't) Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN a LN <(> REF

p-n-hexyloxybenzylidene-p- A 90.8 106.6 -15.8 0.0 6.8 2 toluidine

p-n-hexyloxybenzylideneamino-p'- A 87.8 106.6 -18.8 0.0 6.8 2 benzonitrile

p-n-hexyloxybenzylideneamino-p'- A 95.1 106.6 -11.5 0.0 6.8 2 chlorobenzene

p-n-hexyloxybenzylideneamino-p'- A 70.8 106.6 -35.8 0.0 6.8 2 fluorobenzene

p-n-hexyloxybenzylideneaniline A 98.8 111.0 -12.1 0.0 7.3 2

p-n-octadecyloxybenzoic acid B 177.3 206.7 -29.3 0.0 18.9 1

p-n-octadecyloxybenzoic acid-d B 175.6 202.4 -26.8 0.0 18.3 1

p-quaterphenyl B 105.1 58.7 46.4 0.0 1.0 2

p-quaterphenyl A 64.4 58.7 5.7 0.0 1.0 2

p-quinquephenyl A 64.1 63.1 1.1 0.0 1.6 2

p-terphenyl A 72.5 54.4 18.2 0.0 0.5 2

p-terphenyl B 84.4 54.4 30.0 0.0 0.5 2

p-terphenyl A 72.5 54.4 18.1 0.0 0.5 2

p-toluic acid C 50.2 50.0 0.2 0.0 0.0 1

p-trichlorosilylbiphenyl B 49.8 58.7 -8.9 0.0 1.0 1

p-trichlorosilylbiphenyl A 49.8 58.7 -8.9 0.0 1.0 2 189

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** DIFF LN a LN (j» REF

pentadecanoic acid B 153-0 158.8 -5.9 0.0 13.1 1

pentadecanolactone A 119.1 50.0 69.1 0.0 0.0 1

pentafluoroaniline A 60.2 44.2 16.0 0.7 0.0 1

pentafluorobenzene A 48.2 44.2 4.0 0.7 0.0 1

pentafiuorobenzene A 48.1 44.2 3.8 0.7 0.0 1

pentafluorochlorobenzene A 55.5 44.2 11.3 0.7 0.0 1

pentafluorochlorobenzene A 39.1 44.2 -5.1 0.7 0.0 1

pentafluorochloroethane A 43.6 50.0 -6.4 0.0 0.0 1

pentafiuoronitrobenzene A 47.1 50.0 -2.9 0.0 0.0 1

pentafluorophenol A 48.1 44.2 3.8 0.7 0.0 1

pentafluorophenol A 56.8 44.2 12.5 0.7 0.0 1

pentamethylbenzene C 32.5 44.2 -11.7 0.7 0.0 1

pentanoic acid A 59.1 71.8 -12.6 0.0 2.6 1

pentoxan C 65.6 50.0 15.6 0.0 0.0 1

perfluorobicyclo[4.4.0]dec-1.6- A 48.4 50.0 -1.6 0.0 0.0 1 diene

perfluoroheptane A 68.3 102.2 -33.9 0.0 6.3 2

perfluoromethyldiethylamine A 30.7 67.4 -36.7 0.0 2.1 2

perfluoromethyldiethylamine A 91.8 67.4 24.3 0.0 2.1 1 190

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN (j LN REF

perfluoropiperidine A 62.1 50.0 12.1 0.0 0.0 1

perfluoropropane A 39.6 44.2 -4.7 0.7 0.0 1

perfluorotriethylamine A 29.8 76.1 -46.3 0.0 3.1 2

perfluorotriethylamine A 46.3 76.1 -29.8 0.0 3.1 1

perhydrophenanthrene B 41-8 50.0 -8.2 0.0 0.0 2

perhydrophenanthrene B 38.4 50.0 -11.6 0.0 0.0 2

perhydrophenanthrene B 35.6 50.0 -14.3 0.0 0.0 2

perylene A 57.9 38.5 19.4 1.4 0.0 1

phenanthrene B 48.2 44.2 4.0 0.7 0.0 1

phenanthrene C 46.1 44.2 1.9 0.7 0.0 1

phenanthrene C 46.1 44.2 1.9 0.7 0.0 1

phenanthrene B 49.9 44.2 5.7 0.7 0-0 2

phenanthrene A 44.8 44.2 0.6 0.7 0.0 1

phenanthrene C 57.5 44.2 13.3 0.7 0-0 1

phenanthridine A 60.2 44.2 16.0 0.7 0-0 2

phenanthridine A 60.2 44.2 16.0 0.7 0-0 2

phenol A 36.7 44.2 -7.6 0.7 0.0 1

phenol C 33.8 44.2 -10.4 0.7 0.0 2 191

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS"** DIFF LN a LN (J) REF

phenolphthalein B 150.6 54.4 96.2 0.0 0.5 2

phenyl-o-tolylmethane A 68.8 58.7 10.1 0.0 1.0 2

phenylacetylene A 41.5 44.2 -2.8 0.7 0.0 2

phenylaminoethylmethacrylate A 85.6 80.5 5.1 0.0 3.7 2

phenylpropionic acid C 48.4 67.4 -19.0 0.0 2.1 2

phenyltrichlorosilane A 50.0 40.9 9.1 1.1 0.0 1

phenyiurea A 56.3 58.7 -2.4 0.0 1.0 2

picric acid B 43.4 58.7 -15.3 0.0 1.0 2

piperidine A 56.7 44.2 12.4 0.7 0.0 2

piperidine A 56.7 44.2 12.4 0.7 0.0 2

poly(diethylsiloxane) A 20.0 26.1 -6.2 0.0 3.1 2

poly(diethylsiloxane) A 19.9 26.1 -6.2 0.0 3.1 2

poly(dimethylsiioxane) A 18.5 8.7 9.8 0.0 1.0 2

poly(oxacyciobutane) B 31.0 34.8 -3.8 0.0 4.2 1

poly(tridecanolactone) A 125.0 117.6 7.4 0.0 14.1 2

poly-1,3-dioxolan B 51.4 43.5 7.9 0.0 5.2 2

poly-epsilon-caprolactone A 48.8 56.6 -7.8 0.0 6.8 2

polybutylene glycol adipate B 75.4 95.8 -20.3 0.0 11.5 2 192

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS'^ DIFF LN ct LN REF

polyethylene A 9.4 8.7 0.6 0.0 1.0 2

polyglycolide A 46.9 43.5 3.4 0.0 5.2 2

polyoctadiene B 1.1 52.2 -51.1 0.0 6.3 1

polyoctenylene A 89.6 61.0 28.7 0.0 7.3 2

polypentenamer A 27.6 34.8 -7.3 0.0 4.2 2

polypentenamer A 27.6 34.8 -7.3 0.0 4.2 2

polytetrahydrofuran A 34.8 43.5 -8.7 0.0 5.2 2

polytetrahydrofuran A 34.8 43.5 -8.7 0.0 5.2 2

propanal A 50.2 54.4 -4.2 0.0 0.5 2

propane A 41.2 44.2 -3.0 0.7 0.0 1

propanoic acid A 42.2 54.4 -12.1 0.0 0.5 1

propanone C 32.0 44.2 -12.2 0.7 0.0 1

propanone C 32.0 44.2 -12.2 0.7 0.0 1

propanone C 26.7 44.2 -17.5 0.7 0.0 1

propene B 33.3 50.0 -16.7 0.0 0.0 1

propionitrile A 37.5 50.0 -12.4 0.0 0.0 1

propyl phenylcarbamate B 63.7 76.1 -12.4 0.0 3.1 1

propylene A 34.2 50.0 -15.8 0.0 0.0 2 193

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL ^S'^ AS^ DIFF LN a LN (j) REF

