Cockayne Syndrome Group B (CSB): the Regulatory Framework Governing the Multifunctional Protein and Its Plausible Role in Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deficiency in the DNA Repair Protein ERCC1 Triggers a Link Between Senescence and Apoptosis in Human Fibroblasts and Mouse Skin
Lawrence Berkeley National Laboratory Recent Work Title Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Permalink https://escholarship.org/uc/item/73j1s4d1 Journal Aging cell, 19(3) ISSN 1474-9718 Authors Kim, Dong Eun Dollé, Martijn ET Vermeij, Wilbert P et al. Publication Date 2020-03-01 DOI 10.1111/acel.13072 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 10 June 2019 | Revised: 7 October 2019 | Accepted: 30 October 2019 DOI: 10.1111/acel.13072 ORIGINAL ARTICLE Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin Dong Eun Kim1 | Martijn E. T. Dollé2 | Wilbert P. Vermeij3,4 | Akos Gyenis5 | Katharina Vogel5 | Jan H. J. Hoeijmakers3,4,5 | Christopher D. Wiley1 | Albert R. Davalos1 | Paul Hasty6 | Pierre-Yves Desprez1 | Judith Campisi1,7 1Buck Institute for Research on Aging, Novato, CA, USA Abstract 2Centre for Health Protection Research, ERCC1 (excision repair cross complementing-group 1) is a mammalian endonuclease National Institute of Public Health and that incises the damaged strand of DNA during nucleotide excision repair and inter- the Environment (RIVM), Bilthoven, The −/Δ Netherlands strand cross-link repair. Ercc1 mice, carrying one null and one hypomorphic Ercc1 3Department of Molecular Genetics, allele, have been widely used to study aging due to accelerated aging phenotypes Erasmus University Medical Center, −/Δ Rotterdam, The Netherlands in numerous organs and their shortened lifespan. Ercc1 mice display combined 4Princess Máxima Center for Pediatric features of human progeroid and cancer-prone syndromes. -
Elio™ Plasma Complete
™ elio plasma complete About PGDx elioTM plasma complete PGDx elio™ plasma complete is an end-to-end kitted liquid biopsy solution that analyzes circulating tumor DNA for genetic alterations in cancer, eliminating the need for an invasive biopsy or tumor tissue. Designed to be used across the globe on the PGDx elio™ testing platform, PGDx elio plasma complete also includes automated bioinformatics ensuring consistent, high-quality results. What does PGDx elioTM mean? Assay Specifications Empowering Local PARAMETER DETAILS Insight for Oncology Panel Size 2.1MB 521 genes for SNV & Indels 38 genes for amplifications 21 genes for translocations Panel Content and Variant Type bMSI bTMB (Muts/Mb) LOH status Sample requirement plasma ctDNA DNA input requirement 25ng recommended, 10ng minimum End-to-end Kitted 521 Genes From a Single Solution Sample Pass Rate 97.4% overall pass rate (227/233) Sample Sequencing platform/flowcell NovaSeq 6000/S2 flow cell Sequence run 2 x 150 bp Cases per sequencing run 16 (no external control required) Turn-key Developed Under Workflow Manual and Automated Available Bioinformatics Design Control Pipeline Average total coverage ~20,000x Performance Specifications PRODUCT FEATURES Variant Reportable Analytical Analytical Range Sensitivity Specificity (LOD95) Actionable • Plasma analysis for pan-cancer solid ≥ 0.1% VAF 0.40% VAF 100% SNVs/Indels tumor biomarker testing and discovery • 500+ gene kitted assay developed under Non-actionable ≥ 0.5% VAF 1.16% VAF 99.9% Design Control SNVs/Indels • Comprehensive coverage of biomarkers, All clinically relevant targets, cancer ≥ 3 fusion reads 0.33% VAF 100% Translocations signaling pathways and DNA damage repair pathways All ≥ 1.15-fold 1.32-fold 100% • Large panel size supports TMB and LOH Amplifications For Research Use Only. -
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases
cells Review Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases Paulina Prorok 1 , Inga R. Grin 2,3, Bakhyt T. Matkarimov 4, Alexander A. Ishchenko 5 , Jacques Laval 5, Dmitry O. Zharkov 2,3,* and Murat Saparbaev 5,* 1 Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; [email protected] 2 SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; [email protected] 3 Center for Advanced Biomedical Research, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia 4 National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; [email protected] 5 Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif, France; [email protected] (A.A.I.); [email protected] (J.L.) * Correspondence: [email protected] (D.O.Z.); [email protected] (M.S.); Tel.: +7-(383)-3635187 (D.O.Z.); +33-(1)-42115404 (M.S.) Abstract: It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the Citation: Prorok, P.; Grin, I.R.; major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field Matkarimov, B.T.; Ishchenko, A.A.; and alkylating metabolic radicals added to these threats. -
Activation of ATM Depends on Chromatin Interactions Occurring Before Induction of DNA Damage
LETTERS Activation of ATM depends on chromatin interactions occurring before induction of DNA damage Yong-Chul Kim1,6, Gabi Gerlitz1,6, Takashi Furusawa1, Frédéric Catez1,5, Andre Nussenzweig2, Kyu-Seon Oh3, Kenneth H. Kraemer3, Yosef Shiloh4 and Michael Bustin1,7 Efficient and correct responses to double-stranded breaks the KAP-1 protein9. The local and global changes in chromatin organiza- (DSB) in chromosomal DNA are crucial for maintaining genomic tion facilitate recruitment of damage-response proteins and remodelling stability and preventing chromosomal alterations that lead to factors, which further modify chromatin in the vicinity of the DSB and cancer1,2. The generation of DSB is associated with structural propagate the DNA damage response. Given the extensive changes in chro- changes in chromatin and the activation of the protein kinase matin structure associated with the DSB response, it could be expected ataxia-telangiectasia mutated (ATM), a key regulator of the that architectural chromatin-binding proteins, such as the high mobility signalling network of the cellular response to DSB3,4. The group (HMG) proteins, would be involved in this process10–12. interrelationship between DSB-induced changes in chromatin HMG is a superfamily of nuclear proteins that bind to chromatin architecture and the activation of ATM is unclear4. Here we show without any obvious specificity for a particular DNA sequence and affect that the nucleosome-binding protein HMGN1 modulates the the structure and activity of the chromatin fibre10,12,13. We have previ- interaction of ATM with chromatin both before and after DSB ously reported that HMGN1, an HMG protein that binds specifically to formation, thereby optimizing its activation. -
Nucleotide Excision Repair Gene ERCC2 and ERCC5 Variants Increase Risk of Uterine Cervical Cancer
pISSN 1598-2998, eISSN 2005-9256 Cancer Res Treat. 2016;48(2):708-714 http://dx.doi.org/10.4143/crt.2015.098 Original Article Open Access Nucleotide Excision Repair Gene ERCC2 and ERCC5 Variants Increase Risk of Uterine Cervical Cancer Jungnam Joo, PhD 1, Kyong-Ah Yoon, PhD 2, Tomonori Hayashi, PhD 3, Sun-Young Kong, MD, PhD 4, Hye-Jin Shin, MS 5, Boram Park, MS 1, Young Min Kim, PhD 6, Sang-Hyun Hwang, MD, PhD 7, Jeongseon Kim, PhD 8, Aesun Shin, MD, PhD 8,9 , Joo-Young Kim, MD, PhD 5,10 1Biometric Research Branch, 2Lung Cancer Branch, National Cancer Center, Goyang, Korea, 3Department of Radiobiology and Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan, 4Translational Epidemiology Research Branch and Department of Laboratory Medicine, 5Radiation Medicine Branch, National Cancer Center, Goyang, Korea, 6Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan, 7Hematologic Malignancy Branch and Department of Laboratory Medicine, 8Molecular Epidemiology Branch, National Cancer Center, Goyang, 9Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 10 Center for Proton Therapy, Research Institute and Hospital, National Cancer Center, Goyang, Korea Supplementary Data Table of Contents Supplementary Fig. S1 ........................................................................................................................................................................... 2 Supplementary Table 1 ......................................................................................................................................................................... -
Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
