Storage Solutions As Individual As Your Business

Total Page:16

File Type:pdf, Size:1020Kb

Storage Solutions As Individual As Your Business STORAGE SOLUTIONS AS INDIVIDUAL AS YOUR BUSINESS THE COMPREHENSIVE PORTFOLIO 1980 2015 Released industry’s World’s 1st 256 GB, KEEPING THE STORAGE WORLD IN MOTION 1st 10.5-inch HDD 48-Layer BiCS Flash 2014 Released 3.5-inch near- As an industry leader of storage products for more than four decades, Toshiba offers today’s industry’s most 1984 line eHDD with industry’s Invention of NAND comprehensive range of storage technologies, from hard disk drives (HDDs), solid state hybrid drives (SSHDs) largest 5TB capacity 1 fl ash technology and solid state drives (SSDs) to NAND fl ash memories* – all suitable for various applications such as enterprise, mobile, factory automation and consumer environments. 2012 1990 World’s 1st st 1 2.5-inch 19nm cSSD PATA HDD 2010 Industry’s highest INDUSTRY-LEADING END-TO-END DESIGN 2000 capacity 2.5-inch Debuted 1st Enterprise HDD high-volume In fact, for almost 30 years, Toshiba has also changed the world by inventing the NAND fl ash memory. 1.8-inch HDD As a global industry-leader in high-end memory technology, Toshiba has the proven engineering resources and 2009 expertise and is perfectly equipped to offer high-quality SSDs. 1st Toshiba 2001 Enterprise HDD through st Completely designed and produced in-house, the Toshiba SSD is equipped with the latest Toshiba NAND fl ash World’s 1 Fujitsu acquisition automotive HDD and the advanced in-house controller to deliver exceptional performance, endurance and durability. 2008 The superbly engineered Toshiba SSDs deliver faster speeds, greater durability and reliability. 2004 Industry’s largest class World’s 1st 512 GB client SSD 0.85-inch HDD 2005 1st 2.5-inch SATA HDD PERFECTLY FITTING IN ANY DIGITAL APPLICATION With the broad spectrum of form factors, capacities, interfaces and special features, Toshiba is perfectly positioned to fulfi ll the individual needs and the growing demands of a variety of application sectors. Providing utmost fl exibility in usage, Toshiba can be considered a true ‘One-Stop Storage Device Supplier’. INDUSTRIAL/ EMBEDDED COMPUTING MEDIA & ENTERTAINMENT SURVEILLANCE STORAGE CLOUD INFRASTRUCTURE Connector (Interface) SATA and SAS are prepared for use and process signals. Spindle Motor It is responsible for spinning the platters, allowing HDDs to operate. Media Data is read and written by the magnetic head. Connector (Interface) SAS and SATA are compatible with HDDs. Magnetic Head M.2 and U.2 are also available. The magnetic head reads and writes data to media. Controller The controller is the core device of the SSD, enabling fast read/write performance, wear leveling, and enhanced reliability. DRAM For cache. NAND fl ash memory Data is stored in a NAND fl ash memory array. ENTERPRISE IT NETWORK STORAGE NAND fl ash memory*1 In 1984, Toshiba developed a new type of semiconductor memory called fl ash memory, leading the industry into the next generation ahead of its competitors. Some time later in 1987, NAND fl ash memory BACK-UP AND ARCHIVING (NAND) was developed, and this has since been used in a variety of memory cards and electronic equipment. The NAND market has grown rapidly, with fl ash memory becoming an internationally standardized memory device. Toshiba, the inventor of fl ash memory, has carved out AUTOMOTIVE a path to a new era in which we are all able to carry videos, music and data with us wherever we go. STORAGE PRODUCTS FOR A WIDE RANGE OF APPLICATIONS: AS FLEXIBLE AS YOUR BUSINESS CLIENT HDDs & SSHDs