Redalyc.Nuclear-Follower Foraging Associations Among Characiformes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Relationships Within the Speciose Family Characidae
Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. -
Download the September 2010 Issue
WORLDPublished by International Rivers Vol. 25 / No. 3 Sept. 2010 RIVERS INSIDE REVIEW Special Focus: Rivers, Water and Climate Down and Out Downstream Interview New Study Documents the Forgotten Victims of Dams Dr. Margaret Palmer, an expert on rivers and climate by Peter Bosshard change, tells us what to expect in a warming world n the 1970s, – and how to fix it. Page 4 Kharochan was I a bustling town Africa in Pakistan’s Indus Mapping the continent’s Delta. The local hydro-dependency and farmers grew rice, climate risk. Page 5 peas, coconuts, mango and guava Dam Safety on their rich soils. Increases in torrential rains From the nearby caused a number of recent harbor Sokhi dam failures. Page 6 Bandar – the “Port of the Prosper- Water and climate ous” – traders Sandra Postel on adapting exported silk, to a new normal. Page 8 rice and wood. When I visited in 2006, no traces of prosperity were left in Kharochan. The port had been An Indus Delta fisherman – one of 472,000 downstream victims of large dams. swallowed by Photo: Ann-Kathrin Schneider the sea, and the groundwater had and its sediments no longer was recently published in become saline in large parts replenish the delta. As a con- a special issue on dams of of the delta. A white crust of sequence, Pakistani experts the online journal Water salt covered the earth, and told me, 8,800 square kilome- Alternatives. turned Kharochan’s fertile ters of agricultural land have The number was calcu- fields into parched land. been lost to the sea since dam lated using a database of all More than half the region’s building began – an area the rivers that have at least one- population lived below the size of Puerto Rico. -
Cytogenetic Studies in Some Apareiodon Species (Pisces, Parodontidae)
C 2000 The Japan Mendel Society Cytologia 65: 397-402,2000 Cytogenetic Studies in Some Apareiodon Species (Pisces, Parodontidae) Celia Maria de Jesus* and Orlando Moreira-Filho Departamento de Genetica e Evolucbo, Universidade Federal de Sdo Carlos Rodovia Washington Luis, km 235, Caixa Postal 676, CEP 13565-905, Sdo Carlos, SP, Brasil Accepted September 8, 2000 Summary Cytogenetic studies in 6 species of Apareiodon (Pisces, Parodontidae) from different Brazilian hydrographic basins showed a diploid number equal to 2n=54 chromosomes and the ab- sence of morphologically differentiated sex chromosomes. Although the diploid and the fundamental numbers had been constant, some differences were observed concerning the karyotypic structure of the species. A. ibitiensis, Apareiodon sp. A and Apareiodon sp. B presented 50M/SM+4ST chromo- somes, while A. piracicabae, A. vittatus and Apareiodon sp. C presented 52M/SM+2ST ones. Apareiodon piracicabae showed a polymorphism in relation to the number and position of the nucle- olar organizer regions (NORs), while A. vittatus showed a variation in the NORs size. The available data indicate that the Parodontidae family have been submitted to a chromosomal diversification dur- ing their species differentiation process, despite the maintenance of the same diploid number. Key words Apareiodon, Karyotypic evolution, NOR, C-band. The Characiformes fish are widely distributed in the neotropical region, showing a wide varia- tion in the diploid number. Two general trends in the chromosomal evolution can be observed in this order. In fact, some groups show a heterogeneous evolutionary with a diversity in the chromo- some number and the karyotypic structure. In contrast, a more homogenous pattern can be observed in other groups, leading to a relatively stable karyotypes. -
Prosodic Distinctions Between the Varieties of the Upper Xingu Carib Language: Results of an Acoustic Analysis