propylene B 34.2 50.0 -15.8 0.0 0.0 2

propylene carbonate A 42.8 63.1 -20.2 0.0 1.6 2

propylene carbonate A 42.8 63.1 -20.3 0.0 1.6 2

propylene oxide C 40.7 50.0 -9.3 0.0 0.0 1

propylene oxide A 40.5 50.0 -9.5 0.0 0.0 1

propylurea A 38.4 71.8 -33.3 0.0 2.6 2

pyrazole B 41.4 50.0 -8.6 0.0 0.0 2

pyrene A 43.4 38.5 4.9 1.4 0.0 1

pyridine C 35.8 44.2 -8.5 0.7 0.0 1

pyridine A 35.8 44.2 -8.5 0.7 0.0 1

pyridine C 13.5 44.2 -30.7 0.7 0.0 1

pyromellitic dianhydride D 28.4 38.5 -10.0 1.4 0.0 1

pyrrole A 31.7 44.2 -12.5 0.7 0-0 1

pyrrolidine A 42.5 44.2 -1.8 0.7 0.0 1

pyrrolidine A 42.5 44.2 -1.8 0.7 0.0 1

quinoline A 41.6 50.0 -8.4 0.0 0.0 2

quinoline C 41.8 50.0 -8.2 0.0 0.0 1

quinone C 47.8 38.5 9.3 1.4 0.0 1 194

Table 4.2 (con't). Observed and predicted entropies of melting In J/K mol

NAME EVAL AS*** AS^ DIFF LN CT LN (j) REF

s-triazine B 41.2 35.1 6.1 1.8 0.0 1

splropentane A 38.7 38.5 0.3 1.4 0.0 1

styphnic acid B 73.6 50.0 23.6 0.0 0.0 2

styrene B 45.2 50.0 -4.9 0.0 0.0 2

styrene A 45.2 50.0 -4.8 0.0 0.0 2

styrene A 45.2 50.0 -4.9 0.0 0.0 1

styrene-d8 B 44.3 50.0 -5.7 0-0 0.0 2

succinonitrile B 11.1 38.5 -27.3 1.4 0.0 2

succlnonitrile (1,4-butanedinltrlle) A 37.8 38.5 -0.7 1.4 0.0 1

tert-butylbenzene C 39.1 40.9 -1.8 1.1 0.0 1

tert-butylurea A 73.7 54.4 19.3 0.0 0.5 2

tetra(methylphenyl)tetrasiloxane A 114.6 119.7 -5.1 0.0 8.4 2

tetrabromomethane B 29.5 29.3 0.1 2.5 0.0 1

A 48.3 38.5 9.8 1.4 0.0 2

tetrachloromethane A 30.4 29.3 1.0 2.5 0.0 1

tetrachlcromethane C 30.1 29.3 0.8 2.5 0.0 1

tetrachloromethane B 31.3 29.3 2.0 2.5 0.0 1

tetrachloromethane A 31.3 29.3 2.0 2.5 0.0 2 195

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN a LN (j> REF

tetrachloromethane A 10.2 29.3 -19.1 2.5 0.0 1

tetradecanoic acid D 114.5 150.1 -35.6 0.0 12.0 1

tetradecanoic acid B 137.8 150.1 -12.3 0.0 12.0 1

tetraethyl lead A 64.4 84.8 -20.4 0.0 4.2 2

tetraethyl lead B 61.5 84.8 -23.3 0.0 4.2 2

tetraethyl silicon B 68.7 84.8 -16.1 0.0 4.2 2

tetraethyl tin B 64.4 84.8 -20.4 0.0 4.2 2

tetraethylgermane A 68.4 84.8 -16.4 0.0 4.2 2

tetraethylgermane B 68.7 84.8 -16.1 0.0 4.2 2

tetraethylgermane B 70.0 84.8 -14.8 0.0 4.2 1

tetraethylsilane B 70.4 84.8 -14.4 0.0 4.2 1

tetraethylstannane B 54.0 84.8 -30.8 0.0 4.2 1

tetrafluoroethene A 54.3 38.5 15.9 1.4 0.0 1

tetrafluoromethane A 27.1 29.3 -2.2 2.5 0.0 2

tetrafluoromethane A 30.4 29.3 1.0 2.5 0.0 1

tetrahydrofuran A 51.8 44.2 7.6 0.7 0.0 1

tetrahydrofuran A 51.8 44.2 7.6 0.7 0.0 1

tetrahydrofuran A 51.8 44.2 7.6 0.7 0.0 2 196

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS*** AS'^ DIFF LN <1 LN ((> REF

tetrahydrofuran A 51.8 44.2 7.6 0.7 0.0 2

tetrakis(methylthia)methane C 56.7 84.8 -28.1 0.0 4.2 1

tetramethyl lead B 44.4 29.3 15.1 2.5 0.0 2

tetramethyl tin A 42.4 29.3 13.0 2.5 0.0 2

tetramethyl tin B 43.3 29.3 13.9 2.5 0.0 2

tetramethyldisiletan B 38.6 44.2 -5.7 0.7 0.0 1

tetramethylgermane A 40.4 29.3 11.1 2.5 0.0 2

tetramethyisilane A 38.7 29.3 9.4 2.5 0.0 1

tetramethylsilane A 34.9 29.3 5.6 2.5 0.0 1

tetramethyisilane A 39.5 29.3 10.1 2.5 0.0 1

tetramethyiurea A 49.2 63.1 -13.8 0.0 1.6 2

tetroxan C 58.7 50.0 8.7 0.0 0.0 1

thiabutane A 58.4 58.7 -0.3 0.0 1.0 1

thiacyclobutane A 45.1 44.2 0.8 0.7 0.0 1

thiacyclohexane A 46.2 50.0 -3.8 0.0 0.0 1

thiacyclopentane A 41.5 44.2 -2.7 0.7 0.0 1

thiazole A 39.8 50.0 -10.1 0.0 0.0 1

thiazole A 40.0 50.0 -10.0 0.0 0.0 1 197

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS*** AS^ DIFF LN a LN (|) REF

