48 6.1 Sarala, P. & Nenonen, J. Tracing Mineralized Boulders And

Total Page:16

File Type:pdf, Size:1020Kb

48 6.1 Sarala, P. & Nenonen, J. Tracing Mineralized Boulders And 44 6.1 Hermanowski, P. et al. Hydrogeological aspects of the Weichselian glaciation in the Polish lowland area 45 6.1 Mäkinen, K. et al. National inventory of moraine formations in Finland 46 6.1 Ojalainen, J. et al A variety of glacial landforms and ice-flow indicators in the Kvarken Archipelago in Western Finland 47 6.1 Pasanen, A. Glaciotectonic deformation of till covered glaciofluvial deposits in Oulu region 48 6.1 Sarala, P. & Nenonen, Tracing mineralized boulders and till in the ribbed moraine J. area of Misi, northern Finland 49 7.1 Badjukov, D.D. & Ni-containing sulfides in impactites of the Lappajärvi, Raitala, J. Sääksjärvi, Suvasvesi South, and Paasselkä meteorite craters 50 7.1 Bäckström, A. et al. Gravity model of the Lockne Impact Crater 51 7.1 Dypvik, H. et al. The search for impact structures in Norway 52 7.1 Elbra, T. & Pesonen, Continental Deep Drilling – new challenges for geophysics L.J. 53 7.1 Frisk, Å.M. et al. The aftermath of marine impacts: Faunal recovery and sedimentation in the Ordovician Tvären crater, Sweden 54 7.1 Vishnevsky, S. et al. Popigai impact fluidizites: new data on opaques 55 7.1 Öhman, T. Dark veinlets in the granitoids of Saarijärvi, Söderfjärden and Lappajärvi impact structures 56 7.2 Aittola, M. et al. Geology of Noachis Terra, Mars 57 7.2 Bondarenko, N.V. et Roughness anisotropy of Venus surface. al. 58 7.2 Gurgurewicz, J. Erosional landforms and rock material in Noctis Labyrinthus (Valles Marineris, Mars) 59 7.2 Kreslavsky, M.A. et al. Impact Craters on the Northern Lowlands of Mars. 60 7.2 Lahtela, H. et al. Analysis of an enigmatic crater in Arabia Terra, Mars 61 7.2 Leitner, J.J. & Firneis, Comparison of Catalogue-Induced Heat Loss in Venusian M.G. Coronae 62 7.2 Törmänen, T.T. et al Morphological and topographical characteristics of Epona Corona, a multiple corona on Venus 63 8.1 Ahtola, T. et al. Kuovila wollastonite-calcite marble, a new potential GCC- deposit in SW Finland 64 8.1 Baarup Jensen, A. et White cement: mineralization and nodulisation effects caused al. by K2O, SO3, MgO and F 65 8.1 Bræstrup, F. et al. Analysis of (M2Cu2O3)7(CuO2)10, (M = Sr, Ca), spin-ladder composite compounds. 66 8.1 Drejer-Nielsen, M. et Crystal structure of bøgvadite al. 67 8.1 Nielsen, L.J. & Balic- Accuracy of Rietveld refinements of alkali feldspars Zunic, T. 68 8.1 Olsen, L.A. et al. Crystal structures of Pb-Bi sulfosalts under high pressure 69 8.1 Sarapää, O. et al. Exploration results and geology of the Lumikangas apatite- ilmenite gabbro, Kauhajoki, western Finland 70 9.1 Auri, J. & Räsänen, M. Early Weichselian interstadial lake deposits at Björkö Island, Kvarken Archipelago, Finland 71 9.1 Hellman, S.E.V et al. Validation of the REVEALS-model for southern Sweden Wednesday 11.1.2006 All the presentations are in running order 8.30- Plenary session, Room L3 Christmann, P. The European Construction: what perspectives for the geological community Pease., V. International Geoscience Program (IGCP), Sweden and a Nordic consortium Session 1. Room L3 9.10-9.50 Weihed, P. et al. Keynote Precambrian geodynamics and ore formation: the Fennoscandian Shield Session 1.4. Room L3 Pär Weihed 10.20- Edfelt, Å. et al. Apatite chemistry – a potential tool for IOCG exploration 10.40 10.40- Sundblad, K. et al. Source of lead in Mesozoic baryte-galena-sphalerite 11.00 mineralization at Svalbard 11.00- Segalstad, T.V. et al. Stable isotope evidence for Ba–Pb–Zn vein mineralizations 11.20 by fluid circulation in the sedimentary basin at Svalbard 11.20- Sorjonen-Ward, P. et al. The role of impermeable seals in convective hydrothermal 11.40 systems –numerical models and field examples 11.40- Peltonen, P. et al. Outokumpu revisited: New mineral deposit model for the 12.00 mantle peridotite -associated Cu-Co-Zn-Ni-Ag-Au sulphide deposits 13.30- Rassa, I. et al. Base metal and gold exploration in the Khuni area, Anarak, 13.50 Iran; an exploration case study in an arid environment 13.50- Hallberg, A. et al. The Grängesberg apatite-iron deposit – biggest in 14.10 Bergslagen, Sweden 14.10- Sorjonen-Ward, P. et al. Structural framework of the Outokumpu ore deposits – 14.30 geological and numerical modelling constraints 14.30- Mokrushin, A.V. & Smolkin, Features of chromite mineralization composition in 14.50 V.F. Paleoproterozoic Monchegorsk layered intrusion (Russia, Kola Peninsula) 14.50- Sundblad, K. et al. Evidence for volcanic-hosted Ag-Pb-Zn-Cd-As-Bi-bearing 15.10 hydrothermal mineralization in southern Sweden 15.10- Hosseini, M. & Liaghat, S. Ore reserve estimation of the Anomaly No.3 of the Gol-e- 15.30 Gohar iron mine (SW Sirjan, Iran) using ordinary kriging (OK) geostatistics 16.00- Årebäck, H. et al. Petrology and geochemistry of the Näsberget layered 16.20 intrusion, Skellefte district, Northern Sweden Session 1.1. Room L3 16.20- Eilu, P. Metal associations in genetic types of gold deposits 16.40 16-40- Nykänen, V. et al. Conceptual prospectivity analysis for IOCG mineralisation 17.00 in Finland 17.00- Ojala, V.J. et al Orogenic gold prospectivity mapping of the Central Lapland 17.20 greenstone belt, Northern Finland Session 13.1. Room L8 Kari Strand 9.10-9.50 Backman, J. Keynote First paleoceanographic drilling of Cenozoic sediments in the central Arctic Ocean 10.20- Ahokas, J.M. et al Geological Reservoir Characterization of Heterolithic 10.40 Sandstone Bodies, with reference to Northeast Greenland (Jameson Land) and the Mid-Norwegian Shelf (Halten Terrace) 10.40- Strand, K. et al. Implications of sediment composition changes for onset of 11.00 glaciation and glacial dynamics in Prydz Bay continental margin, Antarctica 11.00- van der Meer, J.J.M. & Barrett, P. Liquid water as far as the -30 degrees C isotherm in 11.20 Antarctica Session 9.2. Room L8 Matti Saarnisto 11.20- Saarnisto, M. Keynote Glacier and climate fluctuations during the last interglacial- 12.00 glacial cycle in northern Eurasia 13.30- Funder, S. et al. Early onset of The Gulf Stream System in the Eemian – 13.50 evidence from northern Russia 13.50- Jensen, M. Fluvial response to climate and sea level change during the 14.10 last interglacial - glacial cycle, Arkhangelsk region, NW Russia 14.10- Kortekaas, M. et al OSL chronology for a sediment core from the southern Baltic 14.30 Sea; a complete palaeoenvironmental record since deglaciation? 14.30- van Mourik, C.A. & Brinkhuis, The Massignano Eocene-Oligocene Global Stratigraphic 14.50 H. Section and Point revisited 14.50- Rubensdotter, L. & Rousse, S. Holocene slope activity impacting lacustrine sediment 15.10 archives in alpine environments Session 6.2. Room L8 Juha-Pekka Lunkka 15.10- Larsen, E. & Kjær, K.H. Late Pleistocene palaeoenvironmental changes in NW 15.30 Russia; Shifting ice sheet domains and proglacial lakes 16.00- Kjær, K.H. et al. Was shelf-ice collapse triggered by rapid sea-level rise in the 16.20 Barents Sea during MIS 3? 16.20- Fjellanger, J. et al. Palaeolandscapes and glaciations on the Varanger Peninsula, 16.40 Northern Norway 16-40- Sutinen, R. et al. Glacial morphology and paleohydrography suggest three 17.00 Weichselian ice advances in northern Finland 17.00- Mäkinen, K. Peräpohjola interstadial – A Middle Weichselian interstadial 17.20 17.20- Lyså, A. et al. The last deglaciation and Holocene period in western 17.40 Norway; fjord and lake sedimentation in the Nordfjord area. Session 7. Room L7 Jouko Raitala et al. 9.10-9.50 Ori, G.G. Keynote The geological history of a large lacustrine body on Mars: the Juventae Chasma Session 7.1. Room L7 10.20- Dypvik, H. et al. Did the Mjølnir asteroid impact ignite Barents Sea 10.40 hydrocarbon source rocks? 10.40- Kalleson, E. et al Post impact deposits in the Gardnos impact structure, 11.00 Norway 11.00- Bäckström, A. et al. ESIR at Ilumetsa – an example of international student 11.20 cooperation in impact crater research 11.20- Plado, J & the ESIR Working The Ilumetsa meteorite crater field, SE Estonia – results of 11.40 Group the geophysical campaign 11.40- Kohonen, J. & Vaarma, M. Sedimentary rocks in Finnish impact structures - pre-impact 12.00 or post-impact? 13.30- Öhman, T. et al. Polygonal craters of Argyre region, Mars – Clues to cratering 13.50 mechanics? 13.50- Ormö, J. et al. Influence of target on the cratering process: Laboratory 14.10 experiments, field observations and numerical simulations 14.10- Ruotsalainen, H.E. et al. Gravity survey of the Keurusselkä meteorite impact 14.30 structure 14.30- Tuisku, P. & Hanski, E. Planar deformation features in quartz phenocrysts from 14.50 Palaeoproterozoic felsic tuffs at Pechenga, Kola Peninsula, Russia 14.50- Versh, E. et al. Development of potential ecological niches in IHT systems: 15.10 the small-to-medium size impacts 15.10- Salminen, J. et al. New data for calibrating Kaapvaal craton’s apparent polar 15.30 wander path - Vredefort impact crater, South Africa Session 7.2. Room L7 16.00- Kohout, T. et al. Magnetic record of ordinary chondrite chondrules 16.20 16.20- Korteniemi, J. et al. HRSC mapping of crater floor depressions in Hellas region, 16.40 Mars 16-40- Kostama, V.-P. et al. Analysis of the Reull Vallis fluvial system, Mars. 17.00 17.00- Sharkov, E.V. & Bogatikov, O.A. Comparative study of tectonomagmatic evolution of the 17.20 Earth and the Moon 17.20- Raitala, J. et al. Alluvial fan in Icaria Planum, Mars. 17.40 17.40- Rice, J.W.
Recommended publications
  • Sinuous Ridges in Chukhung Crater, Tempe Terra, Mars: Implications for Fluvial, Glacial, and Glaciofluvial Activity Frances E.G
    Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity Frances E.G. Butcher, Matthew Balme, Susan Conway, Colman Gallagher, Neil Arnold, Robert Storrar, Stephen Lewis, Axel Hagermann, Joel Davis To cite this version: Frances E.G. Butcher, Matthew Balme, Susan Conway, Colman Gallagher, Neil Arnold, et al.. Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. Icarus, Elsevier, 2021, 10.1016/j.icarus.2020.114131. hal-02958862 HAL Id: hal-02958862 https://hal.archives-ouvertes.fr/hal-02958862 Submitted on 6 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Sinuous Ridges in Chukhung Crater, Tempe Terra, Mars: 2 Implications for Fluvial, Glacial, and Glaciofluvial Activity. 3 Frances E. G. Butcher1,2, Matthew R. Balme1, Susan J. Conway3, Colman Gallagher4,5, Neil 4 S. Arnold6, Robert D. Storrar7, Stephen R. Lewis1, Axel Hagermann8, Joel M. Davis9. 5 1. School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6 6AA, UK. 7 2. Current address: Department of Geography, The University of Sheffield, Sheffield, S10 8 2TN, UK ([email protected]).
    [Show full text]
  • WHAT IS the VREDEFORT DOME TEACHING US ABOUT the SEARCH for OTHER ERODED LARGE IMPACT STRUCTURES? Roger L
    Bridging the Gap III (2015) 1045.pdf WHAT IS THE VREDEFORT DOME TEACHING US ABOUT THE SEARCH FOR OTHER ERODED LARGE IMPACT STRUCTURES? Roger L. Gibson, School of Geosciences, University of the Witwatersrand, PO WITS, Johannesburg 2050, South Africa; [email protected]. Introduction: Vredefort has long been held to be extent of these breccias cannot be used as an indicator the oldest, largest and most deeply exhumed impact of the original limits of the impact structure. structure on Earth; however, in recent years its pre- With at least half the vertical extent of continental eminence in all three aspects has been challenged. crust typically being crystalline, a major problem may Evaluating the scientific debate around the claims of arise with trying to identify central uplifts on lithologi- the challengers [1,2,3] to these titles invokes a sense of cal or geophysical grounds; and traces of the wider déjà vu when one considers the decades-long history of crater dimensions are even less likely to be defined. debate about whether Vredefort itself originated by Age: The 2020 ± 5 Ma age of the Vredefort impact impact. This presentation briefly reviews the debate is based on U-Pb single-zircon geochronology of a around the impact-related features in the Vredefort variety of melt types. Dating of igneous zircons from Dome, with the main focus being the extent and inten- the impact-melt rock has been complemented by others sity of impact-induced thermal effects that play a sig- from voluminous pseudotachylitic breccias from the nificant role in masking potential diagnostic features.
    [Show full text]
  • A PROTEROZOIC 40Ar/39Ar AGE for the SUVASVESI SOUTH STRUCTURE (FINLAND)
    72nd Annual Meteoritical Society Meeting (2009) 5076.pdf A PROTEROZOIC 40Ar/39Ar AGE FOR THE SUVASVESI SOUTH STRUCTURE (FINLAND). E. Buchner1, M. Schmieder1, W. H. Schwarz2, M. Trieloff2, J. Moilanen3, T. Öhman4 and H. Stehlik5. 1Institut für Planetologie, Universität Stuttgart, D-70174 Stuttgart, Germany. Email: [email protected]. 2Institut für Geowissenschaften, Universität Heidelberg, D-69120 Heidelberg. 3Pinkelikatu 6 B 48, FI-90520 Oulu, Finland. 4Department of Geosciences, FI-90014 University of Oulu, Finland. 5Hagedornweg 2/2/12, A-1220 Vienna, Austria Introduction: The Suvasvesi North (diameter ~3.5 km) and South (diameter ~4.0 km) structures [1-3] in Finland are thought to represent a double impact crater system, similar to the Clearwater lakes in Canada [4]. As no isotopic data have so far been available, only the age of the ~1.88 Ga Paleoproterozoic (and some ~2.7 Ga Archean) crystalline target rocks of the Baltic Shield [1] is cited as the maximum impact age. Paleomagnetic data suggested either a Permo-Triassic (~230-280 Ma) or a Neoproterozoic (770-790 Ma) age for the Suvasvesi North impact structure [4,5]. We here present the first 40Ar/39Ar age for the Suvasvesi South structure. Samples and analytical procedure: Clast-poor particles of impact melt rock (87.1 mg) recovered by one of the authors (J. M.) from the Mannamäki area were chosen for 40Ar/39Ar dat- ing at the University of Heidelberg [6,7]. Results and interpretation: 40Ar/39Ar step-heating analysis yielded no plateau within a perturbed, hump-shaped [8] age spectrum with younger apparent ages (~100-450 Ma) within the low-temperature (T) heating steps (~13% of 39Ar released), older apparent ages (~820 Ma) in the mid-T fractions (~47% of 39Ar), and intermediate apparent ages (~715-710) Ma in the four final high-T steps (~40% of 39Ar).
    [Show full text]
  • Sinuous Ridges in Chukhung Crater, Tempe Terra, Mars: Implications for Fluvial, Glacial, and Glaciofluvial Activity
    This is a repository copy of Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166644/ Version: Published Version Article: Butcher, F.E.G. orcid.org/0000-0002-5392-7286, Balme, M.R., Conway, S.J. et al. (6 more authors) (2021) Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. Icarus, 357. 114131. ISSN 0019-1035 https://doi.org/10.1016/j.icarus.2020.114131 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Journal Pre-proof Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity Frances E.G. Butcher, Matthew R. Balme, Susan J. Conway, Colman Gallagher, Neil S. Arnold, Robert D. Storrar, Stephen R. Lewis, Axel Hagermann, Joel M. Davis PII: S0019-1035(20)30473-5 DOI: https://doi.org/10.1016/j.icarus.2020.114131 Reference: YICAR 114131 To appear in: Icarus Received date: 2 June 2020 Revised date: 19 August 2020 Accepted date: 28 September 2020 Please cite this article as: F.E.G.
    [Show full text]
  • Global Spectral Classification of Martian Low-Albedo Regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) Data A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E02004, doi:10.1029/2006JE002726, 2007 Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data A. Deanne Rogers,1 Joshua L. Bandfield,2 and Philip R. Christensen2 Received 4 April 2006; revised 12 August 2006; accepted 13 September 2006; published 14 February 2007. [1] Martian low-albedo surfaces (defined here as surfaces with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) albedo values 0.15) were reexamined for regional variations in spectral response. Low-albedo regions exhibit spatially coherent variations in spectral character, which in this work are grouped into 11 representative spectral shapes. The use of these spectral shapes in modeling global surface emissivity results in refined distributions of previously determined global spectral unit types (Surface Types 1 and 2). Pure Type 2 surfaces are less extensive than previously thought, and are mostly confined to the northern lowlands. Regional-scale spectral variations are present within areas previously mapped as Surface Type 1 or as a mixture of the two surface types, suggesting variations in mineral abundance among basaltic units. For example, Syrtis Major, which was the Surface Type 1 type locality, is spectrally distinct from terrains that were also previously mapped as Type 1. A spectral difference also exists between southern and northern Acidalia Planitia, which may be due in part to a small amount of dust cover in southern Acidalia. Groups of these spectral shapes can be averaged to produce spectra that are similar to Surface Types 1 and 2, indicating that the originally derived surface types are representative of the average of all low-albedo regions.
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]
  • Rocks, Soils and Surfaces: Teacher Guide
    National Aeronautics and Space Administration ROCKS, SOILS, AND SURFACES Planetary Sample and Impact Cratering Unit Teacher Guide Goal: This activity is designed to introduce students to rocks, “soils”, and surfaces on planetary worlds, through the exploration of lunar samples collected by Apollo astronauts and the study of the most dominant geologic process across the Solar System, the impact process. Students will gain an understanding of how the study of collected samples and impact craters can help improve our understanding of the history of the Moon, Earth, and our Solar System. Additionally, this activity will enable students to gain experience with scientific practices and the nature of science as they model skills and practices used by professional scientists. Objectives: Students will: 1. Make observations of rocks, “soil”, and surface features 2. Gain background information on rocks, “soil”, and surface features on Earth and the Moon 3. Apply background knowledge related to rocks, soils, and surfaces on Earth toward gaining a better understanding of these aspects of the Moon. This includes having students: a. Identify common lunar surface features b. Create a model lunar surface c. Identify the three classifications of lunar rocks d. Simulate the development of lunar regolith e. Identify the causes and formation of impact craters 4. Design and conduct an experiment on impact craters 5. Create a plan to investigate craters on Earth and on the Moon 6. Gain an understanding of the nature of science and scientific practices by: a. Making initial observations b. Asking preliminary questions c. Applying background knowledge d. Displaying data e. Analyzing and interpreting data Grade Level: 6 – 8* *Grade Level Adaptations: This activity can also be used with students in grades 5 and 9-12.
    [Show full text]
  • Supportive Comment On: “Morphology and Population of Binary Asteroid
    *Manuscript Click here to view linked References 1 Supportive comment on: “Morphology and population of binary asteroid 2 impact craters” , by K. Miljković , G. S. Collins, S. Mannick and P. A. 3 Bland [Earth Planet. Sci. Lett. 363 (2013) 121 –132] – An updated 4 assessment 5 6 Martin Schmieder 1,2 , Mario Trieloff 3, Winfried H. Schwarz 3, Elmar Buchner 4 and Fred Jourdan 2 7 1School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 8 2Western Australian Argon Isotope Facility, Department of Applied Geology and JdL Centre, Curtin University, GPO Box 9 U1987, Perth, WA 6845, Australia 10 3Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120 Heidelberg, Germany 11 4HNU-Neu-Ulm University, Edisonallee 5, D-89231 Neu-Ulm, Germany 12 13 In their recent paper, Miljković et al. (2013) assess the appar ent contradiction that the near-Earth asteroid population 14 consists of 15% binaries, while the terrestrial (and Martian) impact crater populations have only 2-4% of observable 15 doublet craters. The authors suggest that only a small fraction of sufficiently well separated binary asteroids yield 16 recognizable doublets. We generally agree with the conclusions by Miljković et al. (2013) and acknowledge the high 17 quality and relevance of the study. However, we would like to bring into focus additional geochronologic constraints 18 that are critical when evaluating terrestrial impact crater doublets. Miljković et al. (2013) appraised five potential 19 terrestrial doublets using the Earth Impact Database (EID; as of 2010). We hereby warn against the indiscriminate 20 usage of impact ages compiled in this database without an assessment based on solid isotopic and stratigraphic 21 constraints and comment on the geological, geochronological, and geochemical evidence for doublet impact craters 22 on Earth.
    [Show full text]
  • Ni in Impactite Sulphides in the Lappajärvi, Sääksjärvi, Suvasvesi S, 1,2 and Paasselkä Meteorite Craters in Finland
    Lunar and Planetary Science XXXVII (2006) 1676.pdf NI IN IMPACTITE SULPHIDES IN THE LAPPAJÄRVI, SÄÄKSJÄRVI, SUVASVESI S, 1,2 AND PAASSELKÄ METEORITE CRATERS IN FINLAND. D. D. BADJUKOV AND J. 2 1 RAITALA ; V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, 119991, 19, Kosygin str., Moscow, Russia ([email protected]), 2University of Oulu, P.O. Box 3000, FIN-90401, Oulu, Finland ([email protected]) Introduction: The craters are situated in Bravoite is present also in strongly re- the central part of Finland and were formed crystallized impact melt rocks of the in crystalline rocks. The melt rocks at these Paasselkä impact crater. Finnish meteorite craters are enriched in According to morphologic and siderophile elements and other meteoritic composition features, a fraction of sulphides components [1,2]. Contents of a meteoritic and metal in Lappajärvi and Sääksjärvi matter are around 2 – 0.1 % of a nominal CI impactites are a shock re-worked meteorite component and the distributions are matter, that experienced shock-induced heterogeneous on a fine scale [3,4]. melting or, less likely, are condensates of Sulphides in the impact melt rocks are main impact generated vapour cloud [5]. carriers of siderophile elements, especially Other fraction of sulphides and metal for Ni and Co. with low Ni and Co contents has terrestrial The studied impactites: The Lappajärvi origin and formed by shock melting of a melt rocks contain pyrrhotite droplets and target. The reduced from target rocks and oxide-silicate globules (d < 2 mm) rich in Ni Fe-sulphide metal suggests to be slightly rimmed by pyrrhotite and occasionally with enriched in Ni and Co due to presence of pentlandite and chalcopyrite.
    [Show full text]
  • Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report
    PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies Space Studies Board Aeronautics and Space Engineering Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NNH06CE15B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.
    [Show full text]
  • Structural Analysis of the Collar of the Vredefort Dome, South Africa— Significance for Impact-Related Deformation and Central Uplift Formation
    Meteoritics & Planetary Science 40, Nr 9/10, 1537–1554 (2005) Abstract available online at http://meteoritics.org Structural analysis of the collar of the Vredefort Dome, South Africa— Significance for impact-related deformation and central uplift formation Frank WIELAND, Roger L. GIBSON*, and Wolf Uwe REIMOLD Impact Cratering Research Group, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. Wits 2050, Johannesburg, South Africa *Corresponding author. E-mail: [email protected] (Received 25 October 2004; revision accepted 13 July 2005) Abstract–Landsat TM, aerial photograph image analysis, and field mapping of Witwatersrand supergroup meta-sedimentary strata in the collar of the Vredefort Dome reveals a highly heterogeneous internal structure involving folds, faults, fractures, and melt breccias that are interpreted as the product of shock deformation and central uplift formation during the 2.02 Ga Vredefort impact event. Broadly radially oriented symmetric and asymmetric folds with wavelengths ranging from tens of meters to kilometers and conjugate radial to oblique faults with strike-slip displacements of, typically, tens to hundreds of meters accommodated tangential shortening of the collar of the dome that decreased from ∼17% at a radius from the dome center of 21 km to <5% at a radius of 29 km. Ubiquitous shear fractures containing pseudotachylitic breccia, particularly in the metapelitic units, display local slip senses consistent with either tangential shortening or tangential extension; however, it is uncertain whether they formed at the same time as the larger faults or earlier, during the shock pulse. In addition to shatter cones, quartzite units show two fracture types—a cm- spaced rhomboidal to orthogonal type that may be the product of shock-induced deformation and later joints accomplishing tangential and radial extension.
    [Show full text]
  • Mars Water Posters
    Lunar and Planetary Science XXXVII (2006) sess608.pdf Thursday, March 16, 2006 POSTER SESSION II: MARS FLOWING AND STANDING WATER 7:00 p.m. Fitness Center Bargery A. S. Wilson L. Modelling Water Flow with Bedload on the Surface of Mars [#1218] We theorise the thermodynamical effects of entrainment of eroded cold rock and ice on proposed aqueous flow on the surface of Mars, at temperatures well below the triple point, with an upper surface exposed to the Martian atmosphere. Keszthelyi L. O’Connell D. R. H. Denlinger R. P. Burr D. A 2.5D Hydraulic Model for Floods in Athabasca Valles, Mars [#2245] We present initial results from the application of a new numerical model to floods in Athabasca Valles, Mars. Issues with the sparseness of MOLA data are of concern. Collier A. Sakimoto S. E. H. Grossman J. A. Silliman S. E. Parametric Study of Martian Floods at Cerberus Fossae [#2313] Recent studies of Athabasca Valles use values that may be artificially constrained. A set of Earth-derived values are proposed to be used when calculating flow rates. This will allow for the determination of the formation events of Athabasca Valles with greater accuracy. Gregoire-Mazzocco H. Stepinski T. F. McGovern P. J. Lanzoni S. Frascati A. Rinaldo A. Martian Meanders: Wavelength-Width Scaling and Flow Duration [#1185] Martian meanders reveals linear wavelength/width scaling with a coef. k~10, that can be used to estimate discharges. Simulations of channel evolution are used to determine flow duration from sinuosity. Application to Nirgal Vallis yields 200 yrs. Howard A.
    [Show full text]