Clostridium Perfringens Atcc 13124 Helicobacter Mustelae 12198 Clostridium Botulinum E3 Str

Total Page:16

File Type:pdf, Size:1020Kb

Clostridium Perfringens Atcc 13124 Helicobacter Mustelae 12198 Clostridium Botulinum E3 Str exp. loss CANDIDATUS ACCUMULIBACTER PHOSPHATIS CLADE IIA STR. UW-1 FRANCISELLA TULARENSIS SUBSP. TULARENSIS WY96-3418 FRANCISELLA TULARENSIS SUBSP. TULARENSIS NE061598 FRANCISELLA TULARENSIS SUBSP. MEDIASIATICA FSC147 FRANCISELLA TULARENSIS SUBSP. TULARENSIS SCHU S4 FRANCISELLA TULARENSIS SUBSP. HOLARCTICA OSU18 FRANCISELLA TULARENSIS SUBSP. FSC198 POLYNUCLEOBACTER NECESSARIUS SUBSP. ASYMBIOTICUS QLW-P1DMWA-1 FRANCISELLA TULARENSIS SUBSP. HOLARCTICA LVS ACIDITHIOBACILLUS FERROOXIDANS ATCC 23270 ACIDITHIOBACILLUS FERROOXIDANS ATCC 53993 CHROMOBACTERIUM VIOLACEUM ATCC 12472 POLYNUCLEOBACTER NECESSARIUS SUBSP. NECESSARIUS STIR1 1.22e-03 NEISSERIA GONORRHOEAE NCCP11945 LARIBACTER HONGKONGENSIS HLHK9 NEISSERIA GONORRHOEAE FA 1090 NEISSERIA MENINGITIDIS ALPHA14 NITROSOMONAS EUROPAEA ATCC 19718 NEISSERIA MENINGITIDIS 053442 NITROSOSPIRA MULTIFORMIS ATCC 25196 DECHLOROMONAS AROMATICA RCB FRANCISELLA NOVICIDA U112 AROMATOLEUM AROMATICUM EBN1 NEISSERIA LACTAMICA 020-06 THIOBACILLUS DENITRIFICANS ATCC 25259 NEISSERIA MENINGITIDIS FAM18 NEISSERIA MENINGITIDIS MC58 GALLIONELLA CAPSIFERRIFORMANS ES-2 METHYLOBACILLUS FLAGELLATUS KT NEISSERIA MENINGITIDIS Z2491 NEISSERIA MENINGITIDIS 8013 SIDEROXYDANS LITHOTROPHICUS ES-1 METHYLOTENERA MOBILIS JLW8 ACHROMOBACTER XYLOSOXIDANS A8 NITROSOMONAS EUTROPHA C91 BORDETELLA BRONCHISEPTICA RB50 BORDETELLA PARAPERTUSSIS 12822 METHYLOVORUS SP. MP688 BORDETELLA PERTUSSIS TOHAMA I TAYLORELLA EQUIGENITALIS MCE9 AZOARCUS SP. BH72 HERBASPIRILLUM SEROPEDICAE SMR1 THAUERA SP. MZ1T BORDETELLA PETRII DSM 12804 BORDETELLA AVIUM 197N BURKHOLDERIA RHIZOXINICA JANTHINOBACTERIUMHKI 454 SP. MARSEILLEHERMINIIMONAS ARSENICOXYDANS BURKHOLDERIA MALLEI NCTC 10229 BURKHOLDERIA PSEUDOMALLEI 1106A BURKHOLDERIA MALLEI ATCC 23344 BURKHOLDERIA PSEUDOMALLEI K96243 BURKHOLDERIA MALLEI NCTC 10247 BURKHOLDERIA GLUMAE BGR1 FRANCISELLA TULARENSIS SUBSP. HOLARCTICA FTNF002-00 FRANCISELLA PHILOMIRAGIA SUBSP. PHILOMIRAGIA ATCC 25017 DICHELOBACTER NODOSUS VCS1703A MAGNETOCOCCUS SP. MC-1 WOLBACHIA SP. WRI WOLBACHIA ENDOSYMBIONT OF DROSOPHILA MELANOGASTER WOLBACHIA ENDOSYMBIONT STRAIN TRS OF BRUGIA MALAYI BURKHOLDERIA PSEUDOMALLEI MSHR346 BURKHOLDERIA PSEUDOMALLEI 668 WOLBACHIA SP. WMEL WOLBACHIA ENDOSYMBIONT OF CULEX QUINQUEFASCIATUS PEL BURKHOLDERIA MULTIVORANS ATCC 17616 EHRLICHIA RUMINANTIUM STR. WELGEVONDEN EHRLICHIA RUMINANTIUM STR. GARDEL EHRLICHIA CHAFFEENSIS STR. ARKANSAS EHRLICHIA CANIS STR. JAKE BURKHOLDERIA PSEUDOMALLEI 1710B ANAPLASMA PHAGOCYTOPHILUM HZ ANAPLASMA MARGINALE STR. ST. MARIES ANAPLASMA MARGINALE STR. FLORIDA ANAPLASMA CENTRALE STR. ISRAEL NEORICKETTSIA SENNETSU STR. MIYAYAMA NEORICKETTSIA RISTICII STR. ILLINOIS RICKETTSIA TYPHI STR. WILMINGTON RICKETTSIA PROWAZEKII STR. MADRID E BURKHOLDERIA THAILANDENSIS E264 RICKETTSIA RICKETTSII STR. 'SHEILA SMITH' RICKETTSIA PEACOCKII STR. RUSTIC RICKETTSIA CONORII STR. MALISH 7 RICKETTSIA AFRICAE ESF-5 BURKHOLDERIA MALLEI SAVP1 RICKETTSIA RICKETTSII STR. IOWA RICKETTSIA MASSILIAE MTU5 BURKHOLDERIA CENOCEPACIA AU 1054 RICKETTSIA FELIS URRWXCAL2 RICKETTSIA AKARI STR. HARTFORD RICKETTSIA CANADENSIS STR. MCKIEL BURKHOLDERIA AMBIFARIABURKHOLDERIA MC40-6 AMBIFARIA AMMD RICKETTSIA BELLII RML369-C RICKETTSIA BELLII OSU 85-389 ORIENTIA TSUTSUGAMUSHI STR. IKEDA 2.03e+01 BURKHOLDERIA CENOCEPACIABURKHOLDERIA HI2424 CENOCEPACIA J2315 ORIENTIA TSUTSUGAMUSHI STR. BORYONG CANDIDATUS PELAGIBACTER UBIQUE HTCC1062 BURKHOLDERIA CENOCEPACIA MC0-3 PROTEROSPONGIA ROSETTA XANTHOBACTER AUTOTROPHICUS PY2 AZORHIZOBIUM CAULINODANS ORS 571 STARKEYA NOVELLA DSM 506 RHODOPSEUDOMONAS PALUSTRIS TIE-1 0.017 0.017 RHODOPSEUDOMONAS PALUSTRIS CGA009 0.0183 0.0182 RHODOPSEUDOMONAS PALUSTRIS DX-1 BURKHOLDERIA PHYMATUMBURKHOLDERIA STM815 VIETNAMIENSIS G4 0.0193 RHODOPSEUDOMONAS PALUSTRIS HAA2 RHODOPSEUDOMONAS PALUSTRIS BISB5 RHODOPSEUDOMONAS PALUSTRIS BISB18 RHODOPSEUDOMONAS PALUSTRIS BISA53 NITROBACTER WINOGRADSKYI NB-255 0.0233 BURKHOLDERIA PHYTOFIRMANS PSJN 0.0233 0.0183 NITROBACTER HAMBURGENSIS X14 0.0239 BURKHOLDERIA XENOVORANS LB400 BRADYRHIZOBIUM SP. ORS 278 CUPRIAVIDUS TAIWANENSIS LMG 19424 BURKHOLDERIA SP. CCGE1002 CUPRIAVIDUS METALLIDURANS CH34 BRADYRHIZOBIUM SP. BTAI1 BURKHOLDERIA SP. 383 BURKHOLDERIA SP. CCGE1003 BRADYRHIZOBIUM JAPONICUM USDA 110 0.0196 0.0196 OLIGOTROPHA CARBOXIDOVORANS OM5 METHYLOBACTERIUM SP. 4-46 0.0225 0.0225 METHYLOBACTERIUM NODULANS ORS 2060 METHYLOBACTERIUM RADIOTOLERANS JCM 2831 METHYLOBACTERIUM POPULI BJ001 0.0226 0.0226 METHYLOBACTERIUM EXTORQUENS PA1 0.0223 0.0223 RALSTONIA SOLANACEARUM GMI1000 METHYLOBACTERIUM EXTORQUENS DM4 RALSTONIA SOLANACEARUM CFBP2957 RALSTONIA EUTROPHA JMP134 METHYLOBACTERIUM CHLOROMETHANICUM CM4 RALSTONIA EUTROPHA H16 0.0013 METHYLOBACTERIUM EXTORQUENS AM1 METHYLOCELLA SILVESTRIS BL2 0.0011 BEIJERINCKIA INDICA SUBSP. INDICA ATCC 9039 RALSTONIA SOLANACEARUM PSI07 RALSTONIA PICKETTII 12D RHODOMICROBIUM VANNIELII ATCC 17100 0.0274 0.0274 HYPHOMICROBIUM DENITRIFICANS ATCC 51888 0.0379 0.0383 RALSTONIA PICKETTII 12J 0.0379 POLAROMONAS NAPHTHALENIVORANS CJ2 0.0402 0.0402 PARVIBACULUM LAVAMENTIVORANS DS-1 0.0315 SINORHIZOBIUM MELILOTI 1021 0.0046 THIOMONAS INTERMEDIA K12 0.0414 0.0423 SINORHIZOBIUM MEDICAE WSM419 METHYLIBIUM PETROLEIPHILUM PM1 0.0312 0.0316 SINORHIZOBIUM FREDII NGR234 0.0316 RHIZOBIUM LEGUMINOSARUM BV. VICIAE 3841 LEPTOTHRIX CHOLODNII SP-6 0.0273 0.0273 RHIZOBIUM LEGUMINOSARUM BV. TRIFOLII WSM1325 0.0471 RHODOFERAX FERRIREDUCENS T118 RHIZOBIUM LEGUMINOSARUM BV. TRIFOLII WSM2304 0.0443 4.05e+01 0.0443 RHIZOBIUM ETLI CIAT 652 THIOMONAS SP. 3AS RHIZOBIUM ETLI CFN 42 0.0063 0.0411 0.0057 AGROBACTERIUM RADIOBACTER K84 COMAMONAS TESTOSTERONI CNB-2 AGROBACTERIUM TUMEFACIENS STR. C58 VARIOVORAX PARADOXUS EPS POLAROMONAS SP. JS666 VARIOVORAX PARADOXUS S110 AGROBACTERIUM VITIS S4 0.0421 XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS STR. ATCC 33913 0.0421 OCHROBACTRUM ANTHROPI ATCC 49188 0.0339 0.0351 BRUCELLA SUIS ATCC 23445 ACIDOVORAX CITRULLIDELFTIA AAC00-1 ACIDOVORANS SPH-1 0.0339 XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS STR. 8004 BRUCELLA MELITENSIS ATCC 23457 0.0379 0.007 BRUCELLA CANIS ATCC 23365 PSEUDOXANTHOMONAS SUWONENSIS 11-1 0.0073 VERMINEPHROBACTER EISENIAE EF01-2 STENOTROPHOMONAS MALTOPHILIA K279A BRUCELLA ABORTUS BV. 1 STR. 9-941 ALICYCLIPHILUS DENITRIFICANS BC XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS STR. B100 STENOTROPHOMONAS MALTOPHILIA R551-3 0.0565 0.031 BRUCELLA OVIS ATCC 25840 0.0565 ACIDOVORAX EBREUS TPSY 0.031 0.0341 BRUCELLA SUIS 1330 XANTHOMONAS CAMPESTRIS PV. VESICATORIA STR. 85-10 0.0341 BRUCELLA MELITENSIS BIOVAR ABORTUS 2308 0.0324 0.0426 BRUCELLA MICROTI CCM 4915 XANTHOMONAS ALBILINEANS GPE PC73 0.0426 0.0039 0.0019 ACIDOVORAX SP. JS42 BRUCELLA MELITENSIS BV. 1 STR. 16M XANTHOMONAS AXONOPODIS PV. CITRI STR. 306 0.0301 0.0355 0.0351 BRUCELLA ABORTUS S19 0.0355 0.0727 XANTHOMONAS ORYZAE PV. ORYZAE KACC 10331 MESORHIZOBIUM LOTI MAFF303099 XANTHOMONAS ORYZAE PV. ORYZAE MAFF 311018 MESORHIZOBIUM CICERI BIOVAR BISERRULAE WSM1271 0.015 0.0188 CHELATIVORANS SP. BNC1 0.0445 0.018 0.015 0.0004 0.0507 0.0445 BARTONELLA TRIBOCORUM CIP 105476 BARTONELLA GRAHAMII AS4AUP XANTHOMONAS ORYZAE PV. ORYZAE PXO99A 0.0032 XYLELLA FASTIDIOSA SUBSP. FASTIDIOSA GB514 0.0612 0.0096 BARTONELLA QUINTANA STR. TOULOUSE BARTONELLA HENSELAE STR. HOUSTON-1 0.0736 0.0171 0.0736 0.0009 0.0214 BARTONELLA CLARRIDGEIAE 73 0.0171 6.08e+01 BARTONELLA BACILLIFORMIS KC583 0.0822 0.0822 CANDIDATUS LIBERIBACTER SOLANACEARUM CLSO-ZC1 0.0048 0.045 CANDIDATUS LIBERIBACTER ASIATICUS STR. PSY62 0.0265 0.045 0.0011 RUEGERIA SP. TM1040 0.003 0.0342 0.0241 RUEGERIA POMEROYI DSS-3 0.0342 0.0029 0.0014 ROSEOBACTER DENITRIFICANS OCH 114 0.0785 XYLELLA FASTIDIOSA 9A5C 0.0785 DINOROSEOBACTER SHIBAE DFL 12 0.0034 LEGIONELLA PNEUMOPHILA SUBSP. PNEUMOPHILA STR. PHILADELPHIA 1 XYLELLA FASTIDIOSA TEMECULA1 JANNASCHIA SP. CCS1 XYLELLA FASTIDIOSA M12 0.0208 0.0028 RHODOBACTER SPHAEROIDES KD131 XYLELLA FASTIDIOSA M23 0.0747 0.0326 COXIELLA BURNETII DUGWAY 5J108-111 RHODOBACTER SPHAEROIDES ATCC 17029 COXIELLA BURNETII CBUG_Q212 COXIELLA BURNETII RSA 331 0.1066 0.1066 RHODOBACTER SPHAEROIDES 2.4.1 0.0551 COXIELLA BURNETII CBUK_Q154 0.007 0.0551 RHODOBACTER SPHAEROIDES ATCC 17025 0.0717 0.0139 0.0051 RHODOBACTER CAPSULATUS SB 1003 LEGIONELLA LONGBEACHAE NSW150 LEGIONELLA PNEUMOPHILA STR. CORBY 0.1052 PARACOCCUS DENITRIFICANS PD1222 LEGIONELLA PNEUMOPHILA 2300/99 ALCOY 0.0345 0.0159 KETOGULONICIGENIUM VULGARE Y25 LEGIONELLA PNEUMOPHILA STR. PARIS COXIELLA BURNETII RSA 493 0.0345 0.0441 PHENYLOBACTERIUM ZUCINEUM HLK1 0.0081 CAULOBACTER SP. K31 LEGIONELLA PNEUMOPHILA STR. LENS 0.1086 CAULOBACTER SEGNIS ATCC 21756 CAULOBACTER CRESCENTUS NA1000 0.0737 0.0086 0.0512 0.0993 0.0084 0.0737 0.0993 CAULOBACTER CRESCENTUS CB15 8.10e+01 0.0944 0.0708 ACINETOBACTER BAUMANNII ATCC 17978 0.0848 BREVUNDIMONAS SUBVIBRIOIDES ATCC 15264 ACINETOBACTER BAUMANNII AB0057 0.0708 0.0848 ASTICCACAULIS EXCENTRICUS CB 48 0.0031 0.083 0.0776 0.0886 0.0856 0.0268 MARICAULIS MARIS MCS10 ACINETOBACTER SP. ADP1 0.0886 0.1122 0.1122 0.0305 ACINETOBACTER BAUMANNII ACICU 0.0382 0.0268 ACINETOBACTER BAUMANNII AB307-0294 0.0414 HYPHOMONAS NEPTUNIUM ATCC 15444 0.0382 0.0117 0.1068 0.0025 HIRSCHIA BALTICA ATCC 49814 ACINETOBACTER BAUMANNII AYE 0.1005 PARVULARCULA BERMUDENSIS HTCC2503 0.0074 0.1338 0.1338 RHODOSPIRILLUM RUBRUM ATCC 11170 0.0373 0.0362 ACINETOBACTER BAUMANNII SDF 0.0961 MAGNETOSPIRILLUM MAGNETICUM AMB-1 0.009 0.0961 0.03 0.0373 0.1388 0.042 0.1312 RHODOSPIRILLUM CENTENUM SW 0.0235 0.1312 0.03 0.0598 0.0221 AZOSPIRILLUM SP. B510 0.0282 0.0598 0.1428 PSYCHROBACTERPSYCHROBACTER CRYOHALOLENTISMORAXELLA ARCTICUS K5 CATARRHALIS
Recommended publications
  • Calves Infected with Virulent and Attenuated Mycoplasma Bovis Strains Have Upregulated Th17 Inflammatory and Th1 Protective Responses, Respectively
    G C A T T A C G G C A T genes Article Calves Infected with Virulent and Attenuated Mycoplasma bovis Strains Have Upregulated Th17 Inflammatory and Th1 Protective Responses, Respectively Jin Chao 1,2,3,4, Xiaoxiao Han 1,2, Kai Liu 1,2, Qingni Li 1,2, Qingjie Peng 5, Siyi Lu 1,2, Gang Zhao 1,2, Xifang Zhu 1,2, Guyue Hu 1,2, Yaqi Dong 1,2, Changmin Hu 2, Yingyu Chen 1,2, Jianguo Chen 2, Farhan Anwar Khan 1, Huanchun Chen 1,2,3,4 and Aizhen Guo 1,2,3,4,* 1 The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China 2 College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China 3 Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China 4 Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China 5 Wuhan Keqian Biology Ltd., Wuhan 430223, China * Correspondence: [email protected]; Tel.: +86-27-8728-6861 Received: 15 June 2019; Accepted: 27 August 2019; Published: 28 August 2019 Abstract: Mycoplasma bovis is a critical bovine pathogen, but its pathogenesis remains poorly understood. Here, the virulent HB0801 (P1) and attenuated HB0801-P150 (P150) strains of M. bovis were used to explore the potential pathogenesis and effect of induced immunity from calves’ differential transcriptomes post infection. Nine one-month-old male calves were infected with P1, P150, or mock-infected with medium and euthanized at 60 days post-infection.
    [Show full text]
  • Role of Protein Phosphorylation in Mycoplasma Pneumoniae
    Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen vorgelegt von Sebastian Schmidl aus Bad Hersfeld Göttingen 2010 Mitglieder des Betreuungsausschusses: Referent: Prof. Dr. Jörg Stülke Koreferent: PD Dr. Michael Hoppert Tag der mündlichen Prüfung: 02.11.2010 “Everything should be made as simple as possible, but not simpler.” (Albert Einstein) Danksagung Zunächst möchte ich mich bei Prof. Dr. Jörg Stülke für die Ermöglichung dieser Doktorarbeit bedanken. Nicht zuletzt durch seine freundliche und engagierte Betreuung hat mir die Zeit viel Freude bereitet. Des Weiteren hat er mir alle Freiheiten zur Verwirklichung meiner eigenen Ideen gelassen, was ich sehr zu schätzen weiß. Für die Übernahme des Korreferates danke ich PD Dr. Michael Hoppert sowie Prof. Dr. Heinz Neumann, PD Dr. Boris Görke, PD Dr. Rolf Daniel und Prof. Dr. Botho Bowien für das Mitwirken im Thesis-Komitee. Der Studienstiftung des deutschen Volkes gilt ein besonderer Dank für die finanzielle Unterstützung dieser Arbeit, durch die es mir unter anderem auch möglich war, an Tagungen in fernen Ländern teilzunehmen. Prof. Dr. Michael Hecker und der Gruppe von Dr. Dörte Becher (Universität Greifswald) danke ich für die freundliche Zusammenarbeit bei der Durchführung von zahlreichen Proteomics-Experimenten. Ein ganz besonderer Dank geht dabei an Katrin Gronau, die mich in die Feinheiten der 2D-Gelelektrophorese eingeführt hat. Außerdem möchte ich mich bei Andreas Otto für die zahlreichen Proteinidentifikationen in den letzten Monaten bedanken. Nicht zu vergessen ist auch meine zweite Außenstelle an der Universität in Barcelona. Dr. Maria Lluch-Senar und Dr.
    [Show full text]
  • Dynamic Dashboard - List of Bacteria with a Relevant AMR Issue
    14 May 2020 Dynamic Dashboard - List of bacteria with a relevant AMR issue Categorization and inclusion methodology for human bacterial pathogens The World Health Organization’s (WHO) Global Priority List of Antibiotic-Resistant Bacteria [1], the United States of America’s Centers for Disease Control and Prevention (CDC) Antibiotic Resistant Threats in the United States 2019 [2] and the bacteria included in the European Centre for Disease Prevention and Control’s (ECDC) European Antimicrobial Resistance Surveillance Network (EARS-Net) [3] were used to develop a combined list of priority bacteria with a drug-resistance issue. It was considered that all research into these bacteria, irrespective of the drug-resistance profile, would be relevant to advance efforts to address antimicrobial resistance. For the categorization process, only the bacterial genus level (noting the family Enterobacteriaceae was also included) was used and will be displayed. Table 1 list the genus included in categorization and the rules applied for inclusion based on the aforementioned priority lists. When projects included bacteria other than those listed in Table 1 an individual assessment was performed by the Secretariat to determine if there is a known drug-resistance issue. This assessment included searching the literature and reaching a consensus within the Secretariat if the bacteria has a known drug- resistance issue or not. Where consensus was not reached or there was ambiguity in the literature bacteria were parked and further investigation was conducted. The list of additional bacteria and the outcomes from the assessment are provided in Table 2 and 3. Please note that these lists will be continually updated.
    [Show full text]
  • DCMC Community Acquired Pneumonia Discussion and Review
    DELL CHILDREN’S MEDICAL CENTER EVIDENCE-BASED OUTCOMES CENTER ADDENDUM 3 Discussion and Review of the Evidence Contents 1 Etiology ........................................................................................................................................................... 2 1.1 Streptococcus pneumoniae ....................................................................................................................... 2 1.2 Mycoplasma pneumoniae ......................................................................................................................... 2 1.3 Haemophilus influenzae ........................................................................................................................... 2 1.4 Streptococcus pyogenes ........................................................................................................................... 2 1.5 Staphylococcus aureus ............................................................................................................................. 3 1.6 Viruses ...................................................................................................................................................... 3 1.7 Underimmunized patients ........................................................................................................................ 3 2 Diagnostic Evaluation ..................................................................................................................................... 4 2.1 History .....................................................................................................................................................
    [Show full text]
  • Safety and Efficacy of Ceftaroline Fosamil in the Management of Community-Acquired Bacterial Pneumonia Heather F
    Philadelphia College of Osteopathic Medicine DigitalCommons@PCOM PCOM Scholarly Papers 2014 Safety and Efficacy of Ceftaroline Fosamil in the Management of Community-Acquired Bacterial Pneumonia Heather F. DeBellis Kimberly L. Barefield Philadelphia College of Osteopathic Medicine, [email protected] Follow this and additional works at: https://digitalcommons.pcom.edu/scholarly_papers Part of the Medicine and Health Sciences Commons Recommended Citation DeBellis, Heather F. and Barefield, Kimberly L., "Safety and Efficacy of Ceftaroline Fosamil in the Management of Community- Acquired Bacterial Pneumonia" (2014). PCOM Scholarly Papers. 1913. https://digitalcommons.pcom.edu/scholarly_papers/1913 This Article is brought to you for free and open access by DigitalCommons@PCOM. It has been accepted for inclusion in PCOM Scholarly Papers by an authorized administrator of DigitalCommons@PCOM. For more information, please contact [email protected]. Open Access: Full open access to Clinical Medicine Reviews this and thousands of other papers at http://www.la-press.com. in Therapeutics Safety and Efficacy of Ceftaroline Fosamil in the Management of Community- Acquired Bacterial Pneumonia Heather F. DeBellis and Kimberly L. Tackett South University School of Pharmacy, Savannah, GA, USA. ABSTR ACT: Ceftaroline fosamil is a new fifth-generation cephalosporin indicated for the treatment of community-acquired bacterial pneumonia (CABP). It possesses antimicrobial effects against both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), but not against anaerobes. Organisms covered by this novel agent that are commonly associated with CABP are Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Moraxella catarrhalis, and Klebsiella pneumoniae; however, ceftaroline fosamil lacks antimicrobial activity against Pseudomonas and Acinetobacter species.
    [Show full text]
  • Adrenal Gland Hemorrhage in Patients with Fatal Bacterial Infections
    Modern Pathology (2008) 21, 1113–1120 & 2008 USCAP, Inc All rights reserved 0893-3952/08 $30.00 www.modernpathology.org Adrenal gland hemorrhage in patients with fatal bacterial infections Jeannette Guarner1, Christopher D Paddock2, Jeanine Bartlett2 and Sherif R Zaki2 1Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA and 2Infectious Diseases Pathology Branch, Division of Viral and Rickettsial Diseases, Center for Disease Control and Prevention, Atlanta, GA, USA A wide spectrum of adrenal gland pathology is seen during bacterial infections. Hemorrhage is particularly associated with meningococcemia, while abscesses have been described with several neonatal infections. We studied adrenal gland histopathology of 65 patients with bacterial infections documented in a variety of tissues by using immunohistochemistry. The infections diagnosed included Neisseria meningitidies, group A streptococcus, Rickettsia rickettsii, Streptococcus pneumoniae, Staphylococcus aureus, Ehrlichia sp., Bacillus anthracis, Leptospira sp., Clostridium sp., Klebsiella sp., Legionella sp., Yersinia pestis, and Treponema pallidum. Bacteria were detected in the adrenal of 40 (61%) cases. Adrenal hemorrhage was present in 39 (60%) cases. Bacteria or bacterial antigens were observed in 31 (79%) of the cases with adrenal hemorrhage including 14 with N. meningitidis, four with R. rickettsii, four with S. pneumoniae, three with group A streptococcus, two with S. aureus, two with B. anthracis, one with T. pallidum, and one with Legionella sp. Bacterial antigens were observed in nine of 26 non-hemorrhagic adrenal glands that showed inflammatory foci (four cases), edema (two cases), congestion (two cases), or necrosis (one case). Hemorrhage is the most frequent adrenal gland pathology observed in fatal bacterial infections.
    [Show full text]
  • Community-Acquired Pneumonia in the Asia-Pacific Region Song Et Al
    839 Community-Acquired Pneumonia in the Asia-PacificRegion Jae-Hoon Song, MD, PhD1,2 Kyungmin Huh, MD, MSc3 Doo Ryeon Chung, MD, PhD1,2 1 Division of Infectious Diseases, Department of Medicine, Samsung Medical Address for correspondence Jae-Hoon Song, MD, PhD, Division of Center, Sungkyunkwan University School of Medicine, Seoul, Korea Infectious Diseases, Department of Medicine, Samsung Medical 2 Asia-Pacific Foundation for Infectious Diseases, Seoul, Korea Center, Sungkyunkwan University School of Medicine, 81 Ilwon-ro, 3 Division of Infectious Diseases, Department of Internal Medicine, Gangnam-gu, Seoul, Korea (e-mail: [email protected]). Armed Forces Capital Hospital, Seongnam, Korea Semin Respir Crit Care Med 2016;37:839–854. Abstract Community-acquired pneumonia (CAP) is an important cause of mortality and morbid- ity worldwide. Aging population, dense urbanization, and poor access to health care make the Asia-Pacific region vulnerable to CAP. The high incidence of CAP poses a significant health and economic burden in this region. Common etiologic agents in other global regions including Streptococcus pneumoniae, Mycoplasma pneumoniae, Keywords Haemophilus influenzae, Chlamydophila pneumoniae, Staphylococcus aureus,andrespira- ► community-acquired tory viruses are also the most prevalent pathogens in the Asia-Pacific region. But the pneumonia higher incidence of Klebsiella pneumoniae and the presence of Burkholderia pseudomallei ► Asia-Pacific are unique to the region. The high prevalence of antimicrobial resistance in ► epidemiology S. pneumoniae and M. pneumoniae has been raising the need for more prudent use of ► antimicrobial antibiotics. Emergence and spread of community-acquired methicillin-resistant resistance S. aureus deserve attention, while the risk has not reached significant level yet in cases ► socioeconomic of CAP.
    [Show full text]
  • Different Microbiological and Clinical Aspects of Lower Respiratory Tract Infections Between China and European/American Countries
    Original Article Different microbiological and clinical aspects of lower respiratory tract infections between China and European/American countries Xin Zhang1, Rui Wang2, Xiuzhen Di2, Bin Liu1, Youning Liu1 1Department of Respiratory Diseases, 2Department of Clinical Pharmacology, Chinese PLA General Hospital, Beijing 100853, China Corresponding to: Youning Liu, MD. Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, China. Email: [email protected]. Background: National treatment/diagnosis guidelines for lower respiratory tract infections (LRTIs) are generally based on local epidemiological data. Etiology and drug-resistance patterns could differ between China and European/American countries, and simply following their respective guidelines might cause problems in clinical practice. Therefore, we need to summarize the microbiology and clinical manifestations of LRTIs in China and develop our own guidelines. Methods: Three major national multicenter epidemiology surveillance studies on LRTI were completed recently. The data were compared in detail with those from European/American studies. Results: Clinical and microbiological differences were observed in community-acquired pneumonia (CAP), hospital-acquired pneumonia (HAP), and pulmonary mycosis between our country and European/American countries. Conclusions: The microbiological and clinical characteristics of the major LRTIs in China differ in many respects from those in European/American countries. Patients should have personal treatment plans instead of simply following the guidelines from foreign countries Keywords: Pathogens; epidemiology; antimicrobial resistance; lower respiratory tract infections (LRTIs) Submitted Jun 21, 2013. Accepted for publication Jan 22, 2014. doi: 10.3978/j.issn.2072-1439.2014.02.02 Scan to your mobile device or view this article at: http://www.jthoracdis.com/article/view/2038/2701 Introduction research and epidemiological investigations.
    [Show full text]
  • NEW INSIGHT on MYCOPLASMA PNEUMONIAE INFECTIONS in EARLY Arthur Eidelman, Andrew Nkongo and Rachel Morecki
    PNEUMOCYSTIS CARINII PNEUMONITIS IN VIETNAMESE INFANT IN U.S. NEW INSIGHT ON MYCOPLASMA PNEUMONIAE INFECTIONS IN EARLY Arthur Eidelman, Andrew Nkongo and Rachel Morecki. (int. by CHILDHOOD. G.W. Fernald, A.M. Collier and W.A. Clyde, Jr. --Lawrence ~artner)x. of Ped., A. Einstein Coll. Med. ,N.Y. Univ. of N.C., Sch. of Med., Dept. of Ped., Cha~elHill. --An infectious disease sequela of the Vietnamese war of Respiratory illness due to M. pnewnoniae is common in epidemiological significance is reported. school age children (peak age 9 yrs.) but rare in infants, a A Vietnamese premature female infant, cared for in an consistent epidemiologic finding which never has been orphanage in Saigon, was adopted by an American family at age explained adequately. Monitoring of respiratory tract 2 112 mos. Physical exam and chest x-ray on arrival in N.Y. microflora in 50 infants and young children attending the were normal. At 3 112 mos. respiratory distress developed, Frank Porter Graham Day Care Center (DCC) yielded 15 treated for 3 wks. unsuccessfully with antibiotics. X-ray isolations of M. pnemniae from 1968-1973. These infections revealed interstitial pneumonitis. Pneumocystis carinii occurred in the fall and early winter of each year and pneumonitis (PCP) was diagnosed by silver methionine stain of coincided with identification of this agent in children with flufd obtained by bronchial lavage. Cytomegalic virus (CMV) lower respiratory disease seen in a local pediatric practice. was cultured from same fluid. Bacterial, mycobacterial, and Frequent medical evaluation revealed only mild rhinitis and fungal cultures were negative. Studies of immunological com- cough in half the DCC subjects.
    [Show full text]
  • Broad-Spectrum Antibiotic Use and Poor Outcomes in Community-Onset Pneumonia: a Cohort Study
    ORIGINAL ARTICLE RESPIRATORY INFECTIONS Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: a cohort study Brandon J. Webb1,2, Jeff Sorensen3, Al Jephson3, Ian Mecham4 and Nathan C. Dean3,5 Affiliations: 1Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Salt Lake City, UT, USA. 2Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, USA. 3Division of Pulmonary and Critical Care Medicine, Intermountain Healthcare, Salt Lake City, UT, USA. 4Division of Pulmonary and Critical Care, Utah Valley Regional Medical Center, Intermountain Healthcare, Provo, UT, USA. 5Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA. Correspondence: Brandon J. Webb, Division of Infectious Diseases and Clinical Epidemiology, Intermountain Medical Center, 5121 South Cottonwood Drive, Murray, UT 84157, USA. E-mail: [email protected] @ERSpublications Despite propensity-based, weighted balancing including providers and adjustment for multiple patient-level confounders, broad-spectrum antibiotics appear to be associated with increased mortality and other poor outcomes in community-onset pneumonia http://bit.ly/2DafBax Cite this article as: Webb BJ, Sorensen J, Jephson A, et al. Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: a cohort study. Eur Respir J 2019; 54: 1900057 [https://doi.org/ 10.1183/13993003.00057-2019]. ABSTRACT Question: Is broad-spectrum antibiotic use associated with poor outcomes in community-onset pneumonia after adjusting for confounders? Methods: We performed a retrospective, observational cohort study of 1995 adults with pneumonia admitted from four US hospital emergency departments. We used multivariable regressions to investigate the effect of broad-spectrum antibiotics on 30-day mortality, length of stay, cost and Clostridioides difficile infection (CDI).
    [Show full text]
  • Failure of Mycoplasma Pneumoniae Infection to Confer Protection Against Mycoplasma Genitalium: Observations from a Mouse Model
    J. Med. Microbiol. Ð Vol. 50 /2001), 383±384 # 2001 The Pathological Society of Great Britain and Ireland ISSN 0022-2615 SHORT ARTICLE Failure of Mycoplasma pneumoniae infection to confer protection against Mycoplasma genitalium: observations from a mouse model D. TAYLOR-ROBINSON and P. M. FURR Imperial College School of Medicine, St. Mary's Campus, Paddington, London W2 1NY Mycoplasma pneumoniae and M. genitalium are genomically distinct but share antigens that induce some serological cross-reactivity. Therefore, the possibility that M. pneumoniae infection of the human respiratory tract might provide immunity to M. genitalium infection of the genital tract was considered. Because of the dif®culty of assessing this proposition in man, it was evaluated experimentally in a mouse model. Female BALB/c mice were susceptible to infection of the vagina with M. pneumoniae, whereas those infected previously in the oropharynx with M. pneumoniae were completely immune to infection of the vagina with this mycoplasma. However, all mice with such a respiratory tract infection were susceptible to infection of the vagina with M. genitalium. The ®ndings suggest that an M. pneumoniae infection of the human respiratory tract is unlikely to in¯uence infection of the genital tract by M. genitalium. Introduction the oropharynx and, more strikingly, protects comple- tely against subsequent attempted infection of the Mycoplasma pneumoniae is a well-known human genital tract with this mycoplasma [6]. It is also pathogen that infects early in life, often without possible to infect the genital tract of mice with M. causing overt disease at this time [1]. Re-infection genitalium [7], so that this small animal model can be during adolescence or in later life results in a spectrum used to determine whether a respiratory tract infection of respiratory disease, sometimes culminating in with M.
    [Show full text]
  • Guidelines for Prevention and Control of Infection Due to Antibiotic Resistant
    Guidelines for Prevention and Control of Infection Due to Antibiotic Resistant Organisms Updated December 2020 Florida Department of Health Division of Disease Control & Health Protection Bureau of Epidemiology 850-245-4401 (24/7) FLHealth.gov Table of Contents I. Statement of Purpose ................................................................................................... 1 II. Definitions ................................................................................................................... 2 III. Introduction ................................................................................................................ 8 IV. Background ................................................................................................................ 9 A. Methicillin•Resistant Staphylococcus aureus (MRSA) .......................................... 9 B. Vancomycin•Resistant Enterococci (VRE) ......................................................... 10 C. Clostridioides difficile .......................................................................................... 10 D. Multidrug•Resistant Gram•Negative Bacilli (MDR•GNB) .................................... 11 1. Acinetobacter baumannii ........................................................................... 11 2. Carbapenem•Resistant Enterobacteriaceae (CRE) ................................... 12 E. Candida auris (C. auris) ..................................................................................... 13 V. Colonization vs. Infection .........................................................................................
    [Show full text]