Grid Computing and an Optical Fiber Network: How They Can Bolster the Texas Economy

Total Page:16

File Type:pdf, Size:1020Kb

Grid Computing and an Optical Fiber Network: How They Can Bolster the Texas Economy GRID COMPUTING AND AN OPTICAL FIBER NETWORK: HOW THEY CAN BOLSTER THE TEXAS ECONOMY By Bernard L. Weinstein, Ph.D. and Terry L. Clower, Ph.D. University of North Texas Denton, Texas April 2004 EXECUTIVE SUMMARY Information technology (IT) has become a major driver of both the national and Texas economies. Education, healthcare, logistics, and financial services are but a few of the many Texas industries that have embraced IT to boost their productivity and competitiveness. But continued expansion of Texas’ IT sector, with its spillover benefits, will depend heavily on our ability to upgrade the supporting infrastructure. Unfortunately, several recent studies find that Texas is losing ground in the science and technology arena. To remain competitive in the quest for research dollars, as well as new industry, Texas must develop the infrastructure to support “grid computing,” a distributed network where there is no longer a mainframe or centralized computer. Connected by high-speed fiber optics, the grid provides enhanced computer power to individual researchers and projects. Many states, including Ohio, North Carolina, Indiana and Virginia, have already recognized the potential of grid computing—not only to assist researchers at universities and corporate R&D shops but also as a stimulus to economic development and job creation—and they are investing public dollars to acquire dark fiber and web service software. What’s more, these states have initiated programs to connect their state networks to two emerging national grids—National LambdaRail and TeraGrid. Thirty Texas institutions of higher education have expressed a desire to participate in a statewide grid computing network and have pledged $8.5 million for this purpose. These institutions have also requested a $10 million commitment from the Texas Enterprise Fund in order to get the Texas optical fiber network up and running. ii Studies conducted in North Carolina and California have identified significant increases in productivity, income, and job creation resulting from grid computing. Texas industries that could benefit from access to grid computing include oil and gas production, biomedicine, education, aerospace, automobile manufacturing, and financial services. We estimate the adoption of grid computing by Texas’ automobile, aerospace, and financial services companies alone will generate a net gain of more than 21,000 jobs paying $486 million in annual wages and salaries. In addition, Texas universities should be able to increase their federal R&D funding by at least 10 percent, which will boost personal income by $32 million and create over 900 new jobs. Failure to develop a high-speed fiber optic network and grid in Texas will put our businesses at a competitive disadvantage and diminish our ability to grow and attract new industry. Furthermore, our colleges and universities will have difficulty recruiting superior faculty and students, pushing Texas even further behind California, New York, Illinois, Massachusetts and other states in attracting the best and the brightest. iii A. Introduction The Texas economy is in constant flux. Twenty-five years ago, energy and agriculture—along with defense-related manufacturing—were the state’s primary economic engines. In the 1980s, electronics, telecommunications, computers and other “hi-tech” industries grew rapidly, transforming Texas’ economic landscape and making the state a center for research and development in a number of emerging technologies. With the Internet as a catalyst, by the mid-1990s computer hardware, software, and data processing were merging into a new industrial sector dubbed “information technology” (IT). Importantly, the growth of IT helped boost the productivity of a wide range of producer and service industries. Education, healthcare, logistics, and financial services are but a few of the industries that continue to thrive in Texas because of the state’s growing IT sector. Between 2000 and 2003, the state—as the rest of the nation—endured a recession, with the IT sector hit especially hard. However, with the national economy into the third year of an economic expansion, and business profits and planned investment picking up smartly, the IT sector is starting to revive. IT should continue to be a major driver of economic activity in Texas, both directly and indirectly. According to the American Electronics Association, nearly 500,000 Texans are employed in the IT sector, and this number is projected to grow smartly in the years ahead.1 But continued expansion of Texas’ IT sector, with its spillover benefits, will be contingent on (1) a continued upskilling of the state’s human 1 American Electronics Association, Cyberstates 2003, 2003. 