Fossil Evidence of Avian Crops from the Early Cretaceous of China

Total Page:16

File Type:pdf, Size:1020Kb

Fossil Evidence of Avian Crops from the Early Cretaceous of China Fossil evidence of avian crops from the Early Cretaceous of China Xiaoting Zhenga,b, Larry D. Martinc, Zhonghe Zhoud,1, David A. Burnhamc, Fucheng Zhangd, and Desui Miaoc aInstitute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; cDivision of Vertebrate Paleontology, Biodiversity Institute, University of Kansas, Lawrence, KS 66045; and dKey Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, August 3, 2011 (sent for review July 13, 2011) The crop is characteristic of seed-eating birds today, yet little is A number of other Mesozoic birds and their theropod relatives known about its early history despite remarkable discoveries of have recently been reported with gizzard stones (gastroliths), in- many Mesozoic seed-eating birds in the past decade. Here we re- cluding the basal ornithurines Yanornis (8) and Archaeorhynchus port the discovery of some early fossil evidence for the presence of (9), the oviraptosaur Caudipteryx, and the ornithomimosaur a crop in birds. Two Early Cretaceous birds, the basal ornithurine Shenzhousaurus (10), confirming that the presence of a muscular Hongshanornis and a basal avian Sapeornis, demonstrate that an grinding stomach is primitive for birds. It may well have occurred essentially modern avian digestive system formed early in avian in most species but is only documented in forms that foraged evolution. The discovery of a crop in two phylogenetically remote on the ground and thereby came into contact with small stones. lineages of Early Cretaceous birds and its absence in most inter- The discovery of crops in combination with stomach stones vening forms indicates that it was independently acquired as a spe- demonstrates the presence at an early date of an essentially cialized seed-eating adaptation. Finally, the reduction or loss of modern avian digestive system. teeth in the forms showing seed-filled crops suggests that grani- vory was possibly one of the factors that resulted in the reduction Description and Comparison of teeth in early birds. Among the avian specimens we examined at the Tianyu Museum of Nature, at least three preserve clear evidence of a crop. Of paleornithology | feeding these, Sapeornis chaoyangensis (2, 3) is the most basal bird that preserves this structure, and we discovered two examples (STM espite the discoveries of more than 30 genera of fossil birds 15-15 and STM 15-29). STM 15-29 (Fig. 2 A and B) is a semi- from the Early Cretaceous lacustrine deposits in north- articulated skeleton with the neck and head pulled away from the D z eastern China and many examples of dietary adaptations (1), it body for 5 cm. The skeleton is exposed dorsolaterally, with the remains unknown whether a crop was present in these birds. wings folded. The right manus has moved away from the body. Recently we examined hundreds of Early Cretaceous birds The sacrum is viewed dorsally, but the legs are laterally exposed. The crop is represented by a roughly circular mass (z3cmin housed at the Tianyu Museum of Nature in Shandong Province, diameter) of seeds. The outside was rimmed by a layer of larger China, and found several specimens belonging to two taxa with seeds ranging from 4 to 6 mm in diameter, and the anterior unequivocal evidence of crops. One of them is Sapeornis, one of portion of this layer had floated out, spreading over an area of the basal birds presumed to have an herbivorous diet (2, 3), and some 9 × 2.5 cm (Fig. 2B). The center of the mass is densely the second taxon is the basal ornithurine Hongshanornis (4). packed with more than 70 smaller seeds showing an individual Both have preserved seeds in the anatomical location of the crop diameter of z2 mm. The seed mass was inset against the front of in extant birds. In some cases, even the soft tissue outline of the the furcula as in modern birds. The second specimen, STM 15-15 crop can be observed and resembles closely the structure in (Fig. 2 C and D) shows a cylindrical discoloration (darkening) of modern birds. the sediments just below the ventral surface of the cervical ver- In extant birds a crop is a ventral pouch of the esophagus tebrae, extending a few centimeters anteriorly. This seems to be and is situated anterior to the shoulder girdle just in front of a trace of the esophagus, and it is faintly visible around the seed the furcula (5) (Fig. 1). In fossils its position is indicated by mass. The seeds were closely packed one against the other, in- a roughly spherical mass of seeds that is easily discriminated dicating that there was little or no fleshy surface around them. from