CLIENT SSDs 1: MOBILE HDD 2: MOBILE THIN HDD 3: DESKTOP HDD 4: GENERIC DATA STORAGE HDD 1: HG6 SERIES 2: SG5 SERIES PERFORMANCE & CAPACITY HIGH PERFORMANCE RICH CAPACITY LINE-UP HIGH CAPACITY HIGH PERFORMANCE HIGH CAPACITY • Suitable for high-end laptop • Support SATA up to • Up to 7,200 RPM • Up to 6 TB Capacity • Combines multi-level cell (MLC) NAND fl ash • Encryption Option • Using Toshiba TLC NAND fl ash memory PCs and slim desktop PCs 6.0 Gbit/s • Suitable for Desktop PC • 7,200 RPM technology and a high-performance fl ash • Recommended for a broad range • Storage capacities up to 1,024 GB • Up to 7,278 RPM • SATA Interface with controller to achieve improved storage capacity of applications from mobile • 6.0 Gbit/s SATA interface *2 • 2.5-Inch Form Factor 6.0 Gbit/s and performance computing to industrial and read • Engineered for desktop and notebook PCs • 7 mm Height Design • 128 MiB Buffer • Low power consumption of less than 0.1 W intensive applications. • QSBC ECC technology from Toshiba for at 2.5-inch Mobile Mark 2012 workload error correction and reliability Power Consumption Shock (Op.)/ Data Transfer Rate Capacity Acoustic Dimension 4 Shock (Op.)/ Temp. Dimension Supply 2 msec half Buffer Temp. Op. Special Capacity Interface (MB/s {MiB/s}* Max.) Weight Special No. Model Number formatted RPM Interface Low Power Noise/Idle H/W/D No. Model Number 0.5 ms half (Op.) H/W/D Voltage Read/Write s/w. (MiB)*4 (degree C) Features (GB)*3 (g) Features 3 Idle (GB)* (W Max.) (dB Ave.) (mm) s/w. (G) (degree C) (mm) (V) (W Typ.) (G) Seq. Read Seq. Write 320 128 Up to 450 (430) 17 500 SATA 9.5/69.85/ 256 SATA 534 Up to 471 (450) 7.0/69.85/ 5.0 MQ01ABDxxx 5,400 0.55 1.5 400 8 5 – 55 THNSNJxxxGCSY 1,500 0 – 70 49 - 53 1 3.0 Gbit/s 100.0 2 1 6.0 Gbit/s {510} 100.0 ± 5% 750 512 2 23 Up to 482 (460) 1,000 1,024 320 SATA 7.0/69.85/ 2.5-type MQ01ACFxxx 7,278 0.8 2.1 350 16 23 5 – 55 128 2 500 6.0 Gbit/s 100.0 7 mmH Case* 256 SATA 545 Up to 7.0/69.85/ 5.0 THNSNKxxxxCS8 1,500 0 – 70 48 – 51 2 512 6.0 Gbit/s {520} 388 {370} 100.0 ± 5% 320 SATA 7.0/69.85/ 2.5-inch (6.4 cm)* MQ01ABFxxx 5,400 0.55 1.5 400 8 19 5 – 55 2 500 6.0 Gbit/s 100.0 1,024 320 SATA 7.0/69.85/ 128 2 MQ01ABUxxxW 5,400 0.55 1.5 400 8 19 5 – 55 SATA 545 Up to 2.23/22.0/ 3.3 500 6.0 Gbit/s 100.0 THNSNKxxxGVN8 256 1,500 0 – 80 7.0 M.2 2 sided 6.0 Gbit/s {520} 388 {370} 80.0 ± 5% Single- 2280-S2 512 500 3.7 32 25 1,000 SATA 26.1/101.6/ 128 Up to 450 (430) 2 DT01ACAxxx 7,200 6.4 70 0 – 60 3 6.0 Gbit/s 147.0 2,000 SATA 534 3.58/22.0/ 3.3 5.2 64 27 THNSNJxxxG8NY 1,500 0 – 80 7.0 - 7.6 3,000 1 256 6.0 Gbit/s {510} 80.0 ± 5% Up to 471 (450) 512 2,000 3,000 M.2 2280-D2 31 Double-sided SATA 545 Up to 3.58/22.0/ 3.3 4,000 SATA 6.0 26.1/101.6/ THNSNKxxxxDN8 1,024 1,500 0 – 80 8.7 3.5-inch (8.9 cm)* 4 MD04ACAxxx 7,200 6.0 11.3 70 128 5 – 55 2 6.0 Gbit/s {520} 388 {370} 80.0 ± 5% NEW 5,000 Gbit/s 147.0 6,000 34 2.5-inch = 6.4 cm 5: MOBILE SSHD 6: MOBILE THIN SSHD HDD + NAND HDD + NAND • SSD-like performance • SSD-like Performance 3: XG3 SERIES • High-Capacity • Suitable for ultra slim • Suitable for high-end laptop PCs applications TOSHIBA’S FIRST NVME PCIe SSD *2 * and industrial equipment • 2.5-Inch Form Factor • Up to 1,024 GB Capacity 3 • Supports the Trusted Computing * • 2.5-Inch Form Factor 2 • 7 mm Height Design • Ultimate SSD Performance Group Specifi cation (TCG Pyrite) Power Consumption Shock Acoustic Temp. Data Transfer Rate Capacity (Op.)/ Dimension 4 Shock (Op.)/ Temp. Dimension Supply NAND Buffer Noise/ Op. Weight Supply Capacity Interface (MB/s {MiB/s}* Max.) Weight Special No. Model Number formatted RPM Interface 2 msec H/W/D No. Model Number 0.5 ms half (Op.) H/W/D Voltage Type Low Power Read/Write (MiB)*4 Idle (degree (g) Voltage (V) (GB)*3 (g) Features (GB)*3 half s/w. (mm) s/w. (G) (degree C) (mm) (V) Idle (W Typ.) (W Max.) (dB Ave.) C) (G) Seq. Read Seq. Write 500 19 7.0/69.85/100.0 92 128 2,100 600 MLC SATA 5.0 MQ02ABDxxxH 5,400 0.75 3.30/3.00 400 64 0 – 60 PCI Express 2.23/22.0/ 3.3 5 8 GiB 6.0 Gbit /s ± 5% THNSN5xxxGPU7 256 1,100 1,500 0 – 80 6.8-7.2 3 1,000 25 9.5/69.85/100.0 117 sided 3.0 Gen3 x 4 2,400 80.0 ± 5% NEW Single- 512 1,500 500 19 7.0/69.85/100.0 92 MLC SATA 5.0 M.2 2280 MQ02ABFxxxH 5,400 0.75 3.30/3.00 400 64 0 – 60 PCI Express 3.58/22.0/ 3.3 6 8 GiB 6.0 Gbit /s ± 5% 3 THNSN5xxx2DU7 1,024 2,400 1,500 1,500 0 – 80 8.6 1,000 25 9.5/69.85/100.0 117 sided 3.0 Gen3 x 4 80.0 ± 5% Double- Self-Encrypting Sanitize Instant 24x7 Availability Advanced Format Low Power Consumption Extreme Temperature Noise Reduction 5 5 Drive AES-256 Erase (SIE) 2.5-inch SATA* M.2 B-M* STORAGE PRODUCTS FOR STORAGE PRODUCTS FOR ENTERPRISE APPLICATIONS: SPECIFIC APPLICATIONS: FREE SPACE FOR GROWTH SPECIALISED FOR YOUR NEEDS ENTERPRISE SSDs SPECIALTY DRIVES 1 : HIGH ENDURANCE SSD 2 : MID ENDURANCE SSD 3: VALUE ENDURANCE SSD 4: READ INTENSIVE SSD 1: LARGE CAPACITY HDD 2: INDUSTRIAL 3: VIDEO STREAM HDD 4: SURVEILLANCE HDD HIGHER LEVEL OF ENDURANCE ENHANCED LEVEL OF MIX OF ENDURANCE, LOW COST PER CAPACITY HIGH CAPACITY LINE UP HIGH ROBUSTNESS HIGH CAPACITY LINE UP LARGE CAPACITY, RELIABILITY & *2 ENDURANCE COST & PERFORMANCE *2 SCALABILITY • 2.5-Inch Form Factor • 2.5-Inch Form Factor • Up to 3 TB Storage Capacity • Wide Temperature Range • Quiet Acoustics * * * • Up to 25 DWPD 7 • 2.5-Inch Form Factor 2 • 2.5-Inch Form Factor 2 • Superior power • Suitable for external storage • High Vibration Performance • Optimised for audio/visual and • Support for up to 32 HD * * * • Superior performance & • Up to 10 DWPD 7 • Up to 3 DWPD 7 consumption effi ciency • High Altitude and Humidity set-top-box applications cameras 6 reliability • For mixed workloads • For mainstream servers enables TCO reduction Tolerance • Rotational Vibration (RV) • Power Loss Protection • Power Loss Protection • Power Loss Protection • Power Loss Protection • Optimised for Industrial com- Sensors puters and embedded systems • Up to 5 TB Storage Capacity • Operating Vibrations up to 8 4 Power Consumption Capacity Performance Random (IOPS * ) Performance Sequential (MiB/s) * Temp.
Recommended publications
  • Garbage Collection Understanding Foreground Vs
    Garbage Collection Understanding Foreground vs. Background GC and Other Related Elements Kent Smith Sr. Director of Corporate Marketing SandForce Flash Memory Summit August 2011 Santa Clara, CA 1 Understanding Garbage Collection (GC) • In flash memory, GC is the process of relocating existing data, deleting stale data, and creating empty blocks for new data • All SSDs will have some form of GC – it is not an optional feature • NAND flash cannot directly overwrite a page with data; it has to be first erased • One full block of pages has to be erased, not just one page • GC starts after each page has been written one time • Valid data is consolidated and written into new blocks • Invalid (replaced) data is ignored and gets erased • Wear leveling mainly occurs during GC Source: Wikipedia Flash Memory Summit 2011 Santa Clara, CA 2 How the OS Deletes Data • The OS tracks what files are present and what logical blocks are holding the files • SSDs do not understand the file structure of an OS; they only track valid data locations reported by the OS • When the OS deletes a file, it marks the file’s space in its logical table as free ► It does not tell the drive anything • When the OS writes a new file to the drive, it will eventually write to the previously used spaces in the table ► An SSD only knows data is no longer needed when the OS tells it to write to an address that already contains data Flash Memory Summit 2011 Santa Clara, CA 3 Understanding the TRIM Command • The OS* sends a TRIM command** at the point of file deletion • The SSD marks
    [Show full text]
  • Storage Solutions for Embedded Applications
    White Paper Storage Solutions Brian Skerry Sr. Software Architect Intel Corporation for Embedded Applications December 2008 1 321054 Storage Solutions for Embedded Applications Executive Summary Any embedded system needs reliable access to storage. This may be provided by a hard disk drive or access to a remote storage device. Alternatively there are many flash solutions available on the market today. When considering flash, there are a number of important criteria to consider with capacity, cost, and reliability being foremost. This paper considers hardware, software, and other considerations in choosing a storage solution. Wear leveling is an important factor affecting the expected lifetime of any flash solution, and it can be implemented in a number of ways. Depending on the choices made, software changes may be necessary. Solid state drives offer the most straight forward replacement option for Hard disk drives, but may not be cost-effective for some applications. The Intel® X-25M Mainstream SATA Solid State Drive is one solution suitable for a high performance environment. For smaller storage requirements, CompactFlash* and USB flash are very attractive. Downward pressure continues to be applied to flash solutions, and there are a number of new technologies on the horizon. As a result of reading this paper, the reader will be able to take into consideration all the relevant factors in choosing a storage solution for an embedded system. Intel® architecture can benefit the embedded system designer as they can be assured of widespread
    [Show full text]
  • How Controllers Maximize SSD Life
    SSSI TECH NOTES How Controllers Maximize SSD Life January 2013 by SNIA SSSI Member: Jim Handy Objective Analysis “The SSD Guy” www.snia.org1 About the Solid State Storage Initiative The SNIA Solid State Storage Initiative (SSSI) fosters the growth and success of the market for solid state storage in both enterprise and client environ- ments. Members of the SSSI work together to promote the development of technical standards and tools, educate the IT communities about solid state storage, perform market outreach that highlights the virtues of solid state storage, and collaborate with other industry associations on solid state stor- age technical work. SSSI member companies come from a wide variety of segments in the SSD industry www.snia.org/forums/sssi/about/members. How Controllers Maximize SSD Life by SNIA SSSI Member: Jim Handy “The SSD Guy”, Objective Analysis Table of Contents Introduction 2 How Controllers Maximize SSD Life 2 Better Wear Leveling 3 External Data Buffering 6 Improved ECC 7 Other Error Management 9 Reduced Write Amplification 10 Over Provisioning 11 Feedback on Block Wear 13 Internal NAND Management 14 1 Introduction This booklet contains a collection of posts from Jim Handy’s SSD Guy blog www.TheSSDGuy.com which explores the various techniques designers use to increase SSD life. How Controllers Maximize SSD Life How do controllers maximize the life of an SSD? After all, MLC flash has a lifetime of only 10,000 erase/write cycles or fewer and that is a very small number compared to the write traffic an SSD is expected to see in a high- workload environment, especially in the enterprise.
    [Show full text]
  • For Immediate Release
    For Immediate Release Media Contact: Story Public Relations Michael Schoolnik [email protected] SandForce SSD Processors Transform Mainstream Data Storage Breakthrough DuraClass Technology Sets New Standards for SSD Reliability, Performance and Energy Efficiency SARATOGA, CA. – April 13, 2009 – SandForce™ Inc., the pioneer of SSD (Solid State Drive) Processors that enable commodity NAND flash deployment in enterprise and mobile computing applications, today emerged from stealth mode and unveiled its first product, the SF‐1000 SSD Processor family. These highly‐integrated silicon devices address the inherent endurance, reliability, and data retention issues associated with NAND flash memory, making it possible to build SSDs that deliver unprecedented performance over the life of the drive with orders‐of‐magnitude higher reliability than enterprise‐class HDDs (Hard Disk Drives). The SandForce patent‐pending DuraClass™ technology promises to accelerate mass‐market SSD adoption. Leading OEMs are expected to release both SLC (single level cell) and MLC (multi‐level cell) flash‐based SSDs using SandForce single‐chip SSD Processors later this year. IDC expects worldwide shipments of SSD's in the Enterprise and PC markets will exceed 40 million units in 2012, representing a CAGR of 171% from 2007‐20121. “The SF‐1000 SSD Processor Family promises to address key NAND flash issues allowing MLC flash technologies to be reliably used in broad based, mission critical storage environments,” said Mike Desens, Vice President for System Design, IBM.
    [Show full text]
  • Wolfram: Enhancing Wear-Leveling and Fault Tolerance in Resistive
    WoLFRaM: Enhancing Wear-Leveling and Fault Tolerance in Resistive Memories using Programmable Address Decoders Leonid Yavits‡ Lois Orosa§ Suyash Mahar⋆ João Dinis Ferreira§ Mattan Erez† Ran Ginosar‡ Onur Mutlu§ ‡Technion-Israel Institute of Technology §ETH Zürich ⋆Indian Institute of Technology Roorkee †University of Texas Austin Resistive memories have limited lifetime caused by limited which reduces wear-leveling eciency. Fourth, most tech- write endurance and highly non-uniform write access patterns. niques are relatively slow because they level out the write Two main techniques to mitigate endurance-related memory fail- non-uniformity in a sequential fashion. The goal of wear- ures are 1) wear-leveling, to evenly distribute the writes across leveling is to extend the lifetime of memory cells as much the entire memory, and 2) fault tolerance, to correct memory cell as possible. Once memory cells reach their endurance limits, failures. However, one of the main open challenges in extend- resistive memory needs fault tolerance to continue operating. ing the lifetime of existing resistive memories is to make both Fault tolerance mechanisms [4, 5, 7–17, 26, 35, 47, 48, 57, 58, 60, techniques work together seamlessly and eciently. 64–67, 69, 76, 81, 87, 89, 102, 103, 113] typically enable recovery To address this challenge, we propose WoLFRaM, a new mech- from several failed bits per data page or data block. anism that combines both wear-leveling and fault tolerance Unfortunately, to our knowledge, there is no technique that techniques at low cost by using a programmable resistive ad- combines both wear-leveling and fault tolerance techniques in dress decoder (PRAD).
    [Show full text]
  • Flash Memory Guide
    Flash Memory Guide Portable Flash memory for computers, digital cameras, mobile phones and other devices Flash Memory Guide Kingston®, the world’s leading independent manufacturer of memory products, offers a broad range of Flash cards, USB Flash drives and Solid-State Drives (SSD) (collectively called Flash storage devices) that employ Flash memory chips for storage. The purpose of this guide is to explain the various technologies and Flash memory offerings that are available. Note: Due to Flash technology changes, specifications listed in this document are subject to change without notice 1.0 Flash Memory: Empowering A New Generation of Flash Storage Devices Toshiba invented Flash memory in the 1980s as a new memory technology that allowed stored data to be saved even when the memory device was disconnected from its power source. Since then, Flash memory technology has evolved into the preferred storage media for a variety of consumer and industrial devices. In consumer devices, Flash memory is widely used in: • Notebook computers • Personal computers • Tablets • Digital cameras • Global Positioning Systems (GPS) • Mobile phones • Solid-state music players such as • Electronic musical instruments MP3 players • Television set-top boxes • Portable and Home Video game consoles Flash memory is also used in many industrial applications where reliability and data retention in power-off situations are key requirements, such as in: • Security systems/IP Cameras • Military systems • Embedded computers • Set-top boxes • Networking and communication products • Wireless communication devices • Retail management products • Point of Sale Devices (e.g., handheld scanners) Please Note: Most Kingston Flash memory is designed and tested for compatibility with consumer devices.
    [Show full text]
  • Wear Leveling Architecture and Read Disturbance Technology for Solid-State Drives
    An InnoDisk White Paper August 2012 Wear Leveling Architecture And Read Disturbance Technology For Solid-State Drives Prolonging SSD Lifespan And preventing Read Disturbance InnoDisk’s Wear Leveling Architecture and Read Disturbance Technology 0 Revision History Date Version Information 2012.07.09 1.0 First Release Introduction This white paper presents InnoDisk’s wear leveling process for prolonging the lifespan of a solid-state drive (SSD) and preventing read disturbance. Conventional file systems like FAT, UFS, HFS, ext 2 and NTFS were originally designed for magnetic strips and as such rewrite data repeatedly to the same area. However, SSDs can be put through a limited number of erase cycles before becoming unreliable. This is usually around 3,000/100,000(MLC/SLC) cycles. Wear leveling works around these limitations by spreading erasures and re-writes across multiple blocks in an SSD. In this way, no single block is subjected to constant read/writes. How InnoDisk’s Wear Leveling architecture and technology prolongs SSD lifespan and prevents read disturbance InnoDisk uses a combination of two types of wear leveling – dynamic and static wear leveling – to distribute write cycling across an SSD. Both types of wear leveling use a map to link Logical Block Address (LBAs) from the OS to the physical Flash memory. Static wear leveling, however, differs in that static blocks that do not change are periodically moved so that low usage cells are able to be used by other data. System Buffer Blocks and Dynamic Wear Leveling Because Flash blocks can’t be overwritten, some spare blocks need to be reserved for temporary data buffering.
    [Show full text]
  • A High-Performance Wear- Leveling Algorithm for Flash Memory System
    LETTER IEICE Electronics Express, Vol.9, No.24, 1874-1880 A high-performance wear- leveling algorithm for flash memory system Ching-Che Chung1a), Duo Sheng2, and Ning-Mi Hsueh1 1 Department of Computer Science & Information Engineering, National Chung- Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan 2 Department of Electrical Engineering, Fu Jen Catholic University, 510 Chung-Cheng Rd. Hsin-Chung, Taipei 24205, Taiwan a) [email protected] Abstract: In this paper, a low-complexity high-performance wear- leveling algorithm which named sequential garbage collection (SGC) for flash memory system design is presented. The proposed SGC outperforms existing designs in terms of wear evenness and low design complexity. The lifetime of the flash memory can be greatly lengthened by the proposed SGC. The proposed SGC doesn’t require any tuning threshold parameter, and thus it can be applied to various systems without prior knowledge of the system environment for threshold tuning. Simulation results show that the maximum block erase count and standard deviation of the block erase count compared to the greedy algorithm are decreased by up to 75% and 94%, respectively. Keywords: NAND flash, wear leveling, garbage collection Classification: Storage technology References [1] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based file system,” Proc USENIX Annual Technical Conference, pp. 155–164, June 1995. [2] M. Rosenblum and J. K. Ousterhout, “The design and implementation of a log-structured file system,” ACM Transactions on Computers Systems, vol. 10, no. 1, pp. 26–52, Feb. 1992. [3] J.-W. Park, et al., “An integrated mapping table for hybrid FTL with fault- tolerant address cache,” IEICE Electron Express, vol.
    [Show full text]
  • Wear Leveling in Micron® NAND Flash Memory
    TN-29-61: Wear Leveling in NAND Flash Memory Introduction Technical Note Wear Leveling in Micron® NAND Flash Memory Introduction This document describes the recommended wear leveling algorithm to be implemented in the flash translation layer (FTL) software for Micron® NAND Flash memory. Wear Leveling and the Flash Translation Layer In Micron single-level cell (SLC) and multilevel cell (MLC)NAND Flash memory, each physical block can be programmed and erased reliably up to 100,000 and 10,000 times, respectively. For write-intensive applications, it is recommended to implement a wear leveling algorithm to monitor and spread the number of write cycles per block. In memory devices that do not use a wear leveling algorithm not all blocks get used at the same rate. The wear leveling algorithm ensures that equal use is made of all the available write cycles for each block. Wear leveling is implemented in the flash translation layer (FTL), which is the additional software layer between the file system and the NAND Flash memory. The FTL allows operating systems to read and write to NAND Flash memory devices in the same way as disk drives and provides the translation from virtual to physical addresses. Wear leveling can also be implemented by the file system directly on the NAND Flash (see Figure 1). Refer to the data sheets for the full list of root part numbers and for further information on the devices (see “References” on page 5). PDF: 09005aef8467d996/Source: 09005aef8467d99e Micron Technology, Inc., reserves the right to change products or specifications without notice. tn2961_wear_leveling_in_nand.fm - Rev.
    [Show full text]
  • Flash Memory
    Semiconductor Catalog Mar. 2016 Flash Memory STORAGE PRODUCTS & SEMICONDUCTOR SEMICONDUCTOR & STORAGE PRODUCTS http://toshiba.semicon-storage.com/ FlashF l ash M emor Memoryy Toshiba, the inventor of Flash Memory, blazed the trail to a world we can all carry data, music and videos with us, wherever we go. Now, Flash Memory is playing a major role in driving the evolution of automobiles and industrial equipment that is essential for realizing an environmentally friendly society. Behind the scenes, Flash Memory supports the world’s continuing transformation to a better tomorrow. Back in 1984, Toshiba developed a new semiconductor memory, Flash Memory, and by doing led the industry, and its competitors, into the next generation. Today the international de facto standard, Flash Memories have realized an immense range of applications that include Memory Cards, Solid-State Drives (SSDs), and even industrial equipment. As the total volume of information continues its exponential growth, demand for storage units using Flash Memories will grow with it. In order to meets these market needs, Toshiba has made major investments in plant and equipment at its Yokkaichi memory fab, and is resolutely committed to develop new products. This brochure highlights Toshiba's Flash Memory and other Memory Solutions. Toshiba's Leading Technology Areas Features of Toshiba's Flash Memory W Process W Fast storage of large files W Multi-Level Cell (MLC) W Fast write and erase rates W Controller W Low per-bit cost W Die stacking W Easily extendable using the NAND Flash Memory interface W Packaging W Extensive product portfolio to meet diverse needs OProducts with the standard HS-MMC interface OOffers products with the high-speed UHS-I and UHS-II SD bus interfaces OAvailable as SD Memory Cards with unique features – 2 – Toshiba's Flash Memory and controller technologies have found a wide range of applications.
    [Show full text]
  • Sandforce® SF3500 Family
    SandForce® SF3500 Family CLIENT FLASH CONTROLLERS Data Sheet Rapidly evolving NAND flash memory that leverages new flash types and Key Features and Benefits technologies delivers benefits in a form of higher density and lower cost per GB. At • Optimized for client SSD the same time, as NAND flash memory geometries shrink, delivering the endurance applications and reliability that customers demand becomes more challenging. • Scalable and flexible SF3000 The Seagate® SandForce SF3500 family of flash controllers is engineered to solve architecture the challenges of evolving NAND flash memory, and enable SSD manufacturers to • Native SATA and PCIe NVMe build robust SATA and PCIe NVMe SSDs with a greater capacity using the most interfaces in a single ASIC design advanced NAND flash memory for cost-sensitive client SSD applications. • Up to 1TB capacity • Supports the latest 10nm-class Performance and Power Optimizations MLC, TLC and 3D NAND flash SF3500 flash controllers deliver exceptional, consistent performance in real-world • DRAM support for improved applications with balanced read/write speeds and low predictable latency even latency with high entropy data. The SF3500 family is optimized for low-power environments • Award-winning DuraClass™ and supports ultra-low power sleep modes to maximize battery life and meet the technology delivers enhanced aggressive power requirements in the latest laptop and Ultrabook systems. performance, endurance, reliability and power efficiency Endurance and Reliability • SHIELD™ advanced error correction combines LDPC and DSP for The SF3500 family combines several techniques to extend flash memory life higher data reliability and longer and maintain data integrity. Enhanced DuraWrite™ data reduction lowers write endurance amplification and P/E cycles to maximize SSD endurance.
    [Show full text]
  • Extending the Lifetime of Flash-Based Storage Through Reducing Write Amplification from File Systems
    Extending the Lifetime of Flash-based Storage through Reducing Write Amplification from File Systems Youyou Lu Jiwu Shu∗ Weimin Zheng Department of Computer Science and Technology, Tsinghua University Tsinghua National Laboratory for Information Science and Technology ∗Corresponding author: [email protected] [email protected], [email protected] Abstract storage systems. However, the increased density of flash memory requires finer voltage steps inside each cell, Flash memory has gained in popularity as storage which is less tolerant to leakage and noise interference. devices for both enterprise and embedded systems As a result, the reliability and lifetime of flash memory because of its high performance, low energy and reduced have declined dramatically, producing the endurance cost. The endurance problem of flash memory, however, problem [18, 12, 17]. is still a challenge and is getting worse as storage Wear leveling and data reduction are two common density increases with the adoption of multi-level cells methods to extend the lifetime of the flash storage. With (MLC). Prior work has addressed wear leveling and wear leveling, program/erase (P/E) operations tend to be data reduction, but there is significantly less work on distributed across the flash blocks to make them wear out using the file system to improve flash lifetimes. Some evenly [11, 14]. Data reduction is used in both the flash common mechanisms in traditional file systems, such as translation layers (FTLs) and the file systems. The FTLs journaling, metadata synchronization, and page-aligned introduce deduplication and compression techniques to update, can induce extra write operations and aggravate avoid updates of redundant data [15, 33, 34].
    [Show full text]