1 capital, most especially in engineering and science, and (2) our ability to upgrade IT’s supporting infrastructure. The importance of IT to economic development is perhaps best summarized in a recent report from the Milken Institute: The engines that propel state and regional economies forward today differ dramatically from the engines of the past. The old engines of economic success were the accumulation of physical assets, proximity to waterways, railways, raw materials and the manufacturing infrastructure that developed around them, such as cheap labor. The new engine of regional economic prosperity is based upon how successful a given location is in attracting and expanding technology and science assets and leveraging them for economic development. States succeeding in technology-based growth will push income per capita higher, especially relative to those states that falter.2 Unfortunately, this same Milken study finds that Texas is losing ground. For example, Texas’ per capita income of $28,401 ranked 30th nationally in 2002, a drop from its rank of 24th in 2000. More seriously, Texas fell from 14th to 23rd in the Institute’s National State Technology & Science Index between 2002 and 2004 (see Table 1).3 Worse yet, Texas recorded the largest negative rank change among the 50 states. Though part of the drop can be attributed to the shakeout in telecommunications and other IT industries over the past several years, the lower ranking also reflects a drop in research and development (R&D) activity in the state along with below-average investment in human capital. 2 Ross Devol and Rob Koepp, State Technology and Science Index, Milken Institute, March 2004. 3 The index is composed of five equally weighted major composites: research and development inputs, risk capital and infrastructure, human capital investment, technology and science workforce, and technology concentration and dynamism. 2 Table 1 State Technology and Science Index and Findings Source: Milken Institute “State Technology and Science Index,” March 2004. Another recent survey also indicates Texas may be losing ground in the science and technology arena. Robert Huggins Associates, a consultancy based in the United Kingdom, prepares an annual index comparing metropolitan regions across the globe using a variety of measures deemed to influence competitiveness.4 These indicators range from per capita outlays for primary, secondary, and higher education to the level of broadband access in each region. Not surprisingly, San Francisco/Silicon Valley has ranked number one in the world for the past two years. Austin-San Marcos was ranked number two in 2003 but fell 4 World Knowledge Competitiveness Index 2004, Robert Huggins Associates, 2004. 3 to 9th in 2004. Dallas-Fort Worth’s ranking dropped from 13th in 2003 to 21st in 2004. On the plus side, Houston-Galveston-Brazoria moved up the chart from 32nd to 25th. Like it or not, Texas is competing in a global marketplace for products, services, ideas, capital, and people. As the Milken and Huggins studies stress, technology-driven growth will separate the future winners from the losers. The implications for Texas are clear: We must enhance our commitment to science and technology if we wish to remain a serious contender for high wage jobs, new investment, and a higher quality of life for all our citizens. The following report does not directly address Texas’ human capital issues. The Texas Legislature, the Coordinating Board for Higher Education, the Texas Education Agency, and other private, public, and non-profit organizations focus constantly on the need to improve the state’s educational outcomes. Rather, we examine the investment in hard infrastructure that will be required to keep Texas a vibrant and expanding part of the global economy—most especially a grid computing network connected by fiber optic cable. B. Grid computing: The next big thing in information technology Simply put, grid computing is a distributed network of computing, storage, and input-output systems where there is no longer a mainframe or centralized computer establishing a hierarchy. Instead, software provides a division of tasks so they are processed in parallel. This, in turn, makes possible using inexpensive computers from different manufacturers, and in different locations, to address a complex computational task that might otherwise require a supercomputer. In short, establishing a grid provides 4 enhanced computer power to individual researchers with no requirement they be close to each other. Creation of a grid, of course, requires “web service software” as well as high performance networks to connect these dispersed machines. Web services are computer programs capable of interoperating over networks to deliver a specific result to a user. For large and complex problems, grids require high performance networks running over optical fiber cable.5 Hundreds of major corporations have started to use grids and web services, and a study by IBM projects that grid computing will develop into a $50 billion industry. 1. State networks Many states have recognized the potential of grid computing, not only to assist researchers at universities and corporate R&D shops but also as a stimulus to economic development and job creation. A few examples follow. a. Ohio The State of Ohio has just launched a “Third Frontier Network” (TFN) that will eventually connect nearly 100 institutions of higher education and thousands of primary and secondary schools in a computing grid.
Recommended publications
  • June 2006 Steering Committee Materials
    Utah Education Network Steering Committee June 16, 2006 U TAH EDUCATION NETWORK S TEERING COMMITTEE AGENDA JUNE 16, 2006 Committee of the Whole / Business Meeting 9:00 a.m.- 11:00 a.m. Welcome and Introductions Tab 31 FISCAL YEAR 2007 BUDGET – ACTION . 1 FY 2007 UEN BUDGET - DRAFT . 7 Tab 1 UTAH EDUCATION NETWORK FY 2007 STRATEGIC PLAN – ACTION. 9 UTAH EDUCATION NETWORK FY2007 PLAN - DRAFT . 11 Tab 2 STEERING COMMITTEE STRUCTURE, MEETING FORMAT AND . 25 PROPOSED MEETING DATES – ACTION Tab 4 POLICY 2.1: NETWORK CONNECTIVITY CHARGES – ACTION . 27 UTAH EDUCATION NETWORK 2.1 NETWORK CONNECTIVITY CHARGES . 31 UTAH EDUCATION NETWORK FEE STRUCTURE . 37 NETWORK CONNECTIVITY CHARGES DECISION TREE . 39 Tab 5 NATIONAL LAMBDARAIL (NLR) MEDIA RELEASE – DISCUSSION . 41 NATIONAL LAMBDARAIL (NLR) MEDIA RELEASE . 43 Tab 6 STEERING COMMITTEE MEETING MINUTES . 45 Tab 7 OTHER . 53 11:00 a.m.- Instructional Services Subcommittee 12:00 p.m. Tab 7 END-OF-LIFE POLICY FOR WEB SERVICES – ACTION . 55 i Tab 8 INTERNET SAFETY PROJECT – ACTION . 57 Tab 9 HIGHER EDUCATION LEARNING OBJECTS MEETING REPORT – DISCUSSION . 59 Tab 10 TELESCOPE USERS GROUP MEETING – DISCUSSION . 61 Tab 11 PUBLIC EDUCATION AND HIGHER EDUCATION ADVISORY . 63 COMMITTEE REPORTS – DISCUSSION PUBLIC EDUCATION ADVISORY COMMITTEE REPORT . 65 HIGHER EDUCATION ADVISORY COMMITTEE REPORT . 69 11:00 a.m. - 12:00 p.m. Technical Services Subcommittee Agenda Tab 12 STATE OF UTAH REGISTRY FOR INTERNET NUMBERS (SURIN) – ACTION . 73 STATE OF UTAH REGISTRY FOR INTERNET NUMBERS (SURIN) . 75 Please place these materials in your Steering Committee Binder. ii UEN Steering Committee - June 2006 C OMMITTEE OF THE WHOLE T AB 31 FISCAL YEAR 2007 BUDGET – ACTION Issue The FY 2007 UEN Budget is ready for fi nal review and approval by the Steering Committee.
    [Show full text]
  • National Lambdarail (NLR) and Potential Merger with Internet2/Abilene Unidata Seminar Marla Meehl 24 August 2005 Outline
    National LambdaRail (NLR) and Potential Merger with Internet2/Abilene Unidata Seminar Marla Meehl 24 August 2005 Outline • Overview of NLR and capabilities • Potential NLR/I2 Merge – Context • Group A • Group B – Merger process • Steps to date • Discussion National LambdaRail Update • Layer 1 update – 50% of resources dedicated to research • Layer1 Phase II Deployment Schedule • Layer 2 design • Layer 3 design National LambdaRail Update Phase I Layer 1 Deployment SEA 8 8 POR 8 8 BOI 8 4 STA 4 8 OGD 8 8 PIT 8 DEN 8 8 8 KAN CLE 8 SVL 8 8 8 CHI 8 8 8 8 WDC RAL 8 LAX 8 8 8 ATL 8 JAC Level3 fiber Other fiber 8 Cisco 15808 terminal 8 Cisco 15808 OADM 4 Cisco 15454 terminal 4 Cisco 15454 OADM National LambdaRail Update Phase II Layer I Deployment SYR 4 4 4 4 NYC OGD 4 4 DEN CLE KAN SLC 4 4 4 4 WDC LAX 4 RAT 4 4 TUL PHO 4 ALB 4 4 4 4 4 DAL ELP 4 4 4 PEN JAC 4 4 4 4 4 4 4 4 Level3 fiber SAA 4 4 BAT WilTel fiber HOU 8 Cisco 15808 terminal 8 Cisco 15808 OADM 4 Cisco 15454 terminal 4 Cisco 15454 OADM NATIONAL LAMBDARAIL - PHASE 2 DEPLOYMENT FINALIZED SCHEDULE as of 2005-03-16 OADM / Pa ss Install Test OLA Regen Terminal Thru Install Completio Test Completion Provider Segment Sites Sites Sites Sites Start Date n Date Start Date Date Level 3 & ? WilTel Ogden to Salt Lake City 1 1 * * ** ** a1 WilTel Houston to San Antonio 5 2 06/23/05 06/30/05 a2 WilTel San Antonio to El Paso 14 1 07/05/05 07/20/05 08/09/05 08/17/05 a5 WilTel El Paso to Phoenix 10 1 07/19/05 07/30/05 a6 WilTel Phoenix to LA 11 1 1 07/29/05 08/12/05 10/07/05 10/15/05 a3 Level 3 El Paso
    [Show full text]
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • Louisianaepscor
    Volume 2 Louisiana Number 5 EPSCoR May 2005 Experimental Program to Stimulate Competitive Research LONI/NLR Fast Becoming a Reality The first tangible step linking Louisiana to the National LambdaRail (NLR) and into the exclusive cadre of U.S research universities connected to the ultra-high speed research network is scheduled to take place in July. That’s when the hardware node that will connect Louisiana to NLR will be installed on Third Street in downtown Baton Rouge. The goal is to have the State’s eight research institutions connected to NLR by January 2006, National LambdaRail according to Mike Abbiatti, Board of Regents’ Network associate commissioner for information and learning technology. connecting research universities in five cities are scheduled for installation in August-September. The first full East-West phase of the NLR deployment – between Denver and Chicago, Atlanta and Jacksonville, At the statewide September 2004 LONI Forum, Governor and Seattle and Denver – was completed in September Kathleen Blanco announced the