thiophene A 25-4 44-2 -18.8 0.7 0.0 1

thiophene C 28.3 44.2 -15.9 0-7 0.0 1

thiophenol C 44.5 44.2 0.2 0-7 0-0 1

thiophenol A 44.3 44.2 0.1 0.7 0.0 1

thymine C 54.5 50.0 4.5 0.0 0.0 2

toluene B 36.8 44.2 -7.5 0.7 0.0 1

toluene A 37.2 44.2 -7.0 0.7 0.0 1

toluene A 37.2 44.2 -7.1 0.7 0-0 1

trans-2-butene C 58.9 44.2 14.7 0.7 0-0 1

trans-2-butene A 58.2 44.2 14.0 0.7 0.0 1

trans-2-butene A 58.2 44.2 14.0 0.7 0-0 2

trans-2-pentene A 62-8 58.7 4.1 0.0 1.0 1

trans-2-pentene A 62.8 58.7 4.1 0.0 1-0 2

trans-3-chloro-2-butenoic acid C 56.5 54.4 2.1 0.0 0.5 1

trans-azobenzene A 66.1 44.2 21.8 0.7 0.0 2

trans-azobenzene B 66.0 44.2 21.8 0.7 0.0 2

trans-decahydronaphthalene B 52.3 50.0 2.3 0.0 0.0 2

trans-decahydronaphthalene A 51.1 50.0 1.1 0.0 0.0 1 198

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL DIFF LN

trans-hexahydroindan A 51.0 50.0 1.0 0.0 0.0 1

trans-perfluorodecalin B 61.0 44.2 16.7 0.7 0.0 1

trans-polypentenamer B 28.7 34.8 -6.1 0.0 4.2 2

trans-stilbene A 69.7 58.7 11.0 0.0 1.0 2

trans-stilbene B 68.8 58.7 10.1 0.0 1.0 2

trans-tri(methylphenyl)trisiloxane A 136.4 124.0 12.4 0.0 8.9 2

tri-tert-butylmethanol B 32.6 40.9 -8.3 1.1 0.0 2

triacetin A 93.7 106.6 -12.8 0.0 6.8 2

tribromomethane A 39.2 40.9 -1.7 1.1 0.0 2

trichloroacetic acid D 17.8 54.4 -36.6 0.0 0.5 2

trichloroethene A 44.8 50.0 -5.2 0.0 0.0 2

trichloromethylsilane A 45.3 40.9 4.4 1.1 0.0 2

tricosane C 239.9 224.2 15.8 0.0 20.9 2

tricyclo[5.2.1.0'^(2,6)]decane C 8.4 40.9 -32.4 1.1 0.0 1

tridecanoic acid B 135.5 141.4 -5.9 0.0 11.0 1

tridecanolactone A 92.6 50.0 42.6 0.0 0.0 1

tridecanolactone A 92.6 50.0 42.6 0.0 0.0 2

triethylaluminum A 47.1 76.1 -29.0 0.0 3.1 2 199

Table 4.2 (con't). Obsen^ed and predicted entropies of melting in J/K-mol

NAME EVAL DIFF LN ct LN (t> REF

triethylamineborane A 55.3 76.1 -20.8 0.0 3.1 1

triethyiarsine B 60.8 76.1 -15.2 0.0 3.1 1

triethylborane B 65.7 76.1 -10.3 0.0 3.1 1

triethylboron B 63.9 76.1 -12.1 0.0 3.1 2

triethylenediamine A 47.2 35.1 12.1 1.8 0.0 1

triethylgallium B 60.2 76.1 -15.9 0.0 3.1 1

triethylindium B 54.8 76.1 -21.3 0.0 3.1 1

trlethylstibine B 61.4 76.1 -14.7 0.0 3.1 1

trifluoroacetonitrile A 38.6 30.9 7.8 2.3 0.0 1

trifluoroacetyl fluoride A 42.8 54.4 -11.5 0.0 0.5 2

trifluoroacetyl fluoride A 42.8 54.4 -11.5 0.0 0.5 1

trifluoromethane A 34.4 40.9 -6.5 1.1 0.0 1

trifluoromethyl(2-hydroxy-1 - A 36.4 67.4 -31.0 0.0 2.1 2 propenyl) ketone

triiaurin C 386.6 367.8 18.8 0.0 38.2 1

trlmellitic anhydride D 27.2 50.0 -22.8 0.0 0.0 1

trimethyl arsine A 48.0 40.9 7.2 1.1 0.0 2

trimethylaluminum A 30.6 40.9 -10.3 1.1 0.0 2

trimethylamine A 41.9 40.9 1.1 1.1 0.0 1 200

Table 4.2 (con't). Observed and predicted entropies of melting in J/K mol

NAME EVAL AS'*' AS'^ DIFF LN CT LN

trimethylamineborane A 22.3 40.9 -18.5 1.1 0.0 1

trimethylborane A 28.7 40.9 -12.1 1.1 0.0 1

trimethylgallium B 42.8 40.9 2.0 1.1 0.0 1

trimethylgallium A 42.5 40.9 1.6 1.1 0.0 2

trimethylhydrazine A 47.1 58.7 -11.5 0.0 1.0 1

trimyristin C 460.9 420.1 40.9 0.0 44.5 1

tripalmitin C 529.3 472.3 57.0 0.0 50.8 1

triphenyl phosphate A 91.8 89.2 2.6 0.0 4.7 2

trlphenylchlorosilane A 72.5 63.1 9.5 0.0 1.6 2

triphenylene A 52.5 35.1 17.4 1.8 0.0 1

triphenylmethane C 57.2 63.1 -5.8 0.0 1.6 1

triphenylmethane B 60.2 63-1 -2.9 0.0 1.6 1

triphenylmethane C 49.8 63.1 -13.2 0.0 1.6 1

triphenylphosphine A 55.6 63.1 -7.5 0.0 1.6 2

triphenylphosphine oxide C 55.5 63.1 -7.6 0.0 1.6 2

triphenylphosphine oxide A 56.1 63.1 -7.0 0.0 1.6 2

triptycene A 57.4 35.1 22.3 1.8 0.0 1

trlstearin C 588.0 524.6 63.4 0.0 57.1 1 201

Table 4.2 (con't). Observed and predicted entropies of melting in J/K-mol

NAME EVAL AS"^ DIFF LN cy LN <|) REF

undecanoic acid B 109.8 124.0 -14.1 0.0 8.9 1

undecanoic acid B 114.2 124.0 -9.8 0.0 8.9 1

undecanolactone A 59.2 50.0 9.2 0.0 0.0 1

undecanolactone A 59.2 50.0 9.2 0.0 0.0 1

urea A 36.4 44.2 -7.9 0.7 0.0 2

urea A 34.3 44.2 -10.0 0.7 0.0 2

urea B 35.7 44.2 -8.5 0.7 0.0 2

urea B 33.5 44.2 -10.7 0.7 0.0 2

vinyl chloride B 41.2 50.0 -8.8 0.0 0.0 2

vinyldimethylbenzylsilane A 56.8 67.4 -10.5 0.0 2.1 2

vinyldimethylphenylsilane A 64.3 58.7 5.6 0.0 1.0 2

vinyldimethylphenylsilane A 64.5 58.7 5.8 0.0 1.0 2

vinyltrimethylsilane A 54.1 54.4 -0.3 0.0 0.5 2

vinyltrimethylsilane A 54.0 54.4 -0.3 0.0 0.5 2

zeta-enantholactam B 44.4 50.0 -5.6 0.0 0.0 2

* The value is either less than 9 J/K-mol or is clearly out of line with other reported values for the same or related compound. + ThisASm'^ is the value in the original article. It differs from the compiled value. REFERENCES 1 Domalski et al. (1984) 2 Domalski etal. (1990) 202

CHAPTER V: SUMMARY

Introduction

The crystal contribution to aqueous solubility can be estimated from melting point and enthalpy or entropy of melting by a rearrangement of the Clausius-

Clapeyron equation. Unfortunately these values are not always available and must either be experimentally determined or estimated. As seen in Chapter I, the entropy of melting can be assumed to be a constant (Walden's or Richard's rule) or estimated more accurately by an estimation scheme. Group contribution methods have been proposed by Chickos and coworkers (1990 and

1991) and Domalski and coworkers (1988 and 1990) and a simple semi- empirical equation has been developed in the last few chapters. Equation 4-1 is shown to work well in estimating the entropy of melting of numerous nonelectrolytes.

Equation 4-1 utilizes two molecular parameters defined in the previous chapters: molecular rotational symmetry and molecular flexibility numbers. The molecular rotational symmetry number, a, as described in Chapter II for rigid molecules, accounts for the effects of symmetry on entropy. While, for flexible molecules, the molecular flexibility number, as described in Chapter III, accounts for the effects of flexibility on entropy. 203

In this chapter, equation 4-1 is applied to a set of data consisting of

pharmaceutical and environmental compounds. The complex structures of

these compounds provide a broader test set since many of these compounds

have both rigid and flexible regions. Equation 4-1 will also be compared to two

other estimation schemes: a constant and a group contribution method.

Methods

Entropy of Melting

As in the previous chapters, the entropy of melting values in the database are analyzed with respect to their fit to the semi-empirical equation (equation 4-1).

The average absolute error is used to evaluate the predictability of the equation.

Comparison of Estimation Sctiemes

A completely different database from the data set described above Is utilized for the comparison of three methods. Walden's rule (a constant), the group contribution method by Chickos and coworkers (1990 and 1991), and the semi- empirical equation (equation 4-1) are compared as to their predictability of the entropy of melting. Predictability is based on their average absolute error. 204

Experimental

Entropy of Melting

Experimental entropy of melting data for pharmaceutical and environmentally

relevant compounds were compiled from literature and entered into a database

using dBASE IV. The database contains 405 entropy of melting values for 373

different compounds. For each compound the molecular rotational symmetry

and flexibility numbers are assigned as described in Chapters II and III.

Comparison of Estimation Schemes

A data set of both the experimental and predicted entropy of melting values for

seventeen compounds are taken from two papers by ChicKos et al. (1990 and

1991). The predicted values are estimated by his group contribution method.

These will be compared to the predicted values obtained by equation 4-1 and

Walden's rule (56.5 J/deg mol). The experimental and predicted values are entered into a database using dBASE IV.

Results and Discussion

Entropy of Melting

The natural logarithm of the molecular parameters, a and (|). and the observed and predicted entropy of melting values are given in Table 5.1. The average absolute error between the predicted and the observed entropy of melting 205

values is 13.0 J/deg -moi. This error is well within the experimental error that is normally associated with observed entropy of melting data. Observed entropy

values that are either too high or too low; or values that are not consistent for a given molecule is preceded by an asterisk. These values were not used in the data analysis.

