New Information on Postcranial Skeleton of the Early Cretaceous Gansus Yumenensis (Aves: Ornithuromorpha)

Total Page:16

File Type:pdf, Size:1020Kb

New Information on Postcranial Skeleton of the Early Cretaceous Gansus Yumenensis (Aves: Ornithuromorpha) Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 New information on postcranial skeleton of the Early Cretaceous Gansus yumenensis (Aves: Ornithuromorpha) Ya-Ming Wang, Jingmai K. O'Connor, Da-Qing Li & Hai-Lu You To cite this article: Ya-Ming Wang, Jingmai K. O'Connor, Da-Qing Li & Hai-Lu You (2016) New information on postcranial skeleton of the Early Cretaceous Gansus yumenensis (Aves: Ornithuromorpha), Historical Biology, 28:5, 666-679, DOI: 10.1080/08912963.2015.1006217 To link to this article: http://dx.doi.org/10.1080/08912963.2015.1006217 View supplementary material Published online: 17 Feb 2015. Submit your article to this journal Article views: 130 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [Shanghai Jiaotong University] Date: 08 October 2016, At: 19:48 Historical Biology, 2016 Vol. 28, No. 5, 666–679, http://dx.doi.org/10.1080/08912963.2015.1006217 New information on postcranial skeleton of the Early Cretaceous Gansus yumenensis (Aves: Ornithuromorpha) Ya-Ming Wanga,b*, Jingmai K. O’Connorb,c, Da-Qing Lid and Hai-Lu Youb,c aSchool of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, P.R. China; bKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Beijing 100044, P.R. China; cInstitute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, P.R. China; dGansu Geological Museum, Lanzhou, Gansu Province 730010, P.R. China (Received 13 December 2014; accepted 7 January 2015; first published online 17 February 2015) Gansus yumenensis Hou and Liu, 1984 is a basal ornithuromorph bird that has been recovered from the Lower Cretaceous Xiagou Formation in the Changma Basin of Gansu Province in northwestern China. Although it bears important significance in understanding the origin and early evolution of Ornithuromorpha, this taxon has only received preliminary morphological study. Here, we provide a detailed description of the postcranial morphology of Gansus yumenensis based on seven new specimens and new data from previously reported specimens, and update diagnosis for this taxon. Our phylogenetic analysis including new morphological data on Gansus yumenensis resolves all known four genera of Changma ornithuromorphs as more derived taxa than Jehol members of this clade, indicating the difference between Changma and Jehol avifauna. Keywords: Gansus yumenensis; Changma; Xiagou Formation; Early Cretaceous; Ornithuromorpha; anatomy; phylogeny Introduction 011, -07-CM-006, -05-CM-014, -04-CM-018 and -04-CM- Gansus yumenensis Hou and Liu, 1984 was named based 031), all from the Changma locality. We also describe some on an isolated left foot (IVPP V6862) collected from the details of two specimens (CAGS-IG-04-CM-003, -004) Lower Cretaceous Xiagou Formation in the Changma reported in You et al. (2006). They together provide a rare opportunity to study the detailed postcranial anatomy of Basin of Gansu Province in northwestern China. At the time of its discovery, this specimen represented the first basal ornithuromorphs. Notably, three of the new speci- Mesozoic fossil bird from China and the second oldest bird mens preserve gastroliths, contributing new information in the world, younger only than Archaeopteryx (Hou and about the habit of Gansus yumenensis. Liu 1984). Renewed field efforts in the Changma Basin nearly two decades later produced a wealth of far more complete specimens and You et al. (2006) reported five Institutional abbreviations specimens among them (CAGS-IG-04-CM-001 , 004, - CAGS-IG, Chinese Academy of Geological Sciences, 008), describing Gansus yumenensis as ‘a nearly modern Institute of Geology, Beijing; GSGM, Gansu Geological amphibious bird’. Their phylogenetic analysis resolved Museum, Lanzhou; IVPP, Institute of Vertebrate Paleontol- this taxon as a basal member of Ornithurae. Li et al. (2011) ogy and Paleoanthropology, Beijing. provided additional information on the morphology of the sternum, forelimb and hind limb based on nine fragmentary new specimens (IVPP V15074–15077, Systematic