Pensacolanaval Marchindex 1..12

Total Page:16

File Type:pdf, Size:1020Kb

Pensacolanaval Marchindex 1..12 NAVAL HOSPITAL PENSACOLA OUTPATIENT FORMULARY Alphabetical Listing by Therapeutic Category This document is current as of March 26, 2014. The availability of formulary items is subject to change. 2 ACETYLCHOLINESTERASE INHIBITOR Acetylcholinesterase Inhibitor Hydrocodone and Chlorpheniramine .............................................................. Pyridostigmine ................................................................................................. HYDROmorphone ........................................................................................... Methadone ....................................................................................................... Acetylcholinesterase Inhibitor (Central) Morphine (Systemic) ....................................................................................... Donepezil ......................................................................................................... OxyCODONE ................................................................................................... Rivastigmine .................................................................................................... Oxymorphone .................................................................................................. Acne Products TraMADol ......................................................................................................... Adapalene and Benzoyl Peroxide .................................................................. Analgesic, Opioid Partial Agonist Benzoyl Peroxide ............................................................................................ Buprenorphine and Naloxone ......................................................................... Erythromycin (Topical) ..................................................................................... ISOtretinoin ...................................................................................................... Analgesic, Topical Salicylic Acid .................................................................................................... Lidocaine (Topical) .......................................................................................... Tretinoin (Topical) ............................................................................................ Analgesic, Urinary Adrenergic Agonist Agent Phenazopyridine .............................................................................................. Oxymetazoline (Nasal) .................................................................................... Androgen Aldehyde Dehydrogenase Inhibitor MethylTESTOSTERone .................................................................................. Disulfiram ......................................................................................................... Testosterone .................................................................................................... Alkalinizing Agent Anesthetic/Corticosteroid Citric Acid, Sodium Citrate, and Potassium Citrate ....................................... Pramoxine and Hydrocortisone ....................................................................... Alkalinizing Agent, Oral Anesthetic, Topical Potassium Citrate ............................................................................................ Phenol .............................................................................................................. Sodium Citrate and Citric Acid ........................................................................ Angiotensin II Receptor Blocker Alkylamine Derivative Candesartan .................................................................................................... Chlorpheniramine ............................................................................................ Candesartan and Hydrochlorothiazide ........................................................... Hydrocodone and Chlorpheniramine .............................................................. Losartan ........................................................................................................... Naphazoline and Pheniramine ........................................................................ Losartan and Hydrochlorothiazide .................................................................. Triprolidine and Pseudoephedrine .................................................................. Telmisartan ....................................................................................................... Telmisartan and Hydrochlorothiazide .............................................................. Alpha1 Agonist Valsartan .......................................................................................................... Naphazoline and Pheniramine ........................................................................ Valsartan and Hydrochlorothiazide ................................................................. Alpha1 Blocker Angiotensin-Converting Enzyme (ACE) Inhibitor Alfuzosin .......................................................................................................... Amlodipine and Benazepril ............................................................................. Doxazosin ........................................................................................................ Captopril ........................................................................................................... Prazosin ........................................................................................................... Lisinopril ........................................................................................................... Tamsulosin ....................................................................................................... Lisinopril and Hydrochlorothiazide .................................................................. Terazosin .......................................................................................................... Ramipril ............................................................................................................ Alpha2-Adrenergic Agonist Antacid CloNIDine ......................................................................................................... Aluminum Hydroxide ....................................................................................... GuanFACINE ................................................................................................... Aluminum Hydroxide, Magnesium Hydroxide, and Simethicone ................... Methyldopa ...................................................................................................... Anthelmintic Alpha2 Agonist, Ophthalmic Albendazole ..................................................................................................... Brimonidine and Timolol .................................................................................. Antianginal Agent Brimonidine (Ophthalmic) ................................................................................ AmLODIPine .................................................................................................... Alpha-Adrenergic Agonist Amlodipine and Benazepril ............................................................................. Phenylephrine (Ophthalmic) ............................................................................ Atenolol ............................................................................................................ Diltiazem .......................................................................................................... Alpha/Beta Agonist Isosorbide Dinitrate .......................................................................................... EPINEPHrine (Systemic, Oral Inhalation) ...................................................... Isosorbide Mononitrate .................................................................................... Fexofenadine and Pseudoephedrine .............................................................. Metoprolol ........................................................................................................ Guaifenesin and Pseudoephedrine ................................................................ NIFEdipine ....................................................................................................... Pseudoephedrine ............................................................................................ Nitroglycerin ..................................................................................................... Triprolidine and Pseudoephedrine .................................................................. Propranolol ....................................................................................................... 5 Alpha-Reductase Inhibitor Ranolazine ....................................................................................................... Verapamil ......................................................................................................... Finasteride ....................................................................................................... Amebicide Antianxiety Agent, Miscellaneous BusPIRone ....................................................................................................... MetroNIDAZOLE (Systemic) ........................................................................... Aminoquinoline
Recommended publications
  • Opioid and Other Substance Use Disorders
    OPIOID AND OTHER SUBSTANCE USE DISODERS Dr Amit Arya Additional Professor Department of Psychiatry KGMU Lucknow What are addictive substances? Any substance which when taken has an ability to change the person’s consciousness, thinking, mood, behaviour and motor functions Leading to take the substance repeatedly (World Health Organisation, 1992) …Also called as psychoactive substances Layman term: “Drugs” Why are certain substances addictive? Intake of any substance – oral, inhalational, injecting Enters the bloodstream Acts on a specific body part, such as heart, lung, stomach, etc. Addictive substances act on brain Addictive Substances act on brain All substances acting on the brain are not addictive Addictive substances I want to primarily act on a particular take that area/group of neurons in the drug again! brain, Leading the individual to repeatedly administer the addictive / psychoactive substance → “drug seeking” behaviour Addictive substances primarily act on a particular area/group of neurons in the brain. Regions controlling emotions, thinking, Frontal region judgement & memory Mid Brain How are addictive substances different from each other? Broad actions Chemical that the drug class of drugs produces on the brain Source of drug Natural/semi- TYPOLOGY synthetic/synthetic Mode of intake Oral/inhalational/ Availability – parenteral legal/illegal? (injections) Typology – Chemical Class Opioids Alcohol Cannabis Volatile solvents Based on chemical class Stimulants Tobacco Sedative- hypnotics Hallucinogens The usual drug-use
    [Show full text]
  • Histamine Receptors
    Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity.
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • IHS National Pharmacy & Therapeutics Committee National
    IHS National Pharmacy & Therapeutics Committee National Core Formulary; Last Updated: 09/23/2021 **Note: Medications in GREY indicate removed items.** Generic Medication Name Pharmacological Category (up-to-date) Formulary Brief (if Notes / Similar NCF Active? available) Miscellaneous Medications Acetaminophen Analgesic, Miscellaneous Yes Albuterol nebulized solution Beta2 Agonist Yes Albuterol, metered dose inhaler Beta2 Agonist NPTC Meeting Update *Any product* Yes (MDI) (Nov 2017) Alendronate Bisphosphonate Derivative Osteoporosis (2016) Yes Allopurinol Antigout Agent; Xanthine Oxidase Inhibitor Gout (2016) Yes Alogliptin Antidiabetic Agent, Dipeptidyl Peptidase 4 (DPP-4) Inhibitor DPP-IV Inhibitors (2019) Yes Anastrozole Antineoplastic Agent, Aromatase Inhibitor Yes Aspirin Antiplatelet Agent; Nonsteroidal Anti-Inflammatory Drug; Salicylate Yes Azithromycin Antibiotic, Macrolide STIs - PART 1 (2021) Yes Calcium Electrolyte supplement *Any formulation* Yes Carbidopa-Levodopa (immediate Anti-Parkinson Agent; Decarboxylase Inhibitor-Dopamine Precursor Parkinson's Disease Yes release) (2019) Clindamycin, topical ===REMOVED from NCF=== (See Benzoyl Peroxide AND Removed January No Clindamycin, topical combination) 2020 Corticosteroid, intranasal Intranasal Corticosteroid *Any product* Yes Cyanocobalamin (Vitamin B12), Vitamin, Water Soluble Hematologic Supplements Yes oral (2016) Printed on 09/25/2021 Page 1 of 18 National Core Formulary; Last Updated: 09/23/2021 Generic Medication Name Pharmacological Category (up-to-date) Formulary Brief
    [Show full text]
  • Pharmacological Treatments in Insomnia
    Pharmacological treatments in insomnia Sue Wilson Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College, London Drugs used in insomnia Licensed for insomnia •GABA-A positive allosteric modulators •melatonin (modified release) •promethazine •diphenhydramine •doxepin (USA) Unlicensed prescribed frequently •antihistamines (and OTC) •antidepressants Sometimes prescribed drugs for psychosis Some GABA-A positive allosteric modulators Drugs acting at the GABA-A benzodiazepine receptor zopiclone zolpidem zaleplon benzodiazepines eg temazepam, lorazepam (safe in overdose, as long as no other drug involved) Drugs acting at the barbiturate/alcohol receptor chloral hydrate/chloral betaine clomethiazole (dangerous in overdose) GABA calms the brain Gamma aminobutyic acid (GABA) is the main inhibitory transmitter in the mammalian central nervous system. It plays the principal role in reducing neuronal excitability and its receptors are prolific throughout the brain, in cortex, limbic system, thalamus and cerebellum sedative Increase anticonvulsant GABA anxiolytic function ataxia, memory effects Effects of GABA-A positive allosteric modulators •These drugs enhance the effect of GABA, the main inhibitory neurotransmitter in the brain •They all produce sedation, sleep promotion, ataxia, muscle relaxation, effects on memory, anticonvulsant effects •Therefore for insomnia the duration of action of the drug is important – these effects are unwanted during the day Effects of these GABA-ergic drugs on sleep EEG/PSG • Appearance of
    [Show full text]
  • Drug Repurposing for the Management of Depression: Where Do We Stand Currently?