In order to clearly see how well the equation works for the set of over 390 complex molecules, a graph of the predicted versus observed entropy of melting values is shown in Figure 5.1. Perfect fit is depicted as a solid line with a slope of unity. Most of the data fall close to the solid line which indicates that the equation gives a very reasonable entropy of melting prediction for these molecules.

Comparison of Estimation Schemes

The predicted entropy of melting values for each method is given in Table 5.2 along with the difference between the predicted and observed values. Of these methods, Walden's rule (ASm = 56.5 J/deg mol), as expected, is the worst with an average absolute error of 12.1 J/deg mol. While the other methods have similar results of 4.2 J/deg -mol for their average absolute errors. 206

Overall, in this and in the previous chapters, equation 4-1 has been shown to have comparable results with the group contribution method and to be applicable to a very wide variety of organic compounds including small, symmetrical molecules; rigid coal tar derivatives; large flexible molecules; and a variety of biologically important molecules which have both rigid and flexible components. 600

500

400

300

200

100

0 100 200 300 400 500 600 Observed Entropy of Melting (J/K mol) Figure 5.1. Observed versus predicted entropy of melting values for complex compounds 208

Table 5.1. Observed and predicted entropies of melting In J/Kmol

Entropy of melting

Name In a In (j> Obs Pred Diff Ref

1,1,1 -trifluoro-3-chloropropane 0.0 0.0 30 50 -20 1

1,2,3-trichlorobenzene 0.7 0.0 63 44 18 3

1,2,3-trichlorobenzene 0.7 0.0 53 44 9 2

1,2-dlchlorobenzene 0.7 0.0 46 44 2 2

1,3.5-trichlorobenzene 1.8 0.0 54 35 19 3

1,3,5-trichlorobenzene 1.8 0.0 52 35 16 2

1,3-dihydroxybenzene (resorcinol) 0.7 0.0 58 44 14 1

1,3-propane sulfone 0.0 0.0 33 50 -17 2

1,4-dlchlorobenzene 1.4 0.0 53 38 14 3

1,4-dlchlorobenzene 1.4 0.0 55 38 16 2

1 -(o-chlorophenyl)thiourea 0.0 1.0 54 59 -5 2

1-heptane 0.0 3.7 80 80 0 1

1 -methoxy-1,2-benziodoxolln-3-one 0.0 1.0 59 59 0 1

1-methyl-2-nitro-5-vinylimidazole 0.0 0.5 69 54 15 1

1 -naphthaleneacetic acid 0.0 1.0 55 59 -4 2

1-napthol 0.0 0.0 61 50 11 2

2,3-dibromopropionic acid 0.0 1.6 121 63 57 1

2,3-dimethyl-2-butene 1.4 0.0 33 38 -6 1 209

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In CT ln(i> Obs Pred •iff Ref

2,4,5-t methyl ester 0-0 3.1 84 76 8 2

2,4,5-trichlorophenol 0.0 0.0 63 50 13 2

2,4,5-trichlorophenoxyacetic acid 0.0 2.1 92 67 25 3

2,4,5-trlchlorophenoxyacetic acid 0.0 2.1 89 67 21 2

2,4,6-tribromophenol 0.7 0.0 44 44 -1 1

2,4-db 0.0 4.2 98 85 13 2

2,4-dichlorophenoxyacetic acid 0.0 2.1 92 67 25 3

2,4-dichlorophenoxyacetic acid 0.0 2.1 86 67 18 2

2,5-dimethylthiophene 0.7 0.0 39 44 -5 1

2,7-dihydroxynaphthalene 0.7 0.0 66 44 22 1

2-aminobenzoic acid 0.0 0.0 53 50 3 1

2-cyclohexyl-4,6-dinitrophenol 0.0 1.0 74 59 15 3

2-methylthiazole 0.0 0.0 49 50 -1 1

2-nitrophenol 0.0 0.0 56 50 6 2

2-nitrotoluen8 0.0 0.0 55 50 5 1

2-phenylphenol 0.0 0.0 41 50 -9 2

3,4-dichlorophenol 0.0 0.0 58 50 8 2

3,5,6-trichloro-2-pyridinol 0.0 0.0 58 50 8 2 210

Table 5.1 (con't). Observed and predicted entropies of melting in J/K-mol

Entropy of melting

Name In o In (|> Obs Pred Diff Ref

3,5-dichlorobenzoic acid 0.0 0.0 50 50 0 2

3-methylthiophene 0.0 0.0 51 50 1 1

3-nitro-p-acetotoluidide 0.0 1.6 66 63 3 1

4,4'-dichlorobenzophenone 0.0 0.5 64 54 10 2

4-(2,4,5-trichlorophenoxy)butanoic acid 0.0 3.1 78 76 2 2

4-(2.4,5-trichlorophenoxy )butyric acid 0.0 4.2 85 85 1 3

4-(2,4-dichlorophenoxy)butyricacid 0.0 4.2 105 85 20 3

4-bromo-1,2-dinitrobenzene 0.0 0.5 89 54 35 1

4-bromo-2.5-dichlorophenol 0.0 0.0 64 50 14 2

4-bromophenol 0.7 0.0 49 44 5 1

4-chlorophenol 0.7 0.0 40 44 -4 1

4-chlorophenoxy acetic acid 0.0 2.1 84 67 17 2

4-hexylresorcinol 0.0 4.7 53 89 -36 1

4-hydroxytoluene (p-cresol) 0.7 0.0 37 44 -8 1

4-nitrophenol 0.0 0.0 49 50 -1 2

5-alpha-androstane-3,17-dione 0.0 0.0 50 50 0 1

6-alpha-methylprednisolone 0.0 1.0 50 59 -9 1 acenaphthylene 0.7 0.0 30 44 -14 2 211

Table 5.1 (con't). Obsen^ed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In a In ()> Obs Pred DifF Ref acephate 0.0 4.7 57 89 -33 2 acetamlde 0.0 0.0 45 50 -5 1 acetaminophen 0.0 0.0 64 50 14 1 acetohexamide 0.0 5.2 120 94 27 1 adfluorfen (blazer) 0.0 4.2 86 85 1 2 adipic acid 0.0 4.2 86 85 2 2 alachlor 0.0 6.3 80 102 -22 2 aidicarb 0.0 3.7 61 80 -20 2

*aldrin 0.0 0.0 4 50 -46 3 alpha-1.2,3,4,5,6-hexachlorocyclohexane 0.0 0.0 72 50 22 3 anilazine 0.0 1.0 73 59 14 2 asulam 0.0 3.1 66 76 -11 2 atrazine 0.0 3.7 85 80 4 2 azinphos ethyl 0.0 6.8 78 107 -28 2 azinphos methyl 0.0 4.7 90 89 1 3 azinphos methyl 0.0 4.7 80 89 -9 2 azodrin 0.0 2.1 69 67 2 3 barban 0.0 4.2 78 85 -7 2 212

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In CT In4> Obs Pred Diff Ref barbital 0.0 1.6 55 63 -8 1 bendiocarb 0.0 2.1 73 67 6 2 benefin 0.0 5.8 114 98 16 3 bensulide 0.0 9-4 99 128 -30 2 benzadox 0.0 3.7 75 80 -5 2 benzamide 0.0 0.0 51 50 1 1 benzophenone 0.0 0.5 57 54 3 1 benzoylprop-ethyl 0.0 5.2 79 94 -14 2 bifenox 0.0 3.1 73 76 -3 2 biphenyl 0.0 0.0 56 50 6 3 bisacodyl 0.0 4.7 96 89 7 1 bromacil 0.0 1.6 51 63 -12 2 bromophos 0.0 3.7 96 80 15 2 bromoxynil 0.7 0.0 69 44 25 2 bulan 0.0 3.7 47 80 -34 2 captafol 0.0 2.6 93 72 21 2 carbaryl 0.0 2.1 58 67 -9 3 carbaryl 0.0 2.1 59 67 -9 2 213