Mechanisms in E. coli and Human Mismatch Repair Nobel Lecture, December 8, 2015 by Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA. he idea that mismatched base pairs occur in cells and that such lesions trig- T ger their own repair was suggested 50 years ago by Robin Holliday in the context of genetic recombination [1]. Breakage and rejoining of DNA helices was known to occur during this process [2], with precision of rejoining attributed to formation of a heteroduplex joint, a region of helix where the two strands are derived from the diferent recombining partners. Holliday pointed out that if this heteroduplex region should span a genetic diference between the two DNAs, then it will contain one or more mismatched base pairs. He invoked processing of such mismatches to explain the recombination-associated phenomenon of gene conversion [1], noting that “If there are enzymes which can repair points of damage in DNA, it would seem possible that the same enzymes could recognize the abnormality of base pairing, and by exchange reactions rectify this.” Direct evidence that mismatches provoke a repair reaction was provided by bacterial transformation experiments [3–5], and our interest in this efect was prompted by the Escherichia coli (E. coli) work done in Matt Meselson’s lab at Harvard. Using artifcially constructed heteroduplex DNAs containing multiple mismatched base pairs, Wagner and Meselson [6] demonstrated that mismatches elicit a repair reaction upon introduction into the E. coli cell. Tey also showed that closely spaced mismatches, mismatches separated by a 1000 base pairs or so, are usually repaired on the same DNA strand. -
DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress
Published OnlineFirst March 10, 2009; DOI: 10.1158/0008-5472.CAN-08-3382 Research Article DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress Van Leung-Pineda,1 Jiwon Huh,1 and Helen Piwnica-Worms1,2,3 Departments of 1Cell Biology and Physiology and 2Internal Medicine and 3Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri Abstract protein FANCE (8, 10–12). Chk1 carries out its functions both in the The Chk1 protein kinase preserves genome integrity in normal nucleus and at the centrosome (13). Drugs that block Chk1 kinase proliferating cells and in cells experiencing replicative and activity or enhance its proteolysis by interfering with binding to genotoxic stress. Chk1 is currently being targeted in antican- heat shock protein 90 (HSP90) are currently being tested as cer regimens. Here, we identify damaged DNA-binding protein anticancer agents (14–17). 1 (DDB1) as a novel Chk1-interacting protein. DDB1 is part of Chk1 is regulated by reversible phosphorylation and by an E3 ligase complex that includes the cullin proteins Cul4A ubiquitin-mediated proteolysis. Under periods of replicative stress, and Cul4B. We report that Cul4A/DDB1 negatively regulates the ATRIP/ATR module binds to single-stranded DNA and, Chk1 stability in vivo. Chk1 associates with Cul4A/DDB1 together with Rad17 and the 9-1-1 complex, activates Chk1 in a Claspin-dependent manner (18–22). ATR directly phosphorylates during an unperturbed cell division cycle and both Chk1 317 345 phosphorylation and replication stress enhanced these inter- Chk1 on two COOH-terminal residues: Ser (S317) and Ser actions. -
Open Full Page
CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Large XPF-Dependent Deletions Following Misrepair of a DNA Double Strand Break Are Prevented by the RNA:DNA Helicase Senataxin
www.nature.com/scientificreports OPEN Large XPF-dependent deletions following misrepair of a DNA double strand break are prevented Received: 26 October 2017 Accepted: 9 February 2018 by the RNA:DNA helicase Published: xx xx xxxx Senataxin Julien Brustel1, Zuzanna Kozik1, Natalia Gromak2, Velibor Savic3,4 & Steve M. M. Sweet1,5 Deletions and chromosome re-arrangements are common features of cancer cells. We have established a new two-component system reporting on epigenetic silencing or deletion of an actively transcribed gene adjacent to a double-strand break (DSB). Unexpectedly, we fnd that a targeted DSB results in a minority (<10%) misrepair event of kilobase deletions encompassing the DSB site and transcribed gene. Deletions are reduced upon RNaseH1 over-expression and increased after knockdown of the DNA:RNA helicase Senataxin, implicating a role for DNA:RNA hybrids. We further demonstrate that the majority of