    life Review Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Hosna Mohammad Sadeghi 1,†, Ida Adeli 1,† , Taraneh Mousavi 1,2, Marzieh Daniali 1,2, Shekoufeh Nikfar 3,4,5 and Mohammad Abdollahi 1,2,* 1 Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] (H.M.S.); [email protected] (I.A.); [email protected] (T.M.); [email protected] (M.D.) 2 Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran 3 Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] 4 Pharmaceutical Sciences Research Center (PSRC) and the Pharmaceutical Management and Economics Research Center (PMERC), Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran 5 Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran * Correspondence: [email protected] † Equally contributed as first authors. Citation: Mohammad Sadeghi, H.; Abstract: A slow rate of new drug discovery and higher costs of new drug development attracted Adeli, I.; Mousavi, T.; Daniali, M.; the attention of scientists and physicians for the repurposing and repositioning of old medications. Nikfar, S.; Abdollahi, M. Drug Experimental studies and off-label use of drugs have helped drive data for further studies of ap- Repurposing for the Management of proving these medications.
    [Show full text]
  • Antihistamine Therapy in Allergic Rhinitis
    CLINICAL REVIEW Antihistamine Therapy in Allergic Rhinitis Paul R. Tarnasky, MD, and Paul P. Van Arsdel, Jr, MD Seattle, Washington Allergic rhinitis is a common disorder that is associated with a high incidence of mor­ bidity and considerable costs. The symptoms of allergic rhinitis are primarily depen­ dent upon the tissue effects of histamine. Antihistamines are the mainstay of therapy for allergic rhinitis. Recently, a second generation of antihistamines has become available. These agents lack the adverse effect of sedation, which is commonly associated with older antihistamines. Current practice of antihistamine therapy in allergic rhinitis often involves random selection among the various agents. Based upon the available clinical trials, chlorpheniramine appears to be the most reasonable initial antihistaminic agent. A nonsedating antihis­ tamine should be used initially if a patient is involved in activities where drowsiness is dangerous. In this comprehensive review of allergic rhinitis and its treatment, the cur­ rent as well as future options in antihistamine pharmacotherapy are emphasized. J Fam Pract 1990; 30:71-80. llergic rhinitis is a common condition afflicting some­ defined by the period of exposure to those agents to which A where between 15 and 30 million people in the United a patient is sensitive. Allergens in seasonal allergic rhinitis States.1-3 The prevalence of disease among adolescents is consist of pollens from nonflowering plants such as trees, estimated to be 20% to 30%. Two thirds of the adult grasses, and weeds. These pollens generally create symp­ allergic rhinitis patients are under 30 years of age.4-6 Con­ toms in early spring, late spring through early summer, sequently, considerable costs are incurred in days lost and fall, respectively.