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In a In ({> Obs Pred DIff Ref carbofuran 0.0 2.1 71 67 4 2 carboxln 0.0 1.6 79 63 16 2 chloramben 0.0 0.0 79 50 29 2 chloramben-methyl 0.0 1.0 49 59 -9 2 chlorambucil 0.0 8.4 86 120 -34 2 chloramphenicol palmitate 0.0 22.0 174 233 -59 1 chloranil 0.7 0.0 54 44 10 2 chlorbenside 0.0 2.1 95 67 28 3 chlorbromuron 0.0 3.1 72 76 -4 2 chlordane, alpha 0.0 0.0 61 50 11 2 chlorfenson 0.0 2.1 66 67 -2 2 chiorhexamide 0.0 8.9 80 124 -44 1 chloroacetic acid 0.0 0.5 58 54 3 1 chlorobenzilate 0.0 3.7 76 80 -5 2 chloroneb 0.0 1.6 76 63 12 3 chloroneb 0.0 1.6 68 63 5 2 chlorophacinone 0.0 2.1 83 67 16 2 chloropropamide 0.0 5.8 55 98 -43 1 214

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In cr ln(|> Obs Pred Diff Ref chlorothalonil 0.7 0.0 57 44 13 2 chloroxuron 0.0 3-7 82 80 1 2 chlorpropham 0.0 3.1 57 76 -20 2 chlorpyrifos 0.0 5.8 78 98 -20 2 chlorpyrifos, methyl 0.0 3.7 81 80 1 2 chiorthal-dimethyl (dcpa) 0.0 2.6 70 72 -2 2 cipc 0.0 3.1 65 76 -11 3 cis-clnnamic acid 0.0 1.0 51 59 -7 1 coumaphos 0.0 5.8 102 98 4 3 coumaphos oxygen analog 0.0 5.8 94 98 -4 3 cpmc 0.0 2.1 60 67 -7 2 crufomate 0.0 3.7 66 80 -14 2 cyanazine 0.0 3.7 96 80 15 2 cyclopentanethiol 0.0 0.0 50 50 0 1 cyclopentyl methyl sulfide 0.0 0.5 54 54 0 1 cyclophosphamide 0.0 4.7 103 89 14 2 cyprazine 0.0 3.1 65 76 -11 2 cythioate 0.0 4.7 76 89 -13 2 215

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In cy In (j> Obs Pred Diff Ref

dacthai 0.0 2.6 38 72 -34 2

daminozide 0.0 4.2 86 85 1 2

ddd. p.p'- 0.0 2.1 71 67 4 2

dde, o,p'- 0.0 1.0 68 59 9 2 dde, p,p'- 0.0 1.0 65 59 7 2 ddt, o.p'- 0.0 2-1 67 67 -1 2 ddt, p.p'- 0.0 2.1 69 67 1 2 decachlorobiphenyl 0.0 0.0 71 50 21 2 desmedipham 0.0 6.3 83 102 -19 2 desmethyl diphenamid 0.0 2.6 69 72 -3 2 diaiifor (dialifos) 0.0 7.9 74 115 -41 2 diaphene 0.0 1.6 58 63 -5 2 dicamba 0.0 1.0 58 59 0 3 dicamba 0.0 1.0 59 59 1 2 dicamba, 5-hydroxy 0.0 1.0 71 59 12 2 dicamba, methyl ester 0.0 2.1 61 67 -7 2 dicapthon 0.0 4.2 90 85 5 3 dichlobenil 0.7 0.0 62 44 18 3 216

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In a In (j) Obs Pred Diff Ref

dichlobenil 0.7 0.0 63 44 18 2

dichlone 0.7 0.0 61 44 17 2

dichloran 0.0 0.0 70 50 20 3

dichloran 0.0 0.0 63 50 13 2

dichloroprop 0.0 2.1 78 67 11 2

diclofop, methyl 0.0 4.7 86 89 -3 2

dicofol, o,p'- 0.0 2.1 64 67 -4 2

dicofol, p,p'- 0.0 2.1 56 67 -11 2

dicryl 0.0 1.6 80 63 17 3

*dieldrin 0.0 0.0 6 50 -44 3

dieryl 0.0 1.6 81 63 18 2 diethylstilbestrol 0.0 3.1 72 76 -5 2 diflubenzuron 0.0 3.1 112 76 36 2 difolatan 0.0 2.6 100 72 28 3 dimethoate 0.0 5.8 72 98 -26 3 dimethoate 0.0 5.8 64 98 -34 2 dinoseb 0.0 2.6 70 72 -2 2 dioxacarb 0.0 2.6 62 72 -10 2 217

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In CT In Obs Pred Diff Ref

diphenamid 0.0 2.6 68 72 -4 3

diphenamid 0.0 2.6 62 72 -9 2

dipropetryn 0.0 5.8 63 98 -35 2

diuron 0.0 2.1 79 67 11 3

diuron 0.0 2.1 71 67 3 2

dnoc 0.0 0.0 54 50 4 2

dodine 0.0 14.7 65 172 -107 2

dowco 356 0.0 2.1 59 67 -8 2

drazoxolon 0.0 1.6 64 63 1 2 dursban 0.0 5.8 82 98 -16 3 endosulfan cyclic sulfate 0.0 0.0 52 50 2 2 endosulfan i 0.0 0.0 26 50 -24 2 epn 0.0 4.7 81 89 -8 2 ethephon 0.0 2.1 43 67 -25 2 ethirimol 0.0 4.7 47 89 -42 2 ethyl arachidate 0.0 20.4 220 220 0 1 ethyl beta-aminocrotonate 0.0 3.7 55 80 -26 1 ethyl biscoumacetate 0.0 2.6 62 72 -10 1 218

Table 5.1 (cx)n't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name Ing ln Obs Pred Diff Ref ethyl cyclopentane 0.0 0.5 51 54 -3 1 ethyl ether 0.0 2.1 46 67 -22 1 ethyl stearate 0.0 18.3 196 202 -7 1 etlocholan-3-alpha-ol-17-one 0.0 0.0 52 50 2 1 famphur 0.0 5.2 81 94 -12 2 fenac (chlorfenac) 0.0 1.0 52 59 -7 2 fenbutatin oxide 0.0 16.8 172 189 -17 2 fenson 0.0 0.5 65 54 10 2 fentin acetate 0.0 3.1 105 76 29 2 fentin hydroxide 1.1 0.0 26 41 -15 2 fenuron 0.0 2.1 60 67 -8 3 fenuron 0.0 2.1 56 67 -11 2 O C fluchloralin 0.0 6.8 72 107 1 2 flufenamic acid 0.0 1.6 72 63 9 1 fluometuron 0.0 3.1 69 76 -7 2 fluoridamid 0.0 3.7 89 80 8 2 fluorodifen 0.0 3.1 51 76 -26 2 flurecol 0.0 4.2 74 85 -10 2 219

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In CT ln(t) Obs Pred •iff Ref folpet 0.0 1.6 78 63 15 2 glutaric acid 0.0 3.1 57 76 -20 1 glutaronitrile 0.0 2.1 46 67 -22 1 glyceryl trilaurate 0.0 38.2 388 368 20 1 glyceryl trimyristate 0.0 44.5 461 420 41 1 glyceryl tripalmitate 0.0 50.8 528 472 56 1 glycol ic acid 0.0 0.5 25 54 -29 1

*heptachlor 0.0 0.0 5 50 -45 3

^eptachlor epoxide 0.0 0.0 8 50 -42 3 hexachlorobenzene 2.5 0.0 47 29 18 3 hexachlorobenzene 2.5 0.0 49 29 20 2 hexachlorophene 0.0 1.0 76 59 17 2

^hexadecane (cetane) 0.0 13.6 132 163 -31 1 hexadecanol (cetyl alcohol) 0.0 14.7 180 172 8 1 hexazinone 0.0 1.0 52 59 -6 2 imazalil 0.0 4.7 95 89 5 2 imidan 0.0 4.7 90 89 1 3 ioxynil 0.7 0.0 70 44 25 2 220

Table 5.1 (cx)n't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In a ln

ipc 0.0 3.7 64 80 -16 3

isobenzan 0.0 0.0 66 50 16 3

isoprocarb 0.0 3.1 71 76 -5 2

isoproturon 0.0 3.1 79 76 3 2

lenacil 0.0 0.0 72 50 22 2 leptophos 0.0 1.6 91 63 28 2 lindane 0.7 0.0 41 44 -3 3 lindane 0.7 0.0 57 44 13 2 linuron 0.0 3.1 78 76 2 3 linuron 0.0 3.1 73 76 -4 2 m-ethyltoluene 0.0 0.5 43 54 -12 1 margaric acid 0.0 15.2 153 176 -23 1 mcpa 0.0 2.1 76 67 9 2 mcpb 0.0 4.2 86 85 1 2 mcpp 0.0 2.1 72 67 5 2 mefluidide 0.0 3.7 82 80 2 2 menadione 0.0 0.0 52 50 2 1 meobal (xylylcarb) 0.0 2.1 71 67 4 2 221

Table 5.1 (con't). Obsen^ed and predicted entropies of melting in J/Kmol

Entropy of melting

Name Ing ln<|) Obs Pred Diff Ref

meprobamate 0.0 7.3 79 111 -32 1

mesitylene 1.8 0.0 42 35 7 1

metahexamide 0.0 3-1 49 76 -27 1

metalaxyl (ridomil) 0.0 5.8 77 98 -21 2

methamidophos 0-0 2-1 42 67 -25 2

methazole 0.0 0.0 74 50 24 2

methidathion 0.0 5.8 91 98 -7 2

methiocarb 0.0 3.1 77 76 1 2

methomyl 0.0 3.7 62 80 -19 2

methoxychlor 0.0 4.2 76 85 -9 3

methoxychlor, o.p'- 0.0 4.2 65 85 -20 2

methoxychlor, p,p'- 0.0 4.2 66 85 -19 2

methyl 2,4,5-trichlorophenoxyacetate 0.0 3.1 93 76 17 3

methyl 2,4-dichlorophenoxyacetate 0.0 3.1 80 76 3 3

methyl 2-(2,4,5-trichlorophenoxy)- 0.0 3.1 87 76 11 3 propionate

methyl 4-(2,4,5-trichlorophenoxy)- 0.0 5.2 91 94 -2 3 butyrate methyl 4-(2,4-dichlorophenoxy)butyrate 0.0 5.2 105 94 12 3 222

Table 5.1 (con't). Obsen/ed and predicted entropies of melting in J/K-moi

Entropy of melting

Name Ing ln({> Obs Pred Diff Ref

methyl 4-amino-3,5.6-trichloro-2- 0.0 1.0 68 59 9 3 picolinate

methylene iodide 0.7 0.0 43 44 -1 1

methylparathion 0.0 4.2 78 85 -7 3

metobromuron 0.0 3.1 66 76 -10 2

metolazone 0.0 0.5 61 54 7 1

metoxuron 0.0 3.1 69 76 -7 2

metrlbuzin 0.0 0.0 45 50 -5 2

mexacarbate 0.0 3.1 51 76 -25 2

monalide 0.0 4.2 65 85 -20 2

monocroptophos 0.0 5.8 68 98 -29 2

monolinuron 0.0 3.1 64 76 -12 2

monuron* 0.0 2.1 8 67 -59 3

monuron 0.0 2.1 66 67 -2 2

myristyl alcohol 0.0 12.6 159 154 5 1

n-amyl bromide 0.0 3.1 76 76 0 1 n-butylbenzene 0.0 2-6 61 72 -11 1

n-heptyl bromide 0.0 5.2 100 94 7 1 223

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In a In 4) Obs Pred Diff Ref

n-nonyl bromide 0-0 7.3 123 111 12 1

n-propylbenzene 0.0 1.6 53 63 -10 1

naphthalene acetamide 0.0 1.0 72 59 13 2

naphthallc anhydride (protect) 0.7 0.0 43 44 -1 2

napropamide 0.0 5.2 71 94 -22 2

neburon 0.0 5.2 79 94 -14 3

neburon 0.0 5.2 73 94 -21 2

nicotinamide 0.0 0.0 53 50 3 1

nitralln 0.0 6.3 66 102 -36 2

nitrapyrin 0.0 0.5 58 54 3 2 nitrofen 0.0 1.6 67 63 4 2 norea 0.0 2.1 50 67 -18 2 norflurazon 0.0 2.1 73 67 5 2 o,p'-dde 0.0 1.0 87 59 28 3 o,p'-ddt 0.0 2.1 78 67 11 3 o.p'-tde 0.0 2.1 75 67 8 3 o-ethyltoluene 0.0 0.5 52 54 -2 1

* 0.0 2.1 8 67 -59 1 224

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In cT In (t> Obs Pred Diff Ref

oryzalin 0-0 6.3 93 102 -9 2

oryzalin, dimethyl 0.0 1.0 79 59 20 2

oxadiazon 0.0 2.1 73 67 6 2

oxamyl 0.0 6.3 81 102 -21 2

oxycarboxin (plantvax) 0.0 1.6 66 63 3 2

oxyclozanide 0.0 1.6 90 63 27 1

oxyfluorfen 0.0 4.7 84 89 -5 2

oxythioquinox 0.0 0.0 67 50 17 2 p,p'-dda 0.0 1.6 72 63 9 2 p,p'-dde 0.0 1.0 67 59 8 3 p,p'-ddt 0.0 2.1 67 67 -1 3 p,p'-perthane 0.0 4.2 76 85 -9 3 p.p'-tde 0.0 2.1 81 67 14 3 p,p'-tde olefin 0.0 1.0 76 59 17 3 p-dichlorobenzene 1.4 0.0 55 38 17 1 p-iodophenol 0.7 0.0 38 44 -6 1 p-isopropylphenol 0.0 0.5 64 54 10 1 parathion 0.0 6.3 71 102 -31 3 225

Table 5.1 (con't). Observed and predicted entropies of melting in J/K-mol

Entropy of melting

Name In a ln(j> Obs Pred Diff Ref parathion, ethyl 0.0 6.3 57 102 -46 2 parathion, methyl 0.0 4.2 65 85 -20 2

*pelargonic acid (nonanoic acid) 0.0 6.8 71 107 -36 1 pendimethalin 0.0 4.7 77 89 -12 2 pentachloraniline 0.7 0.0 37 44 -7 2 pentachlorophenol 0.7 0.0 37 44 -7 3 pentachlorophenol 0.7 0.0 33 44 -11 2 pentadecanoic acid 0.0 13.1 132 159 -26 1 perfluidone 0.0 3.1 76 76 0 2 phenanthrene 0.7 0.0 43 44 -2 2 phenmedipham 0.0 5.2 94 94 0 2 phenobarbital 0.0 1.0 60 59 2 1 phenothiazine 0.7 0.0 63 44 19 3 phenothiazine 0.7 0.0 59 44 15 2 phenyl ether 0.0 1.0 54 59 -5 2 phenylbutazone 0.0 3.7 59 80 -22 1 phosalone 0.0 6.8 101 107 -5 3 phosalone 0.0 6.8 94 107 -13 2 226

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In Obs Pred Diff Ref

phosmet 0.0 4.7 79 89 -11 2

phthalic anhydride 0-7 0.0 57 44 13 2

phthalide 0.0 0.0 64 50 14 1

pimelic acid 0.0 5.2 73 94 -20 1

pindone 0.0 0.0 82 50 32 3

pindone 0.0 0.0 68 50 18 2

procyazine 0.0 3.1 51 76 -25 2

profluralin 0.0 5.2 74 94 -20 2

progesterone 0.0 0.0 60 50 10 1 prolan 0.0 2.6 60 72 -11 2 promecarb 0.0 3.1 64 76 -12 2 prometone 0.0 4.7 58 89 -31 2 prometone 0.0 4.7 61 89 -28 3 prometryn 0.0 4.7 62 89 -27 2 pronamide (propyzamide) 0.0 2.1 67 67 0 2 propachlor 0.0 3.1 74 76 -2 2 propanil 0.0 2.1 55 67 -12 3 propanil 0.0 2.1 50 67 -17 2 227