paleontology 15079–15081, 15083, 15084). In addition to Gansus, Aves Linnaeus, 1758 three other ornithuromorph taxa: Yumenornis huangi, Changmaornis houi and Jiuquanornis niui (Wang et al. Pygostylia Chiappe, 2002 2013), one enantiornithine Qiliania graffini (Ji et al. 2011) Ornithothoraces Chiappe and Calvo, 1994 and three unnamed enantiornithine specimens (You et al. Ornithuromorpha Chiappe, 2002 2005; Harris et al. 2006; Lamanna et al. 2006) have also Gansus yumenensis Hou and Liu, 1984 been described from the same locality. However, the vast majority of Changma avian specimens are referred to Gansus. Holotype specimen Here we describe seven new specimens of Gansus Distal left tibiotarsus and left tarsometatarsus with yumenensis (GSGM-07-CM-009, -07-CM-011, -06-CM- complete pedal digits (IVPP V6862; Hou and Liu 1984). *Corresponding author. Email: [email protected] q 2015 Taylor & Francis Historical Biology 667 Figure 1. Geographic location of the Changma Basin (indicated by star), Gansu Province, People’s Republic of China. Source: Modified from Wang et al. (2013). New referred specimens fenestrae; coracoid with a cranially hooked lateral process; GSGM-07-CM-009, articulated three caudalmost thoracic tibiotarsus long, with two strongly proximally projected vertebrae, synsacrum, pygostyle and partial pelvic girdle cnemial crests; position of metatarsal II trochlea high and consisting of right ilium, proximal pubis and ischium plantarly displaced relative to the metatarsal III trochlea; (Figure 2); GSGM-07-CM-011, articulated skeleton and pedal digit IV longest (autapormorphy); pedal claws with gastroliths, lacking the skull, cervical and caudal pointed flexor tubercles. vertebrae, pectoral girdles and forelimbs (Figure 3); GSGM-06-CM-011, nearly complete sternum, sternal ribs, partial furcula, sternal ribs and gastroliths (Figure 6); Description GSGM-07-CM-006, left proximal scapula, coracoid and Anatomical nomenclature primarily follows Baumel and partial left forelimb, with feather impression (Figure 7); Witmer (1993). English translations are used for GSGM-05-CM-014, complete left and partial right osteological terminology while Latin is maintained for forelimbs, complete hind limbs, scattered ribs and muscles. gastroliths (Figure 8); GSGM-04-CM-018, articulated left tibiotarsus and fibula (Figure 9); GSGM-04-CM-031, proximal and distal portions of left tarsometatarsus A (Figure 10). Locality and horizon In the vicinity of the Changma Township, Yumen City, Jiuquan area, Gansu Province, northwestern China; Lower Cretaceous (early Aptian), Xiagou Formation (You et al. 2005; Harris et al. 2006; Lamanna et al. 2006; Suarez et al. B 2013; Figure 1). ri syn il sp py ca dp Revised diagnosis is il tv pu lp Gansus yumenensis is distinguished from other known acf 1 cm ornithuromorphs by the following unique combination of characters: pygostyle narrow throughout length with Figure 2. (Colour online) Photograph (A) and line drawing (B) of Gansus yumenensis GSGM-07-CM-009. Abbreviations: acf, dorsal spinous ridge; sternum with well-developed acetabulum foramen; ca, caudal vertebrae; dp, dorsal process; il, craniolateral and lateral processes; lateral trabeculae of ilium; is, ischium; lp, lateral depression; pu, pubis; py, pygostyle; ri, sternum curved medially; sternum bearing a pair of caudal ridge; sp, spinous process; syn, synsacrum; tv, thoracic vertebrae. 668 Y.-M. Wang et al. Vertebral column and ribs (Figure 2), as in Apsaravis and Ichthyornis (Clarke and GSGM-07-CM-009 preserves the caudalmost three thor- Norell 2002; Clarke 2004); whereas the synsacrum is acic vertebrae in lateral view and GSGM-07-CM-011 formed by nine vertebrae in Yanornis and Yixianornis preserves two isolated thoracic vertebrae in caudal view. (Zhou and Zhang 2001; Clarke et al. 2006), nine or ten in The thoracic vertebrae possess well-developed rectangular Jianchangornis (Zhou et al. 2009), 11 in Changmaornis spinous processes, the dorsoventral height of which is (Wang et al. 2013) and only seven in the basal nearly half the total height of the associated vertebra Archaeorhynchus (possibly due to ontogenetic variation) (Figure 2). The transverse processes are long and robust (Zhou and Zhang 2006; Zhou et al. 2013). (CAGS-IG-04-CM-004; You et al. 2006). The vertebral The caudal series consists of seven free vertebrae, the foramen is large, nearly the same size as the articular cranial five of which possess robust transverse processes; surface of the centrum (Figure 3). The length of the centrum the processes become increasingly slender distally is markedly greater than the midpoint width (Figure 2). The (Figure 2). The pygostyle is short, slightly tapering to thoracic vertebrae appear to be amphicoelous. Like the end; its length is approximately equal to the combined enantiornithines, the lateral depressions on the centra are length of three free caudal vertebrae, as in CAGS-IG-04- developed as elongated grooves rather than broad fossae as CM-002 (You et al. 2006). The pygostyle is narrow in other ornithuromorphs (Figure 2). throughout its length and bears a spinous ridge along the Based on the number of transverse processes, the dorsal surface (Figure
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • A Second Cretaceous Ornithuromorph Bird from the Changma Basin, Gansu Province, Northwestern China Author(S): Hai-Lu You , Jessie Atterholt , Jingmai K
    A Second Cretaceous Ornithuromorph Bird from the Changma Basin, Gansu Province, Northwestern China Author(s): Hai-Lu You , Jessie Atterholt , Jingmai K. O'Connor , Jerald D. Harris , Matthew C. Lamanna and Da-Qing Li Source: Acta Palaeontologica Polonica, 55(4):617-625. 2010. Published By: Institute of Paleobiology, Polish Academy of Sciences DOI: http://dx.doi.org/10.4202/app.2009.0095 URL: http://www.bioone.org/doi/full/10.4202/app.2009.0095 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. A second Cretaceous ornithuromorph bird from the Changma Basin, Gansu Province, northwestern China HAI−LU YOU, JESSIE ATTERHOLT, JINGMAI K. O’CONNOR, JERALD D. HARRIS, MATTHEW C. LAMANNA, and DA−QING LI You, H.−L., Atterholt, J., O’Connor, J.K., Harris, J.D., Lamanna, M.C., and Li, D.−Q. 2010. A second Cretaceous ornithuromorph bird from the Changma Basin, Gansu Province, northwestern China.
    [Show full text]
  • Sedimentation of the Lower Cretaceous Xiagou Formation and Its Response to Regional Tectonics in the Qingxi Sag, Jiuquan Basin, NW China
    Cretaceous Research 47 (2014) 72e86 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Sedimentation of the Lower Cretaceous Xiagou Formation and its response to regional tectonics in the Qingxi Sag, Jiuquan Basin, NW China Si Chen a,b, Hua Wang a,*, Jun Wei c, Zhenyu Lv d, Huajun Gan a, Siding Jin a a Key Laboratory of Tectonics and Petroleum Resources, MOE, China University of Geosciences, Wuhan 430074, China b Jackson School of Geosciences, The University of Texas at Austin, 78712, USA c PetroChina Yumen Oilfield Company, Yumen 735200, China d Tianjin Branch of CNOOC Ltd., Tianjin 300452, China article info abstract Article history: Under the constraint of an isochronous sequence stratigraphic framework, sediment infill of the Xiagou Received 24 May 2013 Formation reflects the overall control of dynamic tectonic movements and episodic sedimentations in Accepted in revised form 11 November 2013 the Qingxi Sag. Structure reactivity during post-depositional processes could cause stratigraphic varia- Available online 11 December 2013 tions in longitudinal time and lateral space. This study documents sediment infill features and their response to the tectonic evolutions of the Qingxi Sag. The data sets include comparison of cores, well Keywords: drilling, 3D seismic, inter-well correlation, wave impedance inversion profiles, original strata recovery Jiuquan Basin data, sedimentary facies spatial evolution and their superimposition with paleogeomorphology. Qingxi Sag Xiagou Formation The Jiuquan Basin is a Mesozoic-Cenozoic superposition basin comprising an early rifting graben phase Sediment infill and a later compression phase. Since the Early Cretaceous, the basin has undergone four major tectonic Tectonic evolution episodes: 1) extension during the Early Cretaceous, 2) tectonic inversion caused by northwest-southeast contraction from the Late Cretaceous to the Paleocene, 3) weak extension from the Eocene to the Miocene and 4) contraction from the Miocene to the present.
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • Insight Into the Evolution of Avian Flight from a New Clade of Early
    J. Anat. (2006) 208, pp287–308 IBlackwnell Publishing sLtd ight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui Julia A. Clarke,1 Zhonghe Zhou2 and Fucheng Zhang2 1Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA 2Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China Abstract In studies of the evolution of avian flight there has been a singular preoccupation with unravelling its origin. By con- trast, the complex changes in morphology that occurred between the earliest form of avian flapping flight and the emergence of the flight capabilities of extant birds remain comparatively little explored. Any such work has been limited by a comparative paucity of fossils illuminating bird evolution near the origin of the clade of extant (i.e. ‘modern’) birds (Aves). Here we recognize three species from the Early Cretaceous of China as comprising a new lineage of basal ornithurine birds. Ornithurae is a clade that includes, approximately, comparatively close relatives of crown clade Aves (extant birds) and that crown clade. The morphology of the best-preserved specimen from this newly recognized Asian diversity, the holotype specimen of Yixianornis grabaui Zhou and Zhang 2001, complete with finely preserved wing and tail feather impressions, is used to illustrate the new insights offered by recognition of this lineage. Hypotheses of avian morphological evolution and specifically proposed patterns of change in different avian locomotor modules after the origin of flight are impacted by recognition of the new lineage.
    [Show full text]
  • Aptian-Albian Clumped Isotopes from Northwest China: Cool Temperatures, Variable Atmospheric Pco2 and Regional Shifts in Hydrologic Cycle Dustin T
    https://doi.org/10.5194/cp-2020-152 Preprint. Discussion started: 21 December 2020 c Author(s) 2020. CC BY 4.0 License. Aptian-Albian clumped isotopes from northwest China: Cool temperatures, variable atmospheric pCO2 and regional shifts in hydrologic cycle Dustin T. Harper1, Marina B. Suarez1,2, Jessica Uglesich2, Hailu You3,4,5, Daqing Li6, Peter Dodson7 5 1 Department of Geology, The University of Kansas, Lawrence, KS, U.S.A. 2 Department of Geological Sciences, University of Texas, San Antonio, TX, U.S.A. 3 Key LaBoratory of VerteBrate Evolution and Human Origins, Institute of VerteBrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, P.R.C. 10 4 Chinese Academy of Science Center for Excellence in Life and Paleoenvironment, Beijing, P.R.C. 5 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, P.R.C. 6 Institute of VerteBrate Paleontology and College of Life Science and Technology, Gansu Agricultural University, Lanzhou, P.R.C. 7 Department of Biomedical Sciences, The University of Pennsylvania, Philadelphia, U.S.A. 15 Correspondence to: Dustin T. Harper ([email protected]) Abstract. The Early Cretaceous is characterized by warm background temperatures (i.e., greenhouse climate) and carbon cycle perturbations that are often marked by Ocean Anoxic Events (OAEs) and associated shifts in the hydrologic cycle. Higher-resolution records of terrestrial and marine δ13C and δ18O (Both carBonates and organics) suggest climate shifts 20 during the Aptian-AlBian, including a warm period associated with OAE 1a in the early Aptian and subsequent “cold snap” near the Aptian-AlBian Boundary prior to the Kilian and OAE 1B.