stomach contents by its location outside of the ribcage. The postcranial skeleton is nearly intact, with the ribcage still in The discovery of a crop in two phylogenetically separate avian its original position. Counting five vertebrae posterior to the end lineages opens a window for our understanding of dietary ad- of the neck and within the ribcage there is a small mass of pol- aptation in the early avian radiation and may also help us better ished stones. A few of the stones are scattered away from the understand the great diversity in the Early Cretaceous, which main concentration. The main mass indicates the position of the occurred approximately 20 million years after the earliest bird, gizzard. Just posteroventral to this mass is a pocket of coprolitic Archaeopteryx (6, 7). material in the position of the intestines. The outline of the In modern seed-eating birds the crop provides storage, so that skeleton and positioning of the crop and gizzard is remarkably similar to that found in modern birds (Fig. 2). a number of seeds can be gathered quickly and then processed fi later in a more secure location without interference from com- The skeleton of Sapeornis,asinArchaeopteryx, lacks an ossi ed petitors and/or predators. The mucus in the crop softens hard sternum, but the maxilla was edentulous, whereas the premaxilla has a small number of teeth that are elongated anteroposteriorly. seeds so that they are more easily ground by the gizzard. The The mandible was toothless and covered by a horny bill, as was gizzard may be a more basal feature for birds, because it is widely distributed in sister groups, such as modern crocodilians. In re- cent birds the gizzard is posterior to the proventriculus or glan- Author contributions: X.Z., L.D.M., and Z.Z. designed research; X.Z., L.D.M., Z.Z., and D.M. dular part of the stomach. The practice of collecting large performed research; X.Z., D.A.B., and F.Z. contributed new reagents/analytic tools; D.A.B. numbers of small stones in the gizzard is characteristic of seed and F.Z. analyzed data; and L.D.M., Z.Z., and D.M. wrote the paper. eaters among modern birds and is often correlated with a well- The authors declare no conflict of interest. developed crop. 1To whom correspondence should be addressed. E-mail: [email protected]. 15904e15907 | PNAS | September 20, 2011 | vol. 108 | no. 38 www.pnas.org/cgi/doi/10.1073/pnas.1112694108 Downloaded by guest on October 3, 2021 Fig. 1. Relative position of the crop (c) and gizzard (g) in a modern bird (some skeletal elements removed for clarity). e, esophagus. probably also the case with the maxilla. It seems that the pre- maxillary teeth in Sapeornis were suitable for cutting fibrous material, such as stems attached to seeds, and this was likely the use of the horny bill as well. One specimen of the basal ornithurine bird Hongshanornis longicresta (4) (STM 35-3; Fig. 3) shows a seed mass in front of the furcula that extends under the anterior sternum, a position Fig. 2. Photographs of two specimens of Sapeornis chaoyangensis housed similar to that for the crop in the modern hoatzin. Hongshanornis at the Tianyu Museum of Nature with preservation of a crop. (A) STM 15-29, is a small ornithurine characterized by a short wing and the total a partially articulated skeleton. (B) Close-up view of the crop region anterior to the furcula on the counterslab of STM 15-29. (C) STM 15-15, a nearly loss of teeth. It was thought in some ways to be more basal than complete articulated skeleton. (D) Close-up view of the crop region anterior Yanornis (9). There are more than 20 seeds in STM 35-3, and to the furcula in STM 15-15. Arrows point to seeds in the crop. c, crop; cv, they are all of one type, being oval and approximately 4 mm long cervical vertebrae; f, furcula; gs, gizzard stone; se, seed. and 2 mm wide (Fig. 3B). Posteriorly, below the position of the fifth dorsal vertebra, there is a mass of more than 50 small independently several times in various lineages of early avian (1-mm) gastroliths, indicating a muscular gizzard at approxi- EVOLUTION mately the usual position in birds. evolution [e.g., Sapeornis, Zhongjianornis (14), Confuciusornithidae (15), Enantiornithes (16) and Ornithurae (4, 9)]. All birds from Discussion the beginning of the Cenozoic are toothless. Although reduction Most modern birds with crops are seed eaters and use crops to of body weight has often been cited as an important factor for store and soften foods and regulate their flow through the di- reduction or loss of teeth in birds, we believe the dietary adap- gestive tract before they pass to a powerfully muscled portion of tation was probably an equally if not more important factor in the stomach, the gizzard (5).