State is committing $40 2004. Louisiana is included in the second phase, which will million to LONI. The two-day forum was sponsored by the also include universities from Texas, Oklahoma, New Office of the Governor, Board of Regents’ Louisiana Mexico, Arizona, Utah and New York. The Baton Rouge EPSCoR, and the LSU Center for Computation & Technology (CCT) at LSU. NLR node is a critical link to the Gulf Coast states between Houston and Jacksonville. “The LONI/NLR relationship will make Louisiana a national The Board of Regents recently joined NLR, a consortium of player in high-speed networking and Grid computing, which research universities and technology companies deploying some experts consider the most important breakthrough for a nationwide networking infrastructure supporting research research since the Internet,” says Abbiatti, Board of in science, engineering, health care, and education.
    [Show full text]
  • National Lambdarail Launches Transit and Peering Project
    NATIONAL LAMBDARAIL LAUNCHES TRANSIT AND PEERING PROJECT Five NLR Members Begin Project to Improve Network Performance and Reduce Costs of Internet Services Cypress, Calif. - April 20, 2006 - National LambdaRail (NLR), a consortium of leading U.S. research universities and private sector technology companies, today announced that it has inaugurated a project to provision an intelligently managed nationwide peering and transit program. The initial participants include NLR members: the Corporation for Education Network Initiatives in California (CENIC), Front Range GigaPoP (FRGP), Mid-Atlantic Terascale Partnership (MATP), Pacific Northwest Gigapop (PNWGP) and Pittsburgh Supercomputing Center (PSC). Called National TransitRail, the project aims to use commodity and peering traffic to improve network performance and reduce the overall cost of Internet services to NLR members. In keeping with NLR's distributive management philosophy, Pacific Wave is managing this project on behalf of NLR. Pacific Wave will utilize expertise developed in its state-of-the-art West Coast distributed peering exchange facility that also provides US-based exchange services for Pacific Rim research and education networks. Utilizing NLR's nationwide network fiber and optronics infrastructure at layer 2 and layer 3, the initial NLR participants are working to efficiently direct traffic as quickly as possible to the target network/organization, reducing the number of 'hops' required for the data to get to its destination. The team is also investigating the balance between peering sessions and transit routes at geographically dispersed locations. "NLR's national footprint and large traffic flows will help drive many larger-scale peering relationships over time," said Tom West, NLR President. "We believe that it is time for the research and education community to further exploit the reliability and redundancy that a national peering and transit infrastructure affords.
    [Show full text]
  • National Lambdarail : Press Releases 10/5/10 7:34 PM
    National LambdaRail : Press Releases 10/5/10 7:34 PM RSS The Network for Advanced Research and Innovation Owned by the U.S. research and education community, NLR is the ultra high-performance, 12,000-mile innovation platform for a wide range of academic disciplines and public-private Search partnerships. Learn more... HOME ABOUT US MEMBERS SERVICES RESEARCH SUPPORT PRESS ROOM CONTACT US PRESS ROOM Press Room Press Releases Press Resources NASA High-End Computing Testbed Runs Over National LambdaRail (NLR) Featured Research Past Featured Research NLR and National Broadband Optimizing Data Flows over 10, 40, and 100 Gbps Networks NLR in the News Featured Research Cypress, CA, September 9, 2010 -- NASA has started to conduct end-to-end throughput performance benchmarking as part of its High-End Computing 20, 40 & 100 Gigabits per second (Gbps) Network Testbed initiative over a 4x10 Gigabit Ethernet (GE) infrastructure between Chicago and McLean, Virginia, deployed by National LambdaRail (NLR), the coast-to-coast, high-performance network owned by the U.S. research and education community. Enabling time-efficient data flows over wide areas is a persistent issue impacting many advanced research disciplines. Even over 10 Gbps networks, throughput is often only about 10 Megabits per second (Mbps), so copying a single 10 Gbps file typically takes as long as 17 minutes. The objective of the NASA initiative is to optimize WAN file transfer over 10 Gbps as well as over emerging 40 and 100 Gbps networks by determining data transfer utilities and protocols that enable higher throughput and by preparing applicable testbeds to identify bottlenecks and explore possible solutions.
    [Show full text]
  • The History of the Internet Began with the Development of Electronic Computers in the 1950S
    The history of the Internet began with the development of electronic computers in the 1950s. The public was first introduced to the concepts that would lead to the Internet when a message was sent over the ARPANet from computer science Professor Leonard Kleinrock's laboratory at University of California, Los Angeles (UCLA), after the second piece of network equipment was installed at Stanford Research Institute (SRI). Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982, the Internet protocol suite (TCP/IP) was standardized, and consequently, the concept of a world-wide network of interconnected TCP/IP networks, called the Internet, was introduced. Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) developed the Computer Science Network (CSNET) and again in 1986 when NSFNET provided access to supercomputer sites in the United States from research and education organizations. Commercial Internet service providers (ISPs) began to emerge in the late 1980s and early 1990s. The ARPANET was decommissioned in 1990. The Internet was commercialized in 1995 when NSFNET was decommissioned, removing the last restrictions on the use of the Internet to carry commercial traffic. Since the mid-1990s, the Internet has had a revolutionary impact on culture and commerce, including the rise of near-instant communication by electronic mail, instant messaging, Voice over Internet Protocol (VoIP) "phone calls", two-way interactive video calls, and the World Wide Web with its discussion forums, blogs, social networking, and online shopping sites.
    [Show full text]
  • The Corporation for Education Network Initiatives in California
    The Corporation for Education Network Initiatives in California 2010-11 Annual Report Letter from the President Major economists are of the opinion that the economy is heading in the right direction at last, but this doesn’t mean that our research and education commu- nity doesn’t have to adjust to a new definition of normal as we begin the hard work of recovery together. Funding for our members is likely to remain severely constrained for the foreseeable future. Nor does the current economic condition mean that the responsibility of our community to build on an already astonishing foundation for the creation of innovation has lessened. In this, the 2010-11 CENIC Annual Report, I invite readers to learn of the ways in which CENIC plays a critical role in helping our member community to create the basis for future economic growth and innovation. For decades, CENIC member institutions have been the destination of choice Jim Dolgonas for brilliant people eager to realize their ideas. California’s legacy in technology President & CEO innovation has been due in large part to this spirit of experimentation – a spirit that has reached even greater heights with the benefits of the advanced network- ing provided by CENIC. However, enabling research-based innovation is only one way in which CENIC promotes a strong State and national economy. The continuing integration of technology into teaching and learning have reshaped the concept of both the classroom and the laboratory such that California’s educators can reach out to all 30 million of the State’s citizens and create a workforce primed to function in the 21st century.
    [Show full text]
  • One of the Fastest Networks in the World Goes Live in Seattle
    One of the Fastest Networks in the World Goes Live in Seattle for Annual Supercomputing Conference Massive 450 Gigabits of Capacity to Enable Breakthrough High Performance Computing Demonstrations; Media invited to tour live network operations center on exhibit floor Seattle, Washington – November 11, 2011 – Beginning this Saturday, November 12, Seattle will be home to SCinet, one of the fastest computer networks anywhere in the world. SCinet is built each year to support SC, the international conference for high performance computing, networking, storage and analysis. More than 150 engineers hailing from industry, academia and government institutions have volunteered their time over the past year to plan and build SCinet using over $27 million in donated equipment from leading vendors from around the world. The network will serve as the primary backbone supporting all 10,000+ SC conference attendees and exhibitors as they unveil latest innovations in high performance computing (HPC) applications. “SCinet is the primary platform for SC exhibitors to show off their most cutting edge computing applications and collaborations. We support this by building a sophisticated on-site network that links the entire exhibit floor to the largest and one of the fastest research networks around the world,” said Jeff Boote, Assistant Director of R&D Architecture and Performance for Internet2 and chair of SCinet for SC11. “As science continues to become more distributed and data intensive, networks are more critical than ever. SCinet allows the networking community to show researchers at SC first hand how new network solutions can accelerate science.” As it does each year, SCinet will be provisioning an unprecedented amount of bandwidth into the conference’s host convention center.
    [Show full text]
  • FLR Services Brochure Final for 4Page
    S E R V I C E O F F E R I N G S The Florida LambdaRail: Florida’s Research and Education Network Higher education and research programs are experiencing ever-increasing demand for advanced data communication services and interconnectivity. Advancement in research and the tools used for teaching and learning are major driving forces behind this demand. The Florida LambdaRail, LLC (FLR) is a complementary initiative to the National LambdaRail (NLR), a national research and experimentation optical-based network infrastructure. The first of its kind in Florida, the FLR is a high-performance experimental, research, and production networking and support infrastructure that enables participants and their partners to take part in advanced research, education, and economic development activities. As such, the FLR is not in competition with private industry or commercial service providers. The Florida LambdaRail: Florida’s Research and Education Network Participants Services Equity Members The FLR provides a scalable point-to-point optical transport Accredited investors and owners of the FLR, LLC. network solution that meets long-term system and network 501(c) (3) tax exempt entities or public corporations that are either requirements. The FLR offers several advantages: a reliable and private, non-profit educational institutions or Florida Public flexible network infrastructure that can grow and incorporate universities with an interest in participating in the NLR. technological advancements; enhanced network performance and bandwidth capabilities; and collaboration and advanced Associates communication among research participants. Organizations that provide resources of strategic value such as S E R V I C O F N G transit or peering services, or connectivity for a “community of s Dynamic bandwidth allocation.
    [Show full text]
  • National Lambdarail : Press Releases
    7/15/2010 National LambdaRail : Press Releases RSS The Network for Advanced Research and Innovation Owned by the U.S. research and education community, NLR is the ultra high-performance, 12,000-mile innovation platform for a wide range of academic disciplines and public-private Search partnerships. Learn more... HOME ABOUT US MEMBERS SERVICES RESEARCH SUPPORT PRESS ROOM CONTACT US PRESS ROOM Press Room Press Releases Press Resources National Research and Education Partnership Awarded $62.5 Million Recovery Act Grant for 100 NLR and National Broadband Gigabit Community Anchor Backbone Network NLR in the New s Featured Research New U.S. Unified Community Anchor Network will connect community anchor institutions across the U.S. with advanced broadband capabilities Ann Arbor, MI, July 2, 2010 -- The National Telecommunications and Information Administration (NTIA) today awarded more than $62.5 million in federal stimulus funding through its Broadband Technology Opportunities Program (BTOP) to a group of national research and education networking organizations including Internet2 (also known as University Corporation for Advanced Internet Development), National LambdaRail (NLR), Indiana University, the Northern Tier Network Consortium. In collaboration with technology companies Ciena, Cisco, Infinera, and Juniper Networks, the group proposes the construction of the United States Unified Community Anchor Network (U.S. UCAN), an advanced 100 Gigabit per second network backbone that will link regional networks across the nation, including other
    [Show full text]
  • Louisiana Optical Network Initiative “LONI”
    Louisiana Optical Network Initiative “LONI” Background and Overview October 8, 2013 Major Points • Consistent investment over time in a focus area that provides critical opportunities for the educational and research enterprise, and for the State, can result in meaningful value and return on investment • LONI’s major elements – Statewide Network Capability – High Performance Computing Resources – National Connectivity • LONI’s focus – Research – Service to Campuses – Public Service • Value Today 2 • New Opportunities and Directions State of Louisiana Investment in Information Technology Initiatives • In FY2001-02, Governor Mike Foster initiated significant investments in human capital and infrastructure for higher education information technology. This began a seven year span of commitment by two State administrations in an unprecedented higher education research investment for Louisiana. • The State made tremendous strides in the development of its information technology infrastructure over the past several years and has distinguished itself within the national science and technology research community. 3 Initial State of Louisiana Investment in Information Technology Initiatives • Initial Investment in the Governor’s Information Technology Initiative in FY2001-02 provided: • $18 to $20 million annually, along with some capital outlay funding, provided research faculty, equipment and facilities • Funding also provided for: Internet2 Connectivity for most of the public higher education institutions Upgrade of the Library Network central
    [Show full text]