these large deletions are dependent on the 3′ fap endonuclease XPF. DNA:RNA hybrids were detected by DNA:RNA immunoprecipitation in our system after DSB generation. These hybrids were reduced by RNaseH1 over-expression and increased by Senataxin knock-down, consistent with a role in deletions. Overall, these data are consistent with DNA:RNA hybrid generation at the site of a DSB, mis-processing of which results in genome instability in the form of large deletions. DNA is the target of numerous genotoxic attacks that result in diferent types of damage. DNA double-strand breaks (DSBs) occur at low frequency, compared with single-strand breaks and other forms of DNA damage1, however DSBs pose the risk of translocations and deletions and their repair is therefore essential to cell integrity. -
Identification of Novel Pathogenic MSH2 Mutation and New DNA Repair Genes Variants: Investigation of a Tunisian Lynch Syndrome F
Jaballah‑Gabteni et al. J Transl Med (2019) 17:212 https://doi.org/10.1186/s12967‑019‑1961‑9 Journal of Translational Medicine RESEARCH Open Access Identifcation of novel pathogenic MSH2 mutation and new DNA repair genes variants: investigation of a Tunisian Lynch syndrome family with discordant twins Amira Jaballah‑Gabteni1,3* , Haifa Tounsi1,3, Maria Kabbage1,3, Yosr Hamdi3, Sahar Elouej3,4, Ines Ben Ayed1,3, Mouna Medhioub2, Moufda Mahmoudi2, Hamza Dallali3, Hamza Yaiche1,3, Nadia Ben Jemii1,3, Affa Maaloul1, Najla Mezghani1,3, Sonia Abdelhak3, Lamine Hamzaoui2, Mousaddak Azzouz2 and Samir Boubaker1,3 Abstract Background: Lynch syndrome (LS) is a highly penetrant inherited cancer predisposition syndrome, characterized by autosomal dominant inheritance and germline mutations in DNA mismatch repair genes. Despite several genetic variations that have been identifed in various populations, the penetrance is highly variable and the reasons for this have not been fully elucidated. This study investigates whether, besides pathogenic mutations, environment and low penetrance genetic risk factors may result in phenotype modifcation in a Tunisian LS family. Patients and methods: A Tunisian family with strong colorectal cancer (CRC) history that fulfll the Amsterdam I criteria for the diagnosis of Lynch syndrome was proposed for oncogenetic counseling. The index case was a man, diagnosed at the age of 33 years with CRC. He has a monozygotic twin diagnosed at the age of 35 years with crohn disease. Forty‑seven years‑old was the onset age of his paternal uncle withCRC. An immunohistochemical (IHC) labe‑ ling for the four proteins (MLH1, MSH2, MSH6 and PMS2) of the MisMatchRepair (MMR) system was performed for the index case. -
Homo-Protacs for the Chemical Knockdown of Cereblon
Homo-PROTACs for the Chemical Knockdown of Cereblon Stefanie Lindner 60th ASH Annual Meeting and Exposition December 1, 2018 San Diego , CA IMiDs modulate substrate specificity of the CRBN E3 ligase Thalidomide Lenalidomide omalidomide IKZF1 Multiple IKZF3 Myeloma CRBN Proteasomal CK1α del(5q) MDS Neo- E3 ubiquitin ligase degradation substrate SALL4 Teratogenicity Ito et al., 2010, Science Krönke et al., 2014 Science Lu et al., 2014, Science Krönke et al., 2015, Nature Donovan et al., 2018, Elife Matyskiela et al., 2018, Nat Chem Biol. Proteolysis Targeting Chimeras (PROTACs) Bifunctional molecules for degradation of proteins of interest (POI) Thalidomide POI Lenalidomide ligand Pomalidomide linker POI IMiD CRBN PROTAC Sakamoto et. al, 2001, PNAS Schneekloth et. al, 2004, J Am Chem Soc. Lu et al., 2015, Chem Biol Winter et al., 2017, Mol Cell. Proteolysis Targeting Chimeras (PROTACs) Bifunctional molecules for degradation of proteins of interest (POI) POI IMiD CRBN Proteasomal PROTAC degradation Sakamoto et. al, 2001, PNAS Schneekloth et. al, 2004, J Am Chem Soc. Lu et al., 2015, Chem Biol Winter et al., 2017, Mol Cell. Homodimeric pomalidomide-based PROTACs Linker (size X) O O O HN O O NH O O HN NH O N N O Homo-bifunctional molecules O O Chemical Formula: C36H40N6O11 Molecular Weight: 732,75 Pomalidomide Pomalidomide Chemically CRBN Pom Pom CRBN induced CRBN knockdown Proteasomal POI = CRBN degradation Homodimeric pomalidomide-based PROTACs corresponding linker substructures No. of linear CRBN IKZF1 Linker linker atoms degradation degradation