Recommended publications
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • A Second Cretaceous Ornithuromorph Bird from the Changma Basin, Gansu Province, Northwestern China Author(S): Hai-Lu You , Jessie Atterholt , Jingmai K
    A Second Cretaceous Ornithuromorph Bird from the Changma Basin, Gansu Province, Northwestern China Author(s): Hai-Lu You , Jessie Atterholt , Jingmai K. O'Connor , Jerald D. Harris , Matthew C. Lamanna and Da-Qing Li Source: Acta Palaeontologica Polonica, 55(4):617-625. 2010. Published By: Institute of Paleobiology, Polish Academy of Sciences DOI: http://dx.doi.org/10.4202/app.2009.0095 URL: http://www.bioone.org/doi/full/10.4202/app.2009.0095 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. A second Cretaceous ornithuromorph bird from the Changma Basin, Gansu Province, northwestern China HAI−LU YOU, JESSIE ATTERHOLT, JINGMAI K. O’CONNOR, JERALD D. HARRIS, MATTHEW C. LAMANNA, and DA−QING LI You, H.−L., Atterholt, J., O’Connor, J.K., Harris, J.D., Lamanna, M.C., and Li, D.−Q. 2010. A second Cretaceous ornithuromorph bird from the Changma Basin, Gansu Province, northwestern China.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • And Sapeornis (Aves) and the Complex Early Evolution of the Avian Sternum
    On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum Xiaoting Zhenga,b, Jingmai O’Connorc,1, Xiaoli Wanga, Min Wangc, Xiaomei Zhangb, and Zhonghe Zhouc,1 aInstitute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and cKey Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, June 14, 2014 (sent for review April 13, 2014) Anchiornis (Deinonychosauria: Troodontidae), the earliest known inferred importance of the sternum as part of the avian flight feathered dinosaur, and Sapeornis (Aves: Pygostylia), one of the apparatus and at odds with the phylogenetic distribution of os- basalmost Cretaceous birds, are both known from hundreds of sified sterna among maniraptoran theropods. All other groups specimens, although remarkably not one specimen preserves any that are or have been considered closely related to birds (Scan- sternal ossifications. We use histological analysis to confirm the soriopterygidae, Dromaeosauridae, and Oviraptorosauria) pos- absence of this element in adult specimens. Furthermore, the excel- sess paired, ossified sternal plates that fuse into a singular lent preservation of soft-tissue structures in some specimens sug- element (sternum) late in ontogeny in at least some taxa (e.g., gests that no chondrified sternum was present. Archaeopteryx,the dromaeosaurid Microraptor, oviraptorosaur Ingenia) (16–19). oldest and most basal known bird, is known from only 10 specimens Admittedly, the sternum is not one of the best-known skeletal and the presence of a sternum is controversial; a chondrified ster- elements in these clades; the presence of sternal plates is af- num is widely considered to have been present.
    [Show full text]
  • Advanced Online Publication
    DOI: 10.19615/j.cnki.2096-9899.210517 附录 分析中生代鸟类数据的 MrBayes 命令,包括注释。更多结果和讨论参见先前的研 究 (Zhang and Wang 2019) 。 MrBayes 3.2.8 版本可以从最新的源代码编译 (https://github.com/NBISweden/MrBayes)。 Begin MrBayes; [read in data matrix] execute birds.nex; [substitution model] Advanced ctype ordered: 1 3 8 28 31online 43 51 56 64 67 69 70 72publication 74 92 107 117 159 168 176 183 193 205 213 214 216 219 222 229 233 234 249 261 265 268 270; lset coding = variable rates = gamma; [Mkv+Gamma model] [tip dates] calibrate Dromaeosauridae = uniform(66.0, 167.7) Archaeopteryx = uniform(145.0, 152.1) Jeholornis = uniform(110.6, 125.0) Chongmingia = uniform(110.6, 120.3) Sapeornis = uniform(110.6, 125.0) Confuciusornis_sanctus = uniform(110.6, 125.0) Changchengornis = uniform(120.3, 125.0) Eoconfuciusornis = uniform(129.0, 130.7) Confuciusornis_dui = uniform(120.3, 125.0) Yangavis = uniform(120.3, 125.0) Boluochia = uniform(110.6, 120.0) Concornis = uniform(120.3, 125.0) Elsornis = uniform(70.6, 84.9) Eoalulavis = uniform(120.3, 125.0) Cathayornis = uniform(110.6, 120.3) Eocathayornis = uniform(110.6, 120.3) Eoenantiornis = uniform(120.3, 125.0) Gobipteryx = uniform(72.1, 83.6) Longipteryx = uniform(110.6, 120.3) Longirostravis = uniform(120.3, 125.0) Neuquenornis = uniform(79.5, 83.5) Pengornis = uniform(110.6, 120.3) Eopengornis = uniform(129.0, 130.7) Protopteryx = uniform(129.0, 130.7) Rapaxavis = uniform(110.6, 120.3) DOI: 10.19615/j.cnki.2096-9899.210517 Shanweiniao = uniform(120.3, 125.0) Vescornis = uniform(121.6, 122.5) Qiliania = uniform(112.6, 125.4) Dunhuangia
    [Show full text]
  • A New Specimen of the Early Cretaceous Bird Hongshanornis Longicresta: Insights Into the Aerodynamics and Diet of a Basal Ornithuromorph
    A new specimen of the Early Cretaceous bird Hongshanornis longicresta: insights into the aerodynamics and diet of a basal ornithuromorph Luis M. Chiappe1, Zhao Bo2, Jingmai K. O’Connor3, Gao Chunling2, Wang Xuri2,4, Michael Habib5, Jesus Marugan-Lobon6, Meng Qingjin7 and Cheng Xiaodong2 1 Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA 2 Dalian Natural History Museum, District Dalian, PR China 3 Institute of Vertebrate Paleontology and Paleoanthroplogy, Beijing, PR China 4 Institute of Geology, Chinese Academy of Geological Sciences, Beijing, PR China 5 University of Southern California, Health Sciences Campus, Los Angeles, CA, USA 6 Unidad de Paleontolog´ıa, Dpto. Biolog´ıa, Universidad Autonoma´ de Madrid, Cantoblanco, Spain 7 Beijing Natural History Museum, Beijing, PR China ABSTRACT The discovery of Hongshanornis longicresta, a small ornithuromorph bird with un- usually long hindlimb proportions, was followed by the discovery of two closely related species, Longicrusavis houi and Parahongshanornis chaoyangensis. Together forming the Hongshanornithidae, these species reveal important information about the early diversity and morphological specialization of ornithuromorphs, the clade that contains all living birds. Here we report on a new specimen (DNHM D2945/6) referable to Hongshanornis longicresta that contributes significant information to bet- ter understand the morphology, trophic ecology, and aerodynamics of this species, as well as the taxonomy of the Hongshanornithidae. Most notable are the well- preserved wings and feathered tail of DNHM D2945/6, which afford an accurate reconstruction of aerodynamic parameters indicating that as early as 125 million Submitted 30 August 2013 years ago, basal ornithuromorphs had evolved aerodynamic surfaces comparable in Accepted 11 December 2013 Published 2 January 2014 size and design to those of many modern birds, and flight modes alike to those of some small living birds.
    [Show full text]
  • Supplemental Figs S1-S6
    Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds Chi Zhang1,2,* and Min Wang1,2 1Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China ∗Corresponding author: E-mail: [email protected] Supplementary Information Figures Dromaeosauridae Archaeopteryx Jeholornis Chongmingia Sapeornis Confuciusornis_sanctus Changchengornis Confuciusornis_dui Yangavis Eoconfuciusornis Pengornis Eopengornis Protopteryx 15.5 Boluochia Longipteryx Longirostravis Rapaxavis Shanweiniao Concornis Elsornis Gobipteryx Neuquenornis Eoalulavis Cathayornis Eocathayornis Eoenantiornis Linyiornis mean relative rate Fortunguavis Sulcavis Bohaiornis 0.3 Parabohaiornis Longusunguis Zhouornis Shenqiornis Vescornis Dunhuangia 1.0 Piscivorenantiornis Pterygornis Qiliania Cruralispennia Monoenantiornis Archaeorhynchus Jianchangornis Schizooura Bