Molecular Evidence of Intraspecific Variability in Lysidice Ninetta (Polychaeta: Eunicidae) in the Mediterranean Sea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Phylogenetic Analysis of the Genus Eunice (Eunicidae, Polychaete, Annelida)
Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082© 2007 The Linnean Society of London? 2007 1502 413434 Original Article PHYLOGENY OF EUNICEJ. ZANOL ET AL. Zoological Journal of the Linnean Society, 2007, 150, 413–434. With 12 figures A phylogenetic analysis of the genus Eunice (Eunicidae, polychaete, Annelida) JOANA ZANOL1*, KRISTIAN FAUCHALD2 and PAULO C. PAIVA3 1Pós-Graduação em Zoologia, Museu Nacional/UFRJ, Quinta da Boa Vista s/n°, São Cristovão, Rio de Janeiro, RJ 20940–040, Brazil 2Department of Invertebrate Zoology, NMNH, Smithsonian Institution, PO Box 37012, NHB MRC 0163, Washington, DC 20013–7012, USA 3Departamento de Zoologia, Insituto de Biologia, Universidade Federal do Rio de Janeiro, CCS, Bloco A, Sala A0-104, Ilha do Fundão, Rio de Janeiro, RJ 2240–590, Brazil Received April 2006; accepted for publication December 2006 Species of Eunice are distributed worldwide, inhabiting soft and hard marine bottoms. Some of these species play sig- nificant roles in coral reef communities and others are commercially important. Eunice is the largest and most poorly defined genus in Eunicidae. It has traditionally been subdivided in taxonomically informal groups based on the colour and dentition of subacicular hooks, and branchial distribution. The monophyly of Eunice and of its informal subgroups is tested here using cladistic analyses of 24 ingroup species based on morphological data. In the phylo- genetic hypothesis resulting from the present analyses Eunice and its subgroups are paraphyletic; the genus may be divided in at least two monophyletic groups, Eunice s.s. and Leodice, but several species do not fall inside these two groups. -
Chaetal Type Diversity Increases During Evolution of Eunicida (Annelida)
Org Divers Evol (2016) 16:105–119 DOI 10.1007/s13127-015-0257-z ORIGINAL ARTICLE Chaetal type diversity increases during evolution of Eunicida (Annelida) Ekin Tilic1 & Thomas Bartolomaeus1 & Greg W. Rouse2 Received: 21 August 2015 /Accepted: 30 November 2015 /Published online: 15 December 2015 # Gesellschaft für Biologische Systematik 2015 Abstract Annelid chaetae are a superior diagnostic character Keywords Chaetae . Molecular phylogeny . Eunicida . on species and supraspecific levels, because of their structural Systematics variety and taxon specificity. A certain chaetal type, once evolved, must be passed on to descendants, to become char- acteristic for supraspecific taxa. Therefore, one would expect Introduction that chaetal diversity increases within a monophyletic group and that additional chaetae types largely result from transfor- Chaetae in annelids have attracted the interest of scientist for a mation of plesiomorphic chaetae. In order to test these hypoth- very long time, making them one of the most studied, if not the eses and to explain potential losses of diversity, we take up a most studied structures of annelids. This is partly due to the systematic approach in this paper and investigate chaetation in significance of chaetal features when identifying annelids, Eunicida. As a backbone for our analysis, we used a three- since chaetal structure and arrangement are highly constant gene (COI, 16S, 18S) molecular phylogeny of the studied in species and supraspecific taxa. Aside from being a valuable eunicidan species. This phylogeny largely corresponds to pre- source for taxonomists, chaetae have also been the focus of vious assessments of the phylogeny of Eunicida. Presence or many studies in functional ecology (Merz and Edwards 1998; absence of chaetal types was coded for each species included Merz and Woodin 2000; Merz 2015; Pernet 2000; Woodin into the molecular analysis and transformations for these char- and Merz 1987). -
Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages. -
Annelida: Dorvilleidae) Associated with the Coral Lophelia Pertusa (Anthozoa: Caryophylliidae)
ARTICLE A new species of Ophryotrocha (Annelida: Dorvilleidae) associated with the coral Lophelia pertusa (Anthozoa: Caryophylliidae) Vinicius da Rocha Miranda¹²; Andrielle Raposo Rodrigues¹³ & Ana Claudia dos Santos Brasil¹⁴ ¹ Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Ciências Biológicas e da Saúde (ICBS), Departamento de Biologia Animal, Laboratório de Polychaeta. Seropédica, RJ, Brasil. ² ORCID: http://orcid.org/0000-0002-4591-184X. E-mail: [email protected] (corresponding author) ³ ORCID: http://orcid.org/0000-0001-9152-355X. E-mail: [email protected] ⁴ ORCID: http://orcid.org/0000-0002-0611-9948. E-mail: [email protected] Abstract. Ophryotrocha is the most speciose genus within Dorvilleidae, with species occurring in a great variety of environments around the globe. In Brazil, records of Ophryotrocha are scarce and no specific identification is provided for any of the records. Herein we describe a new species of Dorvilleidae, Ophryotrocha zitae sp. nov. Adult and larval specimens were found in the axis of a fragment of the cold-water coral Lophelia pertusa, sampled off São Paulo’s coast, at a depth of 245 m. Both forms are described and illustrated. This new species resembles O. puerilis, O. adherens and O. eutrophila, but can be distinguished based on differences in its mandible and on chaetae shape and arrangement. Key-Words. Epibiont; Cold-water Coral; Deep-sea; Eunicida, Associated fauna. INTRODUCTION sette glands on the posterior region of the body (Ockelmann & Åkesson, 1990; Heggoy et al., 2007; The Family Dorvilleidae is comprised of 38 val‑ Paxton & Åkesson, 2011). These species also bear id genera, many of which are monospecific (Read, a complex buccal apparatus comprising a pair of 2016) and others, despite more specious, pres‑ mandibles and maxillae, the latter being either ent evident morphological homogeny (Rouse & “P‑type” or “K‑type”, and the presence of one or Pleijel, 2001). -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Polychaete Worms Definitions and Keys to the Orders, Families and Genera
THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Of Polychaetes (Annelida: Polychaeta) from the Atlantic and Mediterranean Coasts of the Iberian Peninsula: an Annotated Checklist E
López and Richter Helgol Mar Res (2017) 71:19 DOI 10.1186/s10152-017-0499-6 Helgoland Marine Research ORIGINAL ARTICLE Open Access Non‑indigenous species (NIS) of polychaetes (Annelida: Polychaeta) from the Atlantic and Mediterranean coasts of the Iberian Peninsula: an annotated checklist E. López* and A. Richter Abstract This study provides an updated catalogue of non-indigenous species (NIS) of polychaetes reported from the conti- nental coasts of the Iberian Peninsula based on the available literature. A list of 23 introduced species were regarded as established and other 11 were reported as casual, with 11 established and nine casual NIS in the Atlantic coast of the studied area and 14 established species and seven casual ones in the Mediterranean side. The most frequent way of transport was shipping (ballast water or hull fouling), which according to literature likely accounted for the intro- ductions of 14 established species and for the presence of another casual one. To a much lesser extent aquaculture (three established and two casual species) and bait importation (one established species) were also recorded, but for a large number of species the translocation pathway was unknown. About 25% of the reported NIS originated in the Warm Western Atlantic region, followed by the Tropical Indo West-Pacifc region (18%) and the Warm Eastern Atlantic (12%). In the Mediterranean coast of the Iberian Peninsula, nearly all the reported NIS originated from warm or tropi- cal regions, but less than half of the species recorded from the Atlantic side were native of these areas. The efects of these introductions in native marine fauna are largely unknown, except for one species (Ficopomatus enigmaticus) which was reported to cause serious environmental impacts. -
The Global Invertebrate Genomics Alliance
Journal of Heredity 2014:105(1):1–18 © The American Genetic Association 2013. All rights reserved. doi:10.1093/jhered/est084 For permissions, please e-mail: [email protected] The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Downloaded from https://academic.oup.com/jhered/article-abstract/105/1/1/858593 by University of Florida, Joseph Ryan on 28 May 2019 Diverse Invertebrate Genomes GIGA COMMUNiTY OF SciENTisTs* Address correspondence to Dr. Jose V. Lopez, Oceanographic Center, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL 33004, or e-mail: [email protected]. *Authors are listed in the Appendix Abstract Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collabora- tions across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. -
Systematics, Evolution and Phylogeny of Annelida – a Morphological Perspective
Memoirs of Museum Victoria 71: 247–269 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Systematics, evolution and phylogeny of Annelida – a morphological perspective GÜNTER PURSCHKE1,*, CHRISTOPH BLEIDORN2 AND TORSTEN STRUCK3 1 Zoology and Developmental Biology, Department of Biology and Chemistry, University of Osnabrück, Barbarastr. 11, 49069 Osnabrück, Germany ([email protected]) 2 Molecular Evolution and Animal Systematics, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany (bleidorn@ rz.uni-leipzig.de) 3 Zoological Research Museum Alexander König, Adenauerallee 160, 53113 Bonn, Germany (torsten.struck.zfmk@uni- bonn.de) * To whom correspondence and reprint requests should be addressed. Email: [email protected] Abstract Purschke, G., Bleidorn, C. and Struck, T. 2014. Systematics, evolution and phylogeny of Annelida – a morphological perspective . Memoirs of Museum Victoria 71: 247–269. Annelida, traditionally divided into Polychaeta and Clitellata, is an evolutionary ancient and ecologically important group today usually considered to be monophyletic. However, there is a long debate regarding the in-group relationships as well as the direction of evolutionary changes within the group. This debate is correlated to the extraordinary evolutionary diversity of this group. Although annelids may generally be characterised as organisms with multiple repetitions of identically organised segments and usually bearing certain other characters such as a collagenous cuticle, chitinous chaetae or nuchal organs, none of these are present in every subgroup. This is even true for the annelid key character, segmentation. The first morphology-based cladistic analyses of polychaetes showed Polychaeta and Clitellata as sister groups. -
Giant Eunicid Polychaetes (Annelida) in Shallow Tropical and Temperate Seas
FORUM Giant Eunicid Polychaetes (Annelida) in shallow tropical and temperate seas Sergio I. Salazar-Vallejo1, Luis F. Carrera-Parra1 & J. Angel de León-González2 1. El Colegio de la Frontera Sur, Chetumal, México; [email protected] 2. Fac. Ciencias Biológicas, Universidad Autónoma Nuevo León, Monterrey Received 04-XI-2010. Corrected 10-IV-2011. Accepted 19-V-2011. Abstract: Some species of Eunice might reach giant size, often being longer than 2m, and they are known from tropical and temperate seas. Despite their large size and recent internet notoriety, there remain some taxonomic problems in large-sized eunicids, especially since original descriptions were brief and type materials are often missing. As a mean to encourage the solution of this situation, we review the historical progress in the taxonomy of the group, including some comments on generic and specific delineation, and recommend some critical steps to solve the current confusion. These ideally would include collecting in type localities, evaluate ontogenetic morphological changes, and generate some molecular analysis to complement the morphological approach. Rev. Biol. Trop. 59 (4): 1463-1474. Epub 2011 December 01. Key words: Eunicidae, Eunice, Leodice, Indian Ocean, Red Sea, Pacific Ocean, Caribbean Sea, Mediterranean Sea, opinion article. Some species of Eunice can be over 3m very large, but in this note we will only refer to long (Pruvot & Racovitza 1895, Uchida et al. members of Eunice. 2009), making them the largest polychaete These “Giant Eunicids” were called “Bob- species and placing them among the longest bit-worms” by an underwater photographer benthic invertebrates. The genus is very rich in alluring to the regretful incident of the USA species, having about 300 available names, and Bobbit family, where the wife cut off her making it the largest genus among polychaetes. -
RÍAS and TIDAL-SEA ESTUARIES F. Vilas, Departamento De
Rías and tidal-sea estuaries in: Knowledge for Sustainable Development, an insight into the Encyclopedia of Life Support Systems. UNESCO- EOLSS (ed.) vol 2, theme 11.6.3, 799-829. 2002 RÍAS AND TIDAL-SEA ESTUARIES F. Vilas, Departamento de Geociencias Marinas, Universidad de Vigo, Spain Keywords: Rías, tidal-sea estuaries, sedimentology, morphology, sedimentary infilling Summary Coastal inlets such as estuaries, rías and bays occupy areas which are partially exposed to wave action and the hydrodynamic processes generated by tidal currents and fluvial discharges. These processes are often quite complex, and regulate many of the morphological and sedimentological characteristics occurring in this type of environment. In aerial view, rías and estuaries are characterised by a funnel-shaped geometry and deep entrances, with a considerable reduction on both dimensions upstream. From a physiographical viewpoint, both types are classified as drowned river valleys as they were formed by sea flooding of Pleistocene-Holocene river valleys during the last transgression. This chapter is a review of the main processes and attributes in rías and tidal-sea estuaries, initially focusing on the basic physical processes, morphology and sedimentology, with some examples highlighting the differences between both types which, historically, were considered as one. To document the Late Quaternary history of the Rías Baixas on the north-west Atlantic coast of Spain, a brief description of the sedimentary infilling is presented. It is also intended to form a discussion of individual cases, and to the more specific characteristics given in other works in this volume, that were only briefly mentioned in the present article. 1.