AMERINDIA n°35, 2011 Prosodic distinctions between the varieties of the Upper Xingu Carib language: results of an acoustic analysis Glauber Romling da SILVA & Bruna FRANCHETTO UFRJ, CNPq 1. Introduction: the Upper-Xingu Carib language and its varieties The Carib subsystem of Upper Xingu consists of four local groups: the Kuikuro (four villages, with a fifth one being formed), the Matipu and Nahukwá (who live together in three villages), and the Kalapalo (two villages). All these groups speak a language which belongs to one of the two meridional branches of the Carib family (Meira & Franchetto 2005), and which nowadays presents two main varieties: one spoken by the Kuikuro and the younger Matipu generations, and the other spoken by the Kalapalo and the Nahukwá. Franchetto (2001) states that “we could establish a common origin of the Upper-Xingu Carib from which the first big division would have unfolded (Kalapalo/Nahukwá vs. Kuikuro/Matipu).” These two varieties distinguish themselves by lexical as well as rhythmic differences. According to Franchetto (2001: 133), “in the Carib subsystem of the Culuene river, the interplay between socio-political identities of the local groups (ótomo) is based on distinct rhythmic and prosodic structures”. Speakers express themselves metaphorically when talking about their linguistic identities. From a Kuikuro point of view (or 42 AMERINDIA n°35, 2011 from whom is judging the other) we get the assumption of speaking ‘straight’ (titage) as opposed to speaking as the Kalapalo/Nahukwá do, which is ‘in curves, bouncy, wavy’ (tühenkgegiko) or ‘backwards’ (inhukilü) (Franchetto 1986; Fausto, Franchetto & Heckenberger 2008). In any case, the idea of ‘straightness’ as a way of speaking reveals a value judgment with regard to what it is not. -
How to Integrate Ethnographical Data Into Linguistic Documentation: Some Remarks from the Kuikuro Project (Dobes, Brazil)
HOW TO INTEGRATE ETHNOGRAPHICAL DATA INTO LINGUISTIC DOCUMENTATION: SOME REMARKS FROM THE KUIKURO PROJECT (DOBES, BRAZIL) Bruna Franchetto Universidade Federal do Rio de Janeiro Museu Nacional Quinta da Boa Vista Rio de Janeiro – Brazil [email protected] ABSTRACT Ethnographical information is an important component of the endangered languages documentation. If the wider goal of such a documentation is not only to collect texts and a lexicon, but also to present and preserve the cultural heritages of the documented languages, one must associate proper ethnographical information with the annotation of linguistic data and with lexical databases. The integration of linguistic and ethnographic data in a comprehensive archive is certainly not an easy task. Moreover, the participation of the indigenous community and individuals as active producers of the documentation work should be a condition sine qua non to achieve satisfactory results of the whole enterprise. Drawing on the experience of the Kuikuro Project/DOBES Program, we will address in this article the following topics: (1) the necessity of the inclusion of a good sketch ethnography in the archive ; (2) the problem of the glossing and definition of cultural traditional categories as kinship terms and key abstract and almost intranslatable notions; (3) the multiple links that should be constructed across the components of the archive in order to assure to the users a satisfactory understanding of the cultural significance of the linguistic data. Ethnographical information must be considered as documented languages, one must associate proper a crucial component of every endangered language ethnographical information with the annotation of linguistic documentation; it is a crucial component of the projects data. -
A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their -
Indigenous Territories and Governance of Forest Restoration in the Xingu River (Brazil)
Land Use Policy xxx (xxxx) xxxx Contents lists available at ScienceDirect Land Use Policy journal homepage: www.elsevier.com/locate/landusepol Indigenous territories and governance of forest restoration in the Xingu River (Brazil) Rosely Alvim Sanchesa,*, Célia Regina Tomiko Futemmaa, Heber Queiroz Alvesb a State University of Campinas, Rua dos Flamboyants, 155, Cidade Universitária Zeferino Vaz Barão Geraldo, CEP 13083-867, Campinas, SP, Brazil b Socioenvironmental Institute, Av. São Paulo, 202, CEP:78640-000, Canarana, MT, Brazil ARTICLE INFO ABSTRACT Keywords: During the early 2000s, indigenous and non-indigenous peoples inhabiting the headwaters of the Xingu River Amazon (Mato Grosso state, Brazil) engaged in a collective decision to undertake the `Y Ikatu Xingu Campaign, a social Xingu river phenomenon and forum for the restoration and protection of Xingu’s headwaters and riparian forests–a common- Environmental governance pool resources shared by indigenous, farmers, and urban populations in the region. These areas have been Forest restoration significantly deforested over the last 50 years due to public policies and land privatization aiming at economic Collective action network development, agricultural and agribusiness expansion in Central and Amazonian Brazil. These political and economic drivers contributed to the conversion of five million hectares of Seasonal Evergreen Forests and Cerrados (Brazilian savanna) into agricultural land. In order to reverse the damaging trends of the future of the Xingu River and promote common benefits to indigenous and non-indigenous peoples, the Campaign fostered the creation of the Xingu Seed Network to promote exchange and commercialization of native seeds demanded by farmers and landholders for planting and restoring permanent preservation areas, such as riparian forests, and vegetation associated with lakes and springs of the Suiá-Miçu River Basin. -