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In g In Obs Pred Diff Ref

*propazine 0.0 3.7 152 81 71 3 propazine 0.0 3.7 86 80 5 2 propham 0.0 3.1 54 76 -22 2 propoxur 0.0 4.2 63 85 -22 2 pyracarbolid 0.0 1.6 50 63 -13 2 pyrazon (chloridazon) 0.0 0.0 55 50 5 3 pyrazon (chloridazon) 0.0 0.0 56 50 6 2 pyrlthyldione 0.0 1.6 59 63 -4 1 pyrolan 0.0 2.6 66 72 -6 2 quinalphos 0.0 4.7 84 89 -6 2 quintozene (pcnb) 0.0 0.0 42 50 -8 2 resmethrin 0.0 4.7 123 89 33 2 ronnel 0.0 3.7 76 80 -5 3 ronnel 0.0 3.7 61 80 -20 2 rotenone 0.0 2.1 81 67 14 2 sllvex 0.0 2.1 88 67 20 2 silvex, methyl ester 0.0 3.1 89 76 12 2 simazine 0.0 3.7 94 80 14 2 228

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In a in ^ Obs Pred Diff Ref solan 0.0 4.2 46 85 -39 2 stearic acid 0.0 16.2 169 185 -16 2 succinic acid 0.0 2.1 87 67 20 1 sulfaethidole 0-0 2.6 60 72 -12 1 sulfaguanidine 0.0 1.0 64 59 5 1 sulfameter 0.0 2.6 80 72 8 1 sulfamethoxypyridazine 0.0 2.6 71 72 -1 1 sulfamoxole 0.0 1.6 53 63 -10 1 sulfanilamide 0.0 0.0 55 50 5 1 sulfapyridine 0.0 1.6 78 63 15 1 sulfathiazole 0.0 1.6 56 63 -7 1 sulfazamet 0.0 2.1 76 67 8 1 sulfur 2.1 0.0 25 33 -7 1 swep 0.0 2.1 61 67 -7 2 t-butanol 1.1 0.0 22 41 -18 1 tebuthiuron 0.0 2.1 68 67 0 2 tecnazene 0.0 0.0 52 50 2 2 temephos 0.0 9.4 109 128 -19 2 229

Table 5.1 (con't). Observed and predicted entropies of melting In J/Kmol

Entropy of melting

Name In CT In (t> Obs Pred Diff Ref temik 0.0 4.7 69 89 -20 3 terbacil 0.0 6.3 28 102 -74 2 terbuthylazine 0.0 2.6 75 72 3 2 terbutryn 0.0 3.7 57 80 -23 2 tetrachlorvlnphos 0.0 4.7 96 89 6 2 tetradifon 0.0 0.5 71 54 17 3 tetradifon 0.0 0.5 69 54 15 2 tetrahydroxybutane (erythritol) 0.0 3.1 104 76 28 1 tetramethyl sllane 2.5 0.0 40 29 10 1 theophylline 0.0 0.0 53 50 3 1 thioacetamide 0.0 0.0 48 50 -2 2 thiofanox 0.0 4.7 60 89 -29 2 thiourea 0.7 0.0 32 44 -12 2 tok 0.0 1.6 76 63 13 3 tolbutamide 0.0 5.8 61 98 -37 1 tranld 0.0 2.6 62 72 -10 3 tranld 0.0 2.6 60 72 -11 2 tri-allate 0.0 5.8 89 98 -9 2 230

Table 5.1 (con't). Observed and predicted entropies of melting in J/Kmol

Entropy of melting

Name In a In <{> Obs Pred •iff Ref triadlmenol (baytan) 0.0 3.1 65 76 -11 2 trichlorfon 0.0 4.2 58 85 -27 2 triclopyr 0.0 2.1 74 67 6 2 tricyclazole 0.0 0.0 52 50 2 2 tridecanoic acid 0.0 11.0 105 141 -36 1 trifluralin 0.0 6.8 74 107 -33 3 trifluralin 0.0 6.8 69 107 -37 2 tristearin (glyceryl tristearate) 0.0 57.1 660 525 135 1 undecanoic acid 0.0 8.9 112 124 -12 1 vinclozolin 0.0 0.5 73 54 18 2 zytron (dmpa) 0.0 4.7 91 89 2 2

1 Burger and Ramberger (1979)

2 Donnelly et al. (1990)

3 Plato and Glasgow (1969) 231

Table 5.2. Comparison of methods Walden's njle Eq. 4-1 Chicko's method

Name Obs Pred Diff Pred Diff Pred Diff

azulene 48.1 56.5 8.4 44.2 3.9 43.1 5.0

benzo(c)cinnoline 48.5 56.5 8.0 44.2 4.3 62.3 -13.8

2,3-pentadiene 44.8 56.5 11.7 44.2 0.6 48.5 -3.7

cis-perfluorodecailn 38.5 56.5 18.0 44.2 -5.7 43.9 -5.4

benzothiophene 38.9 56.5 17.6 50.0 -11.1 42.7 -3.8

2-chiorobenzoic acid 62.3 56.5 -5.8 50.0 12.3 61.1 1.2

cyclopentanethiol 50.2 56.5 6.3 50.0 0.2 49.8 0.4

1,1-dimethylcyclo- 49.8 56.5 6.7 50.0 -0.2 47.7 2.1 pentane fluoranthene 49.0 56.5 7.5 50.0 -1.0 43.5 5.5 trans-hexahydroindan 51.0 56.5 -5.5 50.0 1.0 51.5 -0.5

1-naphthylamine 48.1 56.5 8.4 50.0 -1.9 49.4 -1.3 tryptycene 57.3 56.5 -0.8 50.0 7.3 54.0 3.3

2,3-dibromo-1,4- 79.5 56.5 -23.0 76.1 3.4 85.8 -6.3 butanediol o-fluoromandelic acid 57.7 56.5 -1.2 58.7 -1.0 62.3 -4.6 furfuryl alcohol 50.6 56.5 5.9 54.4 -3.8 62.3 -11.7 isopropylbenzene 41.4 56.5 15.1 54.4 -13.0 42.3 -0.9

2-methyldecane 111.7 56.5 -55.2 111.0 0.7 114.2 -2.5

Average absolute difference 12.1 4.2 4.2 232 REFERENCES

Abramowitz, R. (1986). Estimation of melting point of rigid organic compounds. Ph.D. Thesis, University of Arizona.

Abramowitz, R. and Yalkowsky, S.H. (1990a). Melting point, boiling point, and symmetry. Phami. Res. 7, p. 942-947.

Abramowitz, R. and Yalkowsky, S.H. (1990b). Estimation of aqueous solubility and melting point of PCB congeners. Chemosphere. 21, p. 1221-1229.

Acree, W.E., Jr. (1991). Thermodynamic properties of organic compounds: Enthalpy of fusion and melting point temperature compilation. Thermochim. Acta. 189, p. 37-56.

Bhtnagar, H.L. and Aggarwal, S. (1979). Influence of chain flexibility on heat of melting of long chain molecules. J. Indian Chem. Soc. 56, p. 96-98.

Bondi, A. (1968). Physical properties of molecular crystals, liquids and glasses. Wiley & Sons, Inc., New York.

Broadhurst, M.G. (1962). An analysis of the solid phase behavior of the normal paraffins. J. Res. Nat. Bur. Stand. A. Phys. Chem. 66A, p. 241-249.

Burger, A. and Ramberger, R. (1979). On the polymorphism of pharmaceuticals and other molecular crystals. II. Applicability of thermodynamic rules. Mikrochimica Acta (Wein). 2, p. 273-316.

Casellato, F., Vecchi, C., Grielli, A., and Casu, 8. (1973). Differential calorimetric study of polycyclic aromatic hydrocarbons. Thermochim. Acta. 6, p. 361-368.

Chickos, J.S., Hesse, D.G., and Liebman, J.F. (1990). Estimating entropies and enthalpies of fusion of hydrocarbons. J. Org. Chem. 55, p. 3833-3840.

Chickos, J.S., Braton, C.M., Hesse, D.G., and Liebman, J.F. (1991). Estimating entropies and enthalpies of fusion of organic compounds. J. Org. Chem. 56, p. 927-938.