    [Show full text]
  • Paravian Phylogeny and the Dinosaur-Bird Transition: an Overview
    feart-06-00252 February 11, 2019 Time: 17:42 # 1 REVIEW published: 12 February 2019 doi: 10.3389/feart.2018.00252 Paravian Phylogeny and the Dinosaur-Bird Transition: An Overview Federico L. Agnolin1,2,3*, Matias J. Motta1,3, Federico Brissón Egli1,3, Gastón Lo Coco1,3 and Fernando E. Novas1,3 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina, 2 Fundación de Historia Natural Félix de Azara, Universidad Maimónides, Buenos Aires, Argentina, 3 Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Recent years witnessed the discovery of a great diversity of early birds as well as closely related non-avian theropods, which modified previous conceptions about the origin of birds and their flight. We here present a review of the taxonomic composition and main anatomical characteristics of those theropod families closely related with early birds, with the aim of analyzing and discussing the main competing hypotheses pertaining to avian origins. We reject the postulated troodontid affinities of anchiornithines, and the Edited by: dromaeosaurid affinities of microraptorians and unenlagiids, and instead place these Corwin Sullivan, University of Alberta, Canada groups as successive sister taxa to Avialae. Aiming to evaluate previous phylogenetic Reviewed by: analyses, we recoded unenlagiids in the traditional TWiG data matrix, which resulted Thomas Alexander Dececchi, in a large polytomy at the base of Pennaraptora. This indicates that the TWiG University of Pittsburgh, United States phylogenetic scheme needs a deep revision. Regarding character evolution, we found Spencer G. Lucas, New Mexico Museum of Natural that: (1) the presence of an ossified sternum goes hand in hand with that of ossified History & Science, United States uncinate processes; (2) the presence of foldable forelimbs in basal archosaurs indicates *Correspondence: widespread distribution of this trait among reptiles, contradicting previous proposals Federico L.
    [Show full text]
  • The Effect of Long-Term Atmospheric Changes on the Macroevolution of Birds
    Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ ‘This is the peer reviewed version of the following article: Serrano, F. J., Chiappe, L. M., Palmqvist, P., Figueirido, B., Long, J., & Sanz, J. L. (2019). The effect of long-term atmospheric changes on the macroevolution of birds. Gondwana Research, 65, 86–96. https://doi.org/10.1016/ j.gr.2018.09.002 which has been published in final form at https://doi.org/10.1016/j.gr.2018.09.002 © 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ Accepted Manuscript The effect of long-term atmospheric changes on the macroevolution of birds Francisco José Serrano, Luis María Chiappe, Paul Palmqvist, Borja Figueirido, John Long, José Luis Sanz PII: S1342-937X(18)30229-6 DOI: doi:10.1016/j.gr.2018.09.002 Reference: GR 2018 To appear in: Gondwana Research Received date: 18 March 2018 Revised date: 12 September 2018 Accepted date: 12 September 2018 Please cite this article as: Francisco José Serrano, Luis María Chiappe, Paul Palmqvist, Borja Figueirido, John Long, José Luis Sanz , The effect of long-term atmospheric changes on the macroevolution of birds. Gr (2018), doi:10.1016/j.gr.2018.09.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
    Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No.
    [Show full text]
  • And Sapeornis (Aves) and the Complex Early Evolution of the Avian Sternum
    On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum Xiaoting Zhenga,b, Jingmai O’Connorc,1, Xiaoli Wanga, Min Wangc, Xiaomei Zhangb, and Zhonghe Zhouc,1 aInstitute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and cKey Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, June 14, 2014 (sent for review April 13, 2014) Anchiornis (Deinonychosauria: Troodontidae), the earliest known inferred importance of the sternum as part of the avian flight feathered dinosaur, and Sapeornis (Aves: Pygostylia), one of the apparatus and at odds with the phylogenetic distribution of os- basalmost Cretaceous birds, are both known from hundreds of sified sterna among maniraptoran theropods. All other groups specimens, although remarkably not one specimen preserves any that are or have been considered closely related to birds (Scan- sternal ossifications. We use histological analysis to confirm the soriopterygidae, Dromaeosauridae, and Oviraptorosauria) pos- absence of this element in adult specimens. Furthermore, the excel- sess paired, ossified sternal plates that fuse into a singular lent preservation of soft-tissue structures in some specimens sug- element (sternum) late in ontogeny in at least some taxa (e.g., gests that no chondrified sternum was present. Archaeopteryx,the dromaeosaurid Microraptor, oviraptorosaur Ingenia) (16–19). oldest and most basal known bird, is known from only 10 specimens Admittedly, the sternum is not one of the best-known skeletal and the presence of a sternum is controversial; a chondrified ster- elements in these clades; the presence of sternal plates is af- num is widely considered to have been present.
    [Show full text]