Nuclear-Follower Foraging Associations Among Characiformes Fishes And
Biota Neotrop., vol. 11, no. 4 Nuclear-follower foraging associations among Characiformes fishes and Potamotrygonidae rays in clean waters environments of Teles Pires and Xingu rivers basins, Midwest Brazil Domingos Garrone Neto1,3 & Lucélia Nobre Carvalho2 1Laboratório de Pesquisa de Elasmobrânquios, Universidade Estadual Paulista, Campus Experimental do Litoral, CEP 11330-900, São Vicente, SP, Brazil 2Núcleo de Estudos de Biodiversidade da Amazônia Mato-grossense – NEBAM, Instituto de Ciências Naturais, Humanas e Sociais – ICNHS, Universidade Federal do Mato Grosso – UFMT, CEP 78557-267, Sinop, Mato Grosso, MT, Brazil 3Corresponding author: Domingos Garrone Neto, e-mail: [email protected]. GARRONE NETO, D. & CARVALHO, L.N. Nuclear-follower foraging associations among Characiformes fishes and Potamotrygonidae rays in clean waters environments of Teles Pires and Xingu rivers basins, Midwest Brazil. Biota Neotrop. 11(4): http://www.biotaneotropica.org.br/v11n4/en/abstract?short- communication+bn01511042011 Abstract: During under and overwater observations were recorded nuclear-follower foraging associations among three species of characiform fishes – Chalceus epakros, Hemiodus semitaeniatus and Hemiodus unimaculatus - and a freshwater stingray species - Potamotrygon orbignyi – in the Teles Pires and Xingu rivers basins, Midwest Brazil. The teleost fishes were observed closely following the stingrays during the behavior of stirring the substrate to uncover invertebrates, which cause discrete sediment clouds. Apparently this sediment perturbation attracts the fishes that approached the foraging stingrays to feed on small preys and other food types exposed this way. This is a typical example of a commensal relationship in which one participant is benefited while the other is unaffected, and represents the second published record of nuclear-follower feeding association between potamotrygonid rays and teleost fishes, demonstrating the potential of naturalistic studies in discovering new interactions involving species of freshwater fish. -
Biologia E Ecologia Trófica De Hemiodus Unimaculatus
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA AQUÁTICA E PESCA PAULO ARTHUR DE ABREU TRINDADE BIOLOGIA E ECOLOGIA TRÓFICA DE Hemiodus unimaculatus (BLOCH, 1794) (CHARACIFORMES: HEMIODONTIDAE) NO RIO ARAGUARI, NA ÁREA DE INFLUÊNCIA DA USINA HIDRELÉTRICA COARACY NUNES, AMAPÁ, BRASIL. BELÉM, PA 2012 PAULO ARTHUR DE ABREU TRINDADE BIOLOGIA E ECOLOGIA TRÓFICA DE Hemiodus unimaculatus (BLOCH, 1794) (CHARACIFORMES: HEMIODONTIDAE) NO RIO ARAGUARI, NA ÁREA DE INFLUÊNCIA DA USINA HIDRELÉTRICA COARACY NUNES, AMAPÁ, BRASIL. Dissertação submetida ao Programa de Pós- Graduação em Ecologia Aquática e Pesca da Universidade Federal do Pará como requisito para obtenção do grau de Mestre em Ecologia Aquática e Pesca. Orientadora: Profa. Dra. Victoria Judith Isaac Nahum. Instituto de Ciências Biológicas/ICB – UFPA. BELÉM, PA 2012 PAULO ARTHUR DE ABREU TRINDADE BIOLOGIA E ECOLOGIA TRÓFICA DE Hemiodus unimaculatus (BLOCH, 1794) (CHARACIFORMES: HEMIODONTIDAE) NO RIO ARAGUARI, NA ÁREA DE INFLUÊNCIA DA USINA HIDRELÉTRICA COARACY NUNES, AMAPÁ, BRASIL. Dissertação submetida ao Programa de Pós- Graduação em Ecologia Aquática e Pesca da Universidade Federal do Pará como requisito para obtenção do grau de Mestre em Ecologia Aquática e Pesca. Orientadora: ________________________________ Profa. Dra. Victoria Judith Isaac Nahum Instituto de Ciências Biológicas/ICB – UFPA Banca examinadora: ________________________________ Prof. Dr. Maurício Camargo Zorro Instituto Federal de Educação, Ciência e Tecnologia do Pará -
Fish, Marmelos Conservation Area (BX044), Madeira River Basin, States of Amazonas and Rondônia, Brazil
Check List 3(4): 291–296, 2007. ISSN: 1809-127X LISTS OF SPECIES Fish, Marmelos Conservation Area (BX044), Madeira River basin, states of Amazonas and Rondônia, Brazil. Mauricio Camargo 1, 2 Tommaso Giarrizzo 1 1 Laboratório de Biologia Pesqueira e Manejo de Recursos Aquáticos, Universidade Federal do Pará. Avenida Perimetral 2651. CEP 666100-425. Belém, PA, Brazil. E-mail: [email protected] 2 Centro Federal de Educação Tecnológica do Pará. Avenida Almirante Barroso 1155. CEP 66093-020. Belém, PA, Brazil. Abstract: The present study provides a species list of fish from the Marmelos River Area – BX044 in the states of Amazonas and Rondônia in northern Brazil. During a Rapid Ecological Assessment (REA) performed in October and November of 2003, 133 fish species from six orders and 24 families were recorded. The most diverse families were Characidae (47 species), Cichlidae (15 species), Loricariidae (12 species) and Pimelodidae (7 species). 23 fish species were common to the entire river basin and 4 were endemic to the aquatic system studied. Introduction In the most recent Brazilian Workshop held in patterns of occurrence of the different taxa Macapá City in 1999 to define priorities for the (Camargo et al. 2005). This approach also conservation and sustainable use of the Amazon, contributes toward determining priorities for the Marmelos Area (BX044) was indicated as an regional conservation. A level priority for the assessment of fish fauna and other vertebrates. The Marmelos BX044 area Knowledge on fish fauna diversity is important in is a unique ecosystem in the Brazilian Amazon, defining potential land use. The ecological encompassing different forest formations, such as importance and geographic location determine the patches of grassland, Ombrophylus closed forest, role of this area as an ecological corridor between open forest and savannas. -
Parodon Orinocensis(Bonilla Et Al., 1999) (Characiformes: Parodontidae)
Neotropical Ichthyology, 10(3):561-566, 2012 Copyright © 2012 Sociedade Brasileira de Ictiologia Parodon orinocensis (Bonilla et al., 1999) (Characiformes: Parodontidae): emendations and generic reallocation Leonardo F. S. Ingenito1,, Carla S. Pavanelli2 and Francisco Provenzano3 During recent studies on Parodontidae, specimens of the Venezuelan species Parodon orinocensis (Bonilla, Machado-Allison, Silvera, Chernoff, López & Lasso, 1999) were examined and a few incongruencies with the original description of the species were noted. Emendations to the descriptions of the jaw teeth and color pattern are presented. Three autapomorphies were also observed and are listed herein. The species is moved from genus Apareiodon to Parodon based on presence of dentary teeth. Durante estudos recentes sobre Parodontidae, espécimes da espécie venezuelana Parodon orinocencis (Bonilla, Machado- Allison, Silvera, Chernoff, López & Lasso, 1999) foram examinados e reconhecidas algumas incongruências na descrição original. Foram realizadas retificações relacionadas aos dentes das maxilas e ao padrão de coloração. Três autapomorfias foram observadas e são aqui listadas. Com base na presença de dentes no dentário a espécie é transferida do gênero Apareiodon para o gênero Parodon. Key words: Freshwater fish, Neotropical, Ostariophysi, Río Orinoco basin, Taxonomy. Introduction from that basin, A. orinocensis. Based on the classic tooth characterization of the parodontid genera, those authors Parodontidae Eigenmann, 1910 is a small characiform allocated their new species to the genus Apareiodon, since family composed by three currently valid genera, Parodon the species was held to have an edentulous lower jaw. After Valenciennes, 1849, Saccodon Kner, 1863 and Apareiodon examining extensive parodontid material from Venezuela, Eigenmann, 1916, and 32 valid species (Pavanelli, 1999; including the holotype (MBUCV-V 29170) and paratypes Pavanelli, 2003; Pavanelli & Britski, 2003; Ingenito & Buckup, (MBUCV-V 26669) of A. -
Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes 2 Aaron N. Rice1*, Stacy C. Farina2, Andrea J. Makowski3, Ingrid M. Kaatz4, Philip S. Lobel5, 3 William E. Bemis6, Andrew H. Bass3* 4 5 1. Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 6 Sapsucker Woods Road, Ithaca, NY, USA 7 2. Department of Biology, Howard University, 415 College St NW, Washington, DC, USA 8 3. Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 9 USA 10 4. Stamford, CT, USA 11 5. Department of Biology, Boston University, 5 Cummington Street, Boston, MA, USA 12 6. Department of Ecology and Evolutionary Biology and Cornell University Museum of 13 Vertebrates, Cornell University, 215 Tower Road, Ithaca, NY, USA 14 15 ORCID Numbers: 16 ANR: 0000-0002-8598-9705 17 SCF: 0000-0003-2479-1268 18 WEB: 0000-0002-5669-2793 19 AHB: 0000-0002-0182-6715 20 21 *Authors for Correspondence 22 ANR: [email protected]; AHB: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.