    [Show full text]
  • Drugs Affectin the Autonomic Nervous System
    Fundamentals of Medical Pharmacology Paterson Public Schools Written by Néstor Collazo, Ph.D. Jonathan Hodges, M.D. Tatiana Mikhaelovsky, M.D. for Health and Related Professions (H.A.R.P.) Academy March 2007 Course Description This fourth year course is designed to give students in the Health and Related Professions (H.A.R.P.) Academy a general and coherent explanation of the science of pharmacology in terms of its basic concepts and principles. Students will learn the properties and interactions between chemical agents (drugs) and living organisms for the rational and safe use of drugs in the control, prevention, and therapy of human disease. The emphasis will be on the fundamental concepts as they apply to the actions of most prototype drugs. In order to exemplify important underlying principles, many of the agents in current use will be singled out for fuller discussion. The course will include the following topics: ¾ The History of Pharmacology ¾ Terminology Used in Pharmacology ¾ Drug Action on Living Organisms ¾ Principles of Pharmacokinetics ¾ Dose-Response Relationships ¾ Time-Response Relationships ¾ Human Variability: Factors that will modify effects of drugs on individuals ¾ Effects of Drugs Attributable to Varying Modes of Administration ¾ Drug Toxicity ¾ Pharmacologic Aspects of Drug Abuse and Drug Dependence Pre-requisites Students must have completed successfully the following courses: Biology, Chemistry, Anatomy and Physiology, Algebra I and II Credits: 5 credits Basic Principles of Drug Action Introduction to Pharmacology a. Basic Mechanisms of Drug Actions b. Dose-response relationships c. Drug absorption d. Biotransformation of Drugs e. Pharmacokinetics f. Factors Affecting Drug Distribution g. Drug Allergy and Pharmacogenetics h.
    [Show full text]
  • Virginia Opioid Addiction ECHO* Clinic
    Virginia Opioid Addiction ECHO*Clinic February 21, 2020 *ECHO: Extension of Community Healthcare Outcomes Helpful Reminders Rename • Rename your Zoom screen, with your name and organization Helpful Reminders • You are all on mute please unmute to talk • If joining by telephone audio only, *6 to mute and unmute Unmute Helpful Reminders • Please type your full name and organization into the chat box Chat Box • Use the chat function to speak with IT or ask questions VCU Opioid Addiction ECHO Clinics • Bi-Weekly 1.5 hour tele-ECHO Clinics • Every tele-ECHO clinic includes a 30 minute didactic presentation followed by case discussions • Didactic presentations are developed and delivered by inter-professional experts • Website Link: www.vcuhealth.org/echo Hub Introductions VCU Team Clinical Director Gerard Moeller, MD Administrative Medical Director ECHO Hub and Principal Vimal Mishra, MD, MMCi Investigator Clinical Expert Lori Keyser-Marcus, PhD Courtney Holmes, PhD Albert Arias, MD Didactic Presentation Gerard Moeller, MD Program Manager Bhakti Dave, MPH Practice Administrator David Collins, MHA IT Support Vladimir Lavrentyev, MBA Introductions: • Name • Organization Reminder: Mute and Unmute to talk *6 for phone audio Use chat function for Introduction What to Expect I. Didactic Presentation I. Gerry Moeller, MD II. Case presentations I. Case 1 I. Case summary II. Clarifying questions III. Recommendations II. Case 2 I. Case summary II. Clarifying questions III. Recommendations Lets get started! III. Closing and questions Didactic Presentation Pharmacotherapy for Methamphetamine F. Gerard Moeller, M.D. Professor and Division Chair: Addictions Department of Psychiatry VCU School of Medicine 9 Disclosures • I have received grant funding from Indivior pharmaceuticals and Nektar Therapeutics for research unrelated to this talk 10 Meth vs.
    [Show full text]
  • Repurposing of Drugs for Triple Negative Breast Cancer: an Overview
    Repurposing of drugs for triple negative breast cancer: an overview Andrea Spini1,2, Sandra Donnini3, Pan Pantziarka4, Sergio Crispino4,5 and Marina Ziche1 1Department of Medicine, Surgery and Neuroscience, University of Siena, Siena 53100, Italy 2Service de Pharmacologie Médicale, INSERM U1219, University of Bordeaux, Bordeaux 33000, France 3Department of Life Sciences, University of Siena, Siena 53100, Italy 4Anticancer Fund, Strombeek Bever 1853, Belgium 5ASSO, Siena, Italy Abstract Breast cancer (BC) is the most frequent cancer among women in the world and it remains a leading cause of cancer death in women globally. Among BCs, triple negative breast cancer (TNBC) is the most aggressive, and for its histochemical and molecular charac- teristics is also the one whose therapeutic opportunities are most limited. The REpur- posing Drugs in Oncology (ReDO) project investigates the potential use of off patent non-cancer drugs as sources of new cancer therapies. Repurposing of old non-cancer drugs, clinically approved, off patent and with known targets into oncological indications, Review offers potentially cheaper effective and safe drugs. In line with this project, this article describes a comprehensive overview of preclinical or clinical evidence of drugs included in the ReDO database and/or PubMed for repurposing as anticancer drugs into TNBC therapeutic treatments. Keywords: triple negative breast cancer, repositioning, non-cancer drug, preclinical studies, clinical studies Background Correspondence to: Marina Ziche Breast cancer (BC) is the most frequent cancer among women in the world. Triple nega- Email: [email protected] tive breast cancer (TNBC) is a type of BC that does not express oestrogen receptors, pro- 2020, :1071 gesterone receptors and epidermal growth factor receptors-2/Neu (HER2) and accounts ecancer 14 https://doi.org/10.3332/ecancer.2020.1071 for the 16% of BCs approximatively [1, 2].