Clark, T., Knox, T.M., Mackle, H., and McKervey, M.A. (1977). Order-disorder transitions in substituted adamantanes. J.C.S. Faraday I. 73, p. 1224-1231. 233 Dannenfelser, R-M., Surendren, N., and Yalkowsky, S.H. (1993). Molecular symmetry and related properties. SAR QSAR Environ. Res. 1, p. 273-292.

Dannenfelser, R-M., Pane, M., White, M., and Yalkowsky, S.H. (1991). A compilation of some physico-chemical properties for chlorobenzenes. Chemosphere. 23, p. 141-165.

Dannenfelser, R-M. and Yalkowsky, S.H. (1996). Predicting the entropy of melting from molecular structure. Ind. &Eng. Chem. Res., 35, p.1483-1486.

Domalski, E.S., Evans, W.H., and Hearing, E.G. (1984). Heat capacities and entropies of organic compounds in the condensed phase. J. Phys. Chem. Ref. Data. Supplement f.13, p. 1-284.

Domalski, E.S. and Hearing, E.D. (1988). Estimation of the thennodynamic properties of hydrocarbons at 298.15 K J. Phys. Chem. Ref. Data. 17, p. 1637- 1647.

Domalski, E.S. and Hearing, E.O. (1990). Heat capacities and entropies of organic compounds in the condensed phase. Volume II. J. Phys. Chem. Ref. Data. 19, p. 881-1047.

Domanska, U. and Wyrzykowska-Stankiewicz, D. (1991). Enthalpies of fusion and solid-solid transition of even numbered paraffins C22H46, C24HS0, C26H54. and C28H58. Thermochimica Acta. 179, p. 265-271.

Donnelly, J.R., Drewes, L.A., Johnson. R.L., Munslow, W.D., Knapp, K.K.. Sovocool, G.W. (1990). Purity and heat of fusion data for environmental standards as determined by differential scanning calorimetry. Thermochimica Acta, 167, p. 155-187.

Dozen. Y., Fujishima, S., and Shingu, H. (1978). Structures and fusion parameters of methoxy-carbonyl-benzenes and -naphthalenes. Thermochimica Acta. 25. p. 209-216.

Finke, H.L., Gross, M.E., Waddington, G., and Huffman, H.M. (1954). Low- temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane. J. Am. Chem. $oc. p. 333-341.

Gamer, W.E. and Randall, F.C. (1924). Alternation in the heats of crystallisation of the normal monobasic fatty acids. Part I. J. Chem. Soc. 125, p. 881-896. 234

Gamer, W.E., Madden, F.C., and Rushbrooke, J.E. (1926). Alternation in the heats of crystallisation of the normal monobasic fatty acids. Part II. J. Chem. Soc. 127, p. 2491-2502-

Haida, O., Suga, H., and Seki, S. (1977). Calorimetric study of the glassy state XII. Plural glass-transition phenomena of ethanol. J. Chem. Thermodynamics. 9, p. 1133-1148.

Hocker, H. and Riebel, K. (1977). The thermal behavior of cycloalkanes. MakromoL Chem. 178, p. 3101-3106.

Huffman, H.M., Gross, M.E., Scott, D.W. and McCullough, J.P. (1961). Low temperature thermodynamic properties of six isomeric heptanes. J. Phys. Chem. 65, p. 495-503.

Maroncelli, M., Qi, S.P., Strauss, H.L, and Snyder, R.G. (1982). Nonplanar conformers and the phase behavior of solid n-alkanes. J. Am. Chem. Soc. 104, p. 6237-6247.

Martin, E., Yalkowsky, S.H.. and Wells, J.E. (1979). Fusion of disubstituted benzenes. J. Pharm. Sa\ 68, p. 565-568.

Mazee, W.M. (1948). Some properties of hydrocarbons having more than twenty Carbon atoms. Recueil Trav. Chim. Pays-Bas. 67, p. 197-213.

McCullough, J.P., Finke, H.L, Gross, M.E., Messerly, J.F., and Waddington, G. (1957). Low temperature calorimetric studies of seven 1-olefins: Effect of orientational disorder in the solid state. J. Phys. Chem. 61, p. 289-301.

McGlashan, M.L. (1973). Chemical thermodynamics. Volume 1. The Chemical Society, Burlington House, London, p. 144-155.

Messerly, J.F., Guthrie, G.B., Todd, S.S., and Finke, H.L. (1967). Low temperature thermal data for n-pentane, n-heptadecane, and n-octadecane: Revised thermodynamic functions for the n-alkanes, C5-C18. J. Chem. Engin. Data. 12, p. 338-346.

Mishra, D.S. and Yalkowsky, S.H. (1990a). Solubility of organic compounds in nonaqueous systems: Polycyclic aromatic hydrocarbons in benzene. Ind. & Eng. Chem. Res. 29, p.2278-2283. 235 Mishra, D.S. and Yalkowsky, S.H. (1990b). Estimation of entropy of vaporization: Effect of chain length. Chemosphere. 21, p. 111-117.

Mishra, D.S. and Yalkowsky, S.H. (1991). Estimation of vapor pressure of some organic compounds. Ind. Eng. Chem. Res. 30, p. 1609-1612.

Mortimer, F.S. (1922). Melting point, latent heat of fusion and solubility. J. Chem. Soc. 44, p. 1416-1428.

Myrdal, P., Ward, G.H., Simamora, P., and Yalkowsky, S.H. (1993). AQUAFAC: Aqueous functional group activity coefficients. SAR QSAR Environ. Res. 1, p. 53-61.

Nikolaev, P.N., Rabinovich, I.B., and Lebev, B.V. (1967). Heat capacity of ethanol and deuterioethanol in the range 80-250°K Zhur Fiz. Khim. 41, p. 1294-1299.

Plato, C. and Glasgow, Jr., A.R. (1969). Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds. Anal. Chem. 41, p. 330-336.

Schaerer, A.A., Busso, C.J., Smith, A.E., and Skinner, L.B. (1955). Properties of pure normal alkanes in the Ci? to Cae range. J. Am. Chem. Soc. 77, p. 2017- 2019.

Simamora, P. and Yalkowsky, S.H. (1993). Quantitative structure property relationship in the prediction of melting point and boiling point of rigid non- hydrogen bonding organic molecules. SAR QSAR Environ. Res. 1, p. 293-300.

Simamora, P. and Yalkowsky, S.H. (1994). Group contribution methods for predicting the melting points and boiling points of aromatic compounds. Ind. & Eng. Chem. Res. 33, p. 1405-1409.

Temperley, H.N.V. (1956). Residual Entropy of Linear Polymers. J. Res. NBS. 56, p. 55-66.

Tsakanikas, P. and Yalkowsky, S.H. (1988). Estimation of melting point of flexible molecules: Aliphatic hydrocarbons. Toxicol. Environ. Chem. 17, p. 19- 33.

Ubbelohde, A.R. (1978). The molten state of matter. Wiley & Sons, Inc., New York, p. 148. 236

Walden, P. (1908). Uber die schmeizwarme, speczifische kohasion und molekulargrosse bei der schmelztemperatur. Z. f. Elektroch. 14, p. 713-728.

Wauchope, R.D. and Getzen, F.W. (1972). Temperature dependence of solubilities in water and heats of fusion of solid aromatic hydrocarbons. J. Chem. Eng. Data. 17, p. 38-41.

Weast, R.C. (1972). Handbook of chemistry and physics, 53rd Ed. The Rubber Co., Cleveland, p. C717.

Yalkowsky, S.H., Flynn, G.L, and Slunick, T.G. (1972). Importance of chain length on physicochemical and crystalline properties of organic homologs. J. Pharm. Sci 61, p. 852-857.

Yalkowsky, S.H. (1979). Estimation of entropies of fusion of organic compounds. Ind. Eng. Chem. Fundam. 18, p. 108-111.

Yalkowsky, S.H., Krzyzaniak, J.F., and Myrdal, P.B. (1994). Relationships between melting point and boiling point of organic compounds. Ind. Eng. Chem. Res. 33, p. 1872-1877.

Zwolinski, B.J. and Wilhoit, R.C. (1984). Handbook of American Petroleum Institute project 44. Texas A & M University, College Station, TX.