Abstracts of the 8 European Science Identified to Be Responsible for This Fractionation
Total Page:16
File Type:pdf, Size:1020Kb
Large Meteorite Impacts (2003) alpha_p-s.pdf Contents — P through S Estimations of Axial Moment of the Growing Earth G. V. Pechernikova and I. W. Davidenko............................................................................................... 4015 The Suvasvesi South Structure, Central Finland: Further Evidences of Impact L. J. Pesonen, F. Donadini, J. Salminen, and M. Lehtinen .................................................................... 4074 Starting Conditions for Hydrothermal Systems Underneath Martian Craters: 3D Hydrocode Modeling E. Pierazzo, N. A. Artemieva, and B. A. Ivanov ..................................................................................... 4102 Recent Research in the Chesapeake Bay Impact Crater, USA — Part 1. Structure of the Western Annular Trough and Interpretation of Multiple Collapse Structures D. S. Powars, G. S. Gohn, R. D. Catchings, J. W. Horton Jr., and L. E. Edwards ................................ 4053 Strangelove Ocean and Deposition of Unusual Shallow-Water Carbonates After the End-Permian Mass Extinction M. R. Rampino and K. Caldeira............................................................................................................. 4077 Magnetostratigraphy of the K/T Boundary from Yaxcopoil-1 Borehole, Chicxulub Impact Crater M. Rebolledo-Vieyra and J. Urrutia-Fucugauchi .................................................................................. 4012 Authigenic and Allogenic Impact Breccias — Open Questions W. U. Reimold, B. O. Dressler, and C. Koeberl..................................................................................... 4036 Structural Characteristics of the Sudbury Impact Structure, Canada, Point to a Protracted Tectonomagmatic Evolution of the Sudbury Igneous Complex U. Riller and B. O. Dressler................................................................................................................... 4045 Bajo Hondo, a Very Puzzling Crater in Chubut, Patagonia, Argentina M. C. L. Rocca........................................................................................................................................ 4001 Estancia Los Mellizos: A Potential Impact Structure in Santa Cruz, Patagonia, Argentina, South America M. C. L. Rocca........................................................................................................................................ 4003 Potential Impact Sites in Southern Argentina: Simple Craters? M. C. L. Rocca........................................................................................................................................ 4002 Mass-Movement in Geological Strata of Some Astroblemes J. Rondot ................................................................................................................................................ 4007 Structural Investigations in the Central Uplift of the Upheaval Dome Impact Crater, Utah D. Scherler, A. Jahn, and T. Kenkmann ................................................................................................. 4072 Composition of the Late Influx of the Earth G. Schmidt.............................................................................................................................................. 4006 The ICDP Drill Core Yaxcopoil-1, Chicxulub Impact Crater, Mexico: Shock Metamorphism of the Impactite Units (794–894 m) R. T. Schmitt, A. Wittmann, and D. Stöffler............................................................................................ 4061 Large Meteorite Impacts (2003) alpha_p-s.pdf Internal Shearing and Subsurface Erosion from the Chicxulub Ejecta Blanket (Albion Fm.), Quintana Roo, Mexico F. Schönian, T. Kenkmann, and D. Stöffler............................................................................................ 4128 Additional Observations on the Impact Breccias of the Chicxulub Ejecta Blanket from the UNAM-7 Drill Core, Yucatán, Mexico F. Schönian, T. Salge, D. Stöffler, and J. Urrutia Fucugauchi .............................................................. 4132 “Fingerprinting” Target Lithologies of the Chicxulub Crater in Ejecta from NE Mexico and Texas: Yucatán Subsurface Revisited P. Schulte, A. Kontny, and W. Stinnesbeck............................................................................................. 4090 Al-rich Orthopyroxenes in Impact Melt Coatings of Gneiss Bombs from Popigai, Russia — New ATEM Data A.-M. Seydoux-Guillaume, A. Deutsch, and R. Wirth............................................................................. 4085 Shocked Quartz at the Permian-Triassic Boundary (P/T) in Spiti Valley, Himalaya, India A. D. Shukla, N. Bhandari, and P. N. Shukla ......................................................................................... 4059 Cratering Process After Oblique Impacts V. V. Shuvalov ........................................................................................................................................ 4130 Mechanisms of Tsunami Generation by Impacts V. V. Shuvalov ........................................................................................................................................ 4131 Experimentally Shock-loaded Anhydrite: Unit-Cell Dimensions, Microstrain and Domain Size from X-Ray Diffraction R. Skála and F. Hörz .............................................................................................................................. 4093 Diaplectic Glass Content in Experimentally Shock-loaded Quartz Determined by X-Ray Powder Diffraction R. Skála, F. Hörz, and F. Langenhorst................................................................................................... 4033 Chilling Evidence for the Bulk Composition of the Impact Melt Sheet at Sudbury: Evidence from Offset Dykes J. G. Spray, A. J. Murphy, C. S. J. Shaw, and M. G. Tuchscherer ......................................................... 4101 Yaxcopoil-1 and the Chicxulub Impact W. Stinnesbeck, G. Keller, T. Adatte, M. Harting, and D. Stüben.......................................................... 4037 Origin and Emplacement of the Impact Formations at Chicxulub, Mexico, with Special Emphasis on the Yax-1 Deep Drilling D. Stöffler, B. A. Ivanov, L. Hecht, T. Kenkmann, R. T. Schmitt, T. Salge, F. Schönian, R. Tagle, S. Weseler, and A. Wittmann................................................................................................... 4092 Simulations of Very Large Impacts on the Earth V. V. Svetsov........................................................................................................................................... 4133 Large Meteorite Impacts (2003) 4015.pdf ESTIMATIONS OF AXIAL MOMENT OF THE GROWING EARTH G.V. Pechernikova, I.W. Davidenko, Institute for Dynamics of Geospheres RAS, 38 Lenin- sky prosp. (bldg. 1), 119334 Moscow, Russia, [email protected]. Introduction. 30 yrs of analytical modeling calculated according to analytical theory [5- and numerical simulation have revealed two 7] and impacts of largest bodies to the general stages in the terrestrial accretion planet are treated statistically. We assume process: 1) stage in which planetesimals ex- complete mergers upon collisions in all perience runaway growth and form lunar- cases. sized “planetary embryos” in approximately I. Analytical part. According to [5] we 105 − 106 years; and 2) final stage domi- have v = (Gm/θ r) 1/2 ∝ m 1/3, where θ ~ 2, m nated by mutual gravitational perturbations is the mass of the growing planet. Such 1/3 between embryos, resulting in large, sto- quantities as ∆R ≅eR ≅vR/V K ∝ m , σ d = 2/3 2 chastic impact events and formation of the σ 0 [1 –(m/m ⊕ ) ], σ 0 = 10 g/cm , M = [1 – 8 2/3 − 2/3 final terrestrial planets after about 10 (m/m ⊕ ) ]m, Q = (m/m ⊕ ) m (here V K is the years. Recent dynamical models of lunar Kepler circular velocity at the distance R, formation in the giant impact scenario have m ⊕ is the present Earth’ mass) are calcu- raised new complicating issues. It was lated as functions of m. The time of the shown that (a) the angular momentum of the planet growth to the mass m is Earth-Moon system could have resulted from 1/3 1/3 t=(t 0 /P ⊕ )ln[(1 + (m/m ⊕ ) )/(1 − (m/m ⊕ ) )], more than one impact, (b) the moon-forming where t 0 /P ⊕ = δ r⊕ /[2(1+2θ)σ 0 ]. impact may not have been the last large im- It is suggested that the angular momentum pact on the Earth [1-3]. vector for the axial spin of a planet K, in- Some tentative results of calculations of clined at an angle ε to axis z (z is perpen- mass increase of the planet m and corre- dicular to the orbital plane), is equal to the sponding planetary spin K in the new model sum of the regular component K , which is [4] are presented. Our aim is to estimate the 1 directed along axis z and the random com- number of macro-impacts (with masses m imp ponent K , which is inclined at an angle γ to > 1026 g) and impact angular momenta and 2 z. K is calculated as a function of mass m the evolution of planetary spins during the 1 according to [5, 6]. late stage of terrestrial planet formation in II. Simulation. We calculated a growth dy- the framework Standard Scenario of the So- namics beginning from the initial value of lar System formation [5-9] with the use of new model. the mass m = 0.001 m ⊕ . At every step of Up to now there is a competition between calculation, the values of parameters enu- the model where planets are gradually spun merated in the previous section were calcu- up and another model where a massive late- lated. Then, one