OUGSME NL 05-2010:Layout 2.Qxd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential European Bison (Bison Bonasus) Habitat in Germany
PROJECT REPORT Potential European bison (Bison bonasus) habitat in Germany Tobias Kuemmerle Humboldt-University Berlin Benjamin Bleyhl Humboldt-University Berlin Wanda Olech University of Warsaw & European Bison Friends Society Kajetan Perzanowski Carpathian Wildlife Research Station MIZ, PAS & European Bison Friends Society 1 PROJECT REPORT CONTENTS CONTENTS ...............................................................................................................................................................2 INTRODUCTION .......................................................................................................................................................3 HISTORIC DISTRIBUTION OF EUROPEAN BISON IN EUROPE .....................................................................................4 EUROPEAN BISON HABITAT PREFERENCES ..............................................................................................................6 HABITAT USE OF CONTEMPORARY EUROPEAN BISON POPULATIONS .......................................................................................... 6 PALEO-ECOLOGICAL DATA ON EUROPEAN BISON HABITAT USE ............................................................................................... 10 MAPPING EUROPEAN BISON HABITAT IN GERMANY ............................................................................................ 10 APPROACH ................................................................................................................................................................. -
Geological Model of Western Bohemia in Relation to the Deep Borehole Ktb in Germany
Bohemian Massif 74 MAEGS–10 Session 4 GEOLOGICAL MODEL OF WESTERN BOHEMIA IN RELATION TO THE DEEP BOREHOLE KTB IN GERMANY S. VRÁNA, V. ŠTĚDRÁ Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic The project “Geological model of western Bohemia in relation to the deep borehole KTB in the FRG” was co- ordinated by the Czech Geological Survey in 1991–1994. A special volume of the Journal of Geological Sciences, series Geology (published by the Czech Geological Survey, Prague) presents the results of the project in 21 chapters on specialized topics, prepared by 50 co-authors from several geoscience institutions in the Czech Republic. The volume should appear approximately at the time of MAEGS-10 or later in 1997. Insights into the structure and evolution of the Earth's crust in the western Bohemian Massif and formulation of a new geological and geophysical model of the region were the common denominator of all the specialized studies of the project. It used, in addition to new data, geological and geophysical information amassed over several decades. Some regions not covered by the previous programs of geophysical survey, namely a belt along the state border in the W and SW Bohemia, were studied. Geophysical methods provided information on the region studied and on physical properties of the Earth's crust. These methods included regional gravimetry, airborne magnetometry and radiometry, and a 220 km long 9HR seismic profile. Gravimetry, and partly also magnetometry, gave quantitative information on subsurface extension of many contrasting plutons, intrusions, and horizons of basic metavolcanic rocks, necessary for a 3-D structural study of the Earth's crust. -
Trans-Lithospheric Diapirism Explains the Presence of Ultra-High Pressure
ARTICLE https://doi.org/10.1038/s43247-021-00122-w OPEN Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the European Variscides ✉ Petra Maierová1 , Karel Schulmann1,2, Pavla Štípská1,2, Taras Gerya 3 & Ondrej Lexa 4 The classical concept of collisional orogens suggests that mountain belts form as a crustal wedge between the downgoing and overriding plates. However, this orogenic style is not compatible with the presence of (ultra-)high pressure crustal and mantle rocks far from the plate interface in the Bohemian Massif of Central Europe. Here we use a comparison between geological observations and thermo-mechanical numerical models to explain their formation. 1234567890():,; We suggest that continental crust was first deeply subducted, then flowed laterally under- neath the lithosphere and eventually rose in the form of large partially molten trans- lithospheric diapirs. We further show that trans-lithospheric diapirism produces a specific rock association of (ultra-)high pressure crustal and mantle rocks and ultra-potassic magmas that alternates with the less metamorphosed rocks of the upper plate. Similar rock asso- ciations have been described in other convergent zones, both modern and ancient. We speculate that trans-lithospheric diapirism could be a common process. 1 Center for Lithospheric Research, Czech Geological Survey, Prague 1, Czech Republic. 2 EOST, Institute de Physique de Globe, Université de Strasbourg, Strasbourg, France. 3 Institute of Geophysics, Department of Earth Science, ETH-Zurich, -
The Environmental Mining Limits in the North Bohemian Lignite Region
The environmental mining limits in the North Bohemian Lignite Region …need to be preserved permanently and the remaining settlements, landscape and population protected against further devastation or Let’s recreate a landscape of homes from a landscape of mines Ing. arch. Martin Říha, Ing. Jaroslav Stoklasa, CSc. Ing. Marie Lafarová Ing. Ivan Dejmal RNDr. Jan Marek, CSc. Petr Pakosta Ing. Arch. Karel Beránek 1 Photo (original version) © Ibra Ibrahimovič Development and implementation of the original version: Typoexpedice, Karel Čapek Originally published by Společnost pro krajinu, Kamenická 45, Prague 7 in 2005 Updated and expanded by Karel Beránek in 2011 2 3 Černice Jezeři Chateau Arboretum Area of 3 million m3 landslides in June 2005 Czechoslovak Army Mine 4 5 INTRODUCTION Martin Říha Jaroslav Stoklasa, Marie Lafarová, Jan Marek, Petr Pakosta The Czechoslovak Communist Party and government strategies of the 1950s and 60s emphasised the development of heavy industry and energy, dependent almost exclusively on brown coal. The largest deposits of coal are located in the basins of the foothills of the Ore Mountains, at Sokolov, Chomutov, Most and Teplice. These areas were developed exclusively on the basis of coal mining at the expense of other economic activities, the natural environment, the existing built environment, social structures and public health. Everything had to make way for coal mining as coal was considered the “life blood of industry”. Mining executives, mining projection auxiliary operations, and especially Communist party functionaries were rewarded for ever increasing the quantities of coal mined and the excavation and relocation of as much overburden as possible. When I began in 1979 as an officer of government of the regional Regional National Committee (KNV) for North Bohemia in Ústí nad Labem, the craze for coal was in full swing, as villages, one after another, were swallowed up. -
Biodiversity of the Hercynian Mountains of Central Europe
Pirineos, 151-152: 83 a 99, JACA; 1998 BIODIVERSITY OF THE HERCYNIAN MOUNTAINS OF CENTRAL EUROPE JAN JENÍK Faculty of Science, Charles University, Benátská 2, CZ-12801 Praha 2, Czech Republic SUMMARY.- The vegetation of temperate Central Europe north of the Alps is mainly of low diversity broadleaf and conifer forest. The occurrence of three azonal habitat types: mires with their numerous microhabitats, the georelief of the karst and its deeply-cut river valleys, and ecological islands with a distinct vegetation near the treeline of the middle-mountains causes local areas of high diversity. These high species diversity spots are the result of an interplay between physical, biotic and historical factors. A model of an anemo-orographic system with its underlying factors is described to explain the high plant and animal diversity in the corries (glacial cirques) of the Hercynian mountains. RÉSUMÉ.-La végétation de l'Europe Centrale tempérée au nord des Alpes nous montre surtout des forêts à de feuillues et de connifères à faible diversité. Cependant, la présence de trois types d'habitats azonaux peut produire une haute diversité au niveau local: zones humides avec leur nombreux microhabitats, reliefs karstiques et leur profonds défilés fluviaux, et enfin des îles écologiques avec une végétation par ticulière situées près de la limite supérieure des arbres (treeline). Ces secteurs riches en espèces peuvent s'expliquer par l'interaction des facteurs physiques, biotiques et historiques. Dans ce domaine nous proposons un système anémo-orographique avec ses facteurs inféodés qui pourrait expliquer la haute diversité animale et végétale dans les cirques glaciaires des montagnes hercyniennes. -
Proxy Environmental Record from the Bohemian Forest, Czech Republic
bs_bs_banner The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic KLARA VOCADLOV A, LIBOR PETR, PAVLA ZA CKOV A, MAREK KRIZEK, LENKA KRIZOV A, SIMON M. HUTCHINSON AND MIROSLAV SOBR Vocadlova, K., Petr, L., Zackova, P., Krızek, M., Krızova, L., Hutchinson, S. M. & Sobr M.: The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic. Boreas. 10.1111/bor.12126. ISSN 0300-9483. The Hercynian mountain ranges were islands of mountain glaciation and alpine tundra in a Central European ice-free corridor during the Late Pleistocene. Today they are notable areas of glacial landforms, alpine-forest free areas, peatlands and woodlands. However, our knowledge of the Lateglacial and early Holocene environmental changes in this region is limited. We present a new multi-proxy reconstruction of a mid-altitude environment in the Bohemian Forest spanning this period. A core (5.2 m length) in the Cern e Lake cirque (1028 m a.s.l.) was sub- jected to lithological, geochemical, pollen and macrofossil analysis supplemented by two optically stimulated luminescence (OSL) and 10 AMS radiocarbon dates. We determined the impact of regional and supraregional cli- mate changes on the environment. The two most significant changes in sedimentation during the Lateglacial (17.6 and 15.8–15.5 cal. ka BP) were synchronous with regional glacial chronostratigraphy. Unlike Central European mountain ranges, in the Bohemian Forest the Younger Dryas was not coincident with glacier re-advance, but was a dry, cold episode with low lake levels, which prevailed until the early Preboreal. -
Sulphate Sorption Characteristics of the Bohemian Forest Soils
Silva Gabreta vol. 11 (1) p. 3–12 Vimperk, 2005 Sulphate sorption characteristics of the Bohemian Forest soils Jiří Kaňa* & Jiří Kopáček Faculty of Biological Sciences, University of South Bohemia, and Hydrobiological Institute, AS CR, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic *[email protected] Abstract Sulphate (SO4-S) sorption characteristics were determined in soils from catchments of three acidified mountain lakes, Plešné (PL), Čertovo (CT), and Černé (CN), situated in the Bohemian Forest. The SO4-S desorption ranged between 0.07–0.73, 0.21–0.68, and 0.39–0.82 mmol.kg–1 in the PL, CT, and CN catchments, respectively. SO4-S desorption was observed to be higher in horizon A than in mineral horizons below. The SO4-S represented only 3.4% of total S pool in the catchments and did not explain a relatively high rate of terrestrial leaching of sulphate over last 10 years. This disproportion suggests that the soil SO4-S pool is being replenished from internal soil processes from the pool of total S. Sulphate sorption maxima in soils in the catchments of the Bohemian Forest lakes varied between 1.5–11.7 mmol.kg–1, being highest in A-horizon and lowest in E-horizon. Key words: acidification, recovery, soil chemistry INTRODUCTION The chemistry (and, consequently, biology) of mountain lakes is determined by amount of precipitation and their composition, bedrock (PSENNER & CATALAN 1994), catchment soils and vegetation (e.g. BARON et al. 1994), and hydrology (WETZEL 2002). Soil sorption charac- teristics may significantly affect water composition, e.g. -
Note: Page Numbers in Italic Refer to Illustrations, Those in Bold Type Refer to Tables
Index Note: Page numbers in italic refer to illustrations, those in bold type refer to tables. Aachen-Midi Thrust 202, 203, 233, 235 Armorican affinities 132, 283 Acadian Armorican Massif 27, 29, 148, 390 basement 36 Armorican Terrane Assemblage 10, 13, 22 Orogeny 25 drift model 27-28 accommodation cycles 257, 265 magmatic rocks 75 accommodation space 265, 277 palaeolatitudes 28 acritarchs, Malopolska Massif 93 in Rheno-Hercynian Belt 42 advection, as heat source 378, 388 separation from Avalonia 49 African-European collision 22 tectonic m61ange 39 Air complex, palaeomagnetism 23, 25 Tepl/t-Barrandian Unit 44 Albersweiler Orthogneiss 40 terminology 132 Albtal Granite 48 Terrane Collage 132 alkali basalts 158 Ashgill, glacial deposits 28, 132, 133 allochthonous units, Rheno-Hercynian Belt 38 asthenosphere, upwelling 355, 376, 377 Alps asthenospheric source, metabasites 165 collisional orogeny 370 Attendorn-Elspe Syncline 241 see also Proto-Alps augen-gneiss 68 alteration, mineralogical 159 Avalon Terrane 87 Amazonian Craton 120, 122, 123, 147 Avalonia American Antarctic Ridge 167, 168, 170 and Amazonian Craton 120 Amorphognathus tvaerensis Zone 6 brachiopods 98 amphibolite facies metamorphism 41, 43, 67, 70 and Bronovistulian 110 Brunovistulian 106 collision with Armorica 298 Desnfi dome 179 collision with Baltica 52 MGCR 223 drift model 27 Saxo-Thuringia 283, 206 extent of 10 amphibolites, Bohemian Massif 156, 158 faunas 94 anatectic gneiss 45, 389 Gondwana derivation 22 anchimetamorphic facies 324 palaeolatitude 27 Anglo-Brabant Massif -
Vegetation of the Czech Republic: Diversity, Ecology, History and Dynamics
Preslia 84: 427–504, 2012 427 Vegetation of the Czech Republic: diversity, ecology, history and dynamics Vegetace České republiky: diverzita, ekologie, historie a dynamika Dedicated to the centenary of the Czech Botanical Society (1912–2012) Milan C h y t r ý Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Chytrý M. (2012): Vegetation of the Czech Republic: diversity, ecology, history and dynamics. – Preslia 84: 427–504. This review summarizes basic information on the diversity of vegetation in the Czech Republic. It describes basic environmenal factors affecting vegetation, vegetation history since the last glacial, biomes occurring in the Czech Republic (zonal biomes of broad-leaved deciduous forest and forest- steppe, and azonal biomes of taiga and tundra), altitudinal zonation of vegetation and landscapes with an exceptionally high diversity of vegetation types (deep river valleys in the Bohemian Massif, karst areas, sandstone pseudokarst areas, solitary volcanic hills, glacial cirques, lowland riverine landscapes and serpentine areas). Vegetation types, delimited according to the monograph Vegeta- tion of the Czech Republic, are described with emphasis on their diversity, ecology, history and dynamics. K e y w o r d s: alpine, aquatic, central Europe, forest, grassland, phytosociology, plant communi- ties, ruderal, vegetation change, vegetation classification, vegetation history, weed, wetland Introduction The Czech Republic is a land-locked country in central Europe occupying an area of 78,867 km2. It is situated in the zone of temperate broad-leaved deciduous forest, which in the south-east borders on the forest-steppe zone. -
Late Cretaceous to Paleogene Exhumation in Central Europe – Localized Inversion Vs
https://doi.org/10.5194/se-2020-183 Preprint. Discussion started: 11 November 2020 c Author(s) 2020. CC BY 4.0 License. Late Cretaceous to Paleogene exhumation in Central Europe – localized inversion vs. large-scale domal uplift Hilmar von Eynatten1, Jonas Kley2, István Dunkl1, Veit-Enno Hoffmann1, Annemarie Simon1 1University of Göttingen, Geoscience Center, Department of Sedimentology and Environmental Geology, 5 Goldschmidtstrasse 3, 37077 Göttingen, Germany 2University of Göttingen, Geoscience Center, Department of Structural Geology and Geodynamics, Goldschmidtstrasse 3, 37077 Göttingen, Germany Correspondence to: Hilmar von Eynatten ([email protected]) Abstract. Large parts of Central Europe have experienced exhumation in Late Cretaceous to Paleogene time. Previous 10 studies mainly focused on thrusted basement uplifts to unravel magnitude, processes and timing of exhumation. This study provides, for the first time, a comprehensive thermochronological dataset from mostly Permo-Triassic strata exposed adjacent to and between the basement uplifts in central Germany, comprising an area of at least some 250-300 km across. Results of apatite fission track and (U-Th)/He analyses on >100 new samples reveal that (i) km-scale exhumation affected the entire region, (ii) thrusting of basement blocks like the Harz Mountains and the Thuringian Forest focused in the Late 15 Cretaceous (about 90-70 Ma) while superimposed domal uplift of central Germany is slightly younger (about 75-55 Ma), and (iii) large parts of the domal uplift experienced removal of 3 to 4 km of Mesozoic strata. Using spatial extent, magnitude and timing as constraints suggests that thrusting and crustal thickening alone can account for no more than half of the domal uplift. -
Eastern Bavaria
Basic text Eastern Bavaria Culture Eastern Bavaria is still home to more castles than anywhere else in Germany: Some medieval castles remain only as ruins, whilst other castles such as Falkenstein Castle have withstood decline and are open to visitors. The expansive spruce forests in Eastern Bavaria have given way to the Bavarian Glass Road, as they supplied the wood and quartz sand –the key raw materials – for the very first glass foundries. Spanning some 250 kilometres, it is one of the most picturesque holiday routes in Germany. Those choosing to travel along the route will learn all about the 700-year tradition of glass production and glass as a form of art. The route, which begins in Neustadt an der Waldnaab and leads to Passau, features glass foundries, galleries and museums, all packed to the brim with interesting facts about the traditional handicraft. Some Eastern Bavarian companies are keeping the tradition alive to this day and export to countries ranging from the United Arab Emirates to the United States of America. The largest towns in Eastern Bavaria include Regensburg, Landshut and Passau. The city of Regensburg, which was first founded by Roman Emperor Marcus Aurelius, has retained its medieval centre to this day. The Old Town of Regensburg together with Stadtamhof has been a UNESCO World Heritage Site since 2006. Landshut is the prototype of an old Bavarian town. Above all its town centre, which features gabled houses, decorative façades, oriels and arches, is one of the most beautiful squares to be found in the whole of Germany. The three-river town of Passau, which was built in the Italian baroque style, achieved early wealth thanks to its participation in the salt trade and was a place of border crossings due to its location on the border with Austria and just 30 kilometres from the Czech border. -
The Role of Groundwater in the Acidification of the Hydrosphere - Examples from Small Catchments in the Bohemian Massif
Z . HRKAL, J. BUCHTELE, E. TlKKANEN, A. KA pA H O s J. SANTRUCEK N GU -BULL 439, 2002 - PA GE 99 The role of groundwater in the acidification of the hydrosphere - examples from small catchments in the Bohemian Massif ZBYN EKHRKAL,JOSEF BUCHTELE, EEVATIKK ANEN,ASKO KApAHO &JAROMIRSANTRUCEK Hrkal, Z., Buchtele,J.,Tikkanen, E., Kapyaho, A.& Santrucek,J. 2002:The role of groundwa te r in the acidifica tion of the hydrosphere - exam ple s from small catchment s in the Bohem ian Massif.Norges qeoloqiske undersokelse Bulletin 439, 99-105 . The aim of the pre sented study was to assess the im pact of the groundwa ter on the degree of acidificati on of sur face w aters in small catchm ent s. Quantit ati ve hydr ogeological analy sis based on th e result s of the SACRAMENTO hydrolog ical mo de l was aime d at th e assessment of th e contribu tio n of baseflow repr esentin g th e groundwater dis charg e in the tot al runoff. Co mparison of single pH measureme nts in surface wate r wi th the corr espondin g actual and mo delled w ater discharge was used as th e info rmatio n in th e qu antitative part of the data processing. The obtai ned result s showed differen t prot ective pow ers of th e aq uifers against acidifica tio n,a conspicuous decrease in the soil buffer capac ity of th e Krusne hory Mts. and a significant influence of th rou gh fall precipitati on s on the gr oun dwater qu alit y.