    [Show full text]
  • With [3H]Mepyramine (Trieyclic Antidepressants/Antihistamine/Neurotransmitter/Amitriptyline) VINH TAN TRAN, RAYMOND S
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 6290-6294,, December 1978 Neurobiology Histamine H1 receptors identified in mammalian brain membranes with [3H]mepyramine (trieyclic antidepressants/antihistamine/neurotransmitter/amitriptyline) VINH TAN TRAN, RAYMOND S. L. CHANG, AND SOLOMON H. SNYDER* Departments of Pharmacology and Experimental Therapeutics, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Communicated by Julius Axelrod, August 30,1978 ABSTRACT The antihistamine [3H mepyramine binds to Male Sprague-Dawley rats (150-200 g) were killed by cer- HI histamine receptors in mammalian brain membranes. vical dislocation, their brains were rapidly removed and ho- Potencies of H1 antihistamines at the binding sites correlate mogenized with a Polytron for 30 min (setting 5) in 30 vol of with their pharmacological antihistamine effects in the guinea pig ileum. Specific [3Himepyramine binding is saturable with ice-cold Na/K phosphate buffer (50 mM, pH 7.5), and the a dissociation constant of about 4 nM in both equilibrium and suspension was centrifuged (50,000 X g for 10 min). The pellet kinetic experiments and a density of 10pmolper gram ofwhole was resuspended in the same volume of fresh buffer and cen- brain. Some tricyclic antidepressants are potent inhibitors of trifuged, and the final pellet was resuspended in the original secific [3Hmepamine binding. Regional variations of volume of ice-cold buffer by Polytron homogenization. Calf [3Hjmepyramine ing do not correlate with variations in brains were obtained from a local abattoir within 2 hr after the endogeneous histamine and histidine decarboxylase activity. death of the animals and transferred to the laboratory in ice- Histamine is a neurotransmitter candidate in mammalian brain cold saline.
    [Show full text]
  • 021876Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 021876Orig1s000 PHARMACOLOGY REVIEW(S) MEMO FOOD AND DRUG ADMINISTRATION Division of Reproductive and Urologic Products Center for Drug Evaluation and Research Date: April 5, 2013 From: Kimberly Hatfield, Ph.D. Toxicologist To: NDA 21876 Subject: Changes to nonclinical scientific bridge and labeling for NDA 21876 (Diclegis) Scientific bridge: NDA 21876 has been submitted as a 505(b)(2) application for the drug product Diclegis (combination of doxylamine succinate and pyridoxine hydrochloride), with nonclinical evidence supporting the safety of Diclegis being based on the Agency’s determination of safety for the Reference Listed Drug (RLD), Bendectin® (NDA 10-598). The nonclinical scientific bridge between Diclegis and the RLD Bendectin® has been revised since submission of the initial nonclinical NDA review. It now states: The bridge for reliance on the nonclinical data generated with Bendectin (10 mg doxylamine succinate and 10 mg pyridoxine hydrochloride) to support the NDA for Diclegis (10 mg doxylamine succinate and 10 mg pyridoxine hydrochloride) is based on: 1) in vivo delayed release, 2) similar pharmacodynamic characteristics, and 3) in vitro dissolution based on Diclectin (a Canadian approved drug product containing 10 mg doxylamine succinate and 10 mg pyridoxine hydrochloride) manufactured at (b) (4) and 4) chemical criteria for doxylamine succinate and pyridoxine hydrochloride defined in the US Pharmacopeia e.g., composition, structure, molecular weight and chemical characteristics. Refer also to the clinical pharmacology memo further elaborating on the scientific bridge submitted by CAPT E. Dennis Bashaw, PharmD. Labeling changes: During label negotiations, a change in Section 13 Carcinogenesis, Mutagenesis and Impairment of Fertility was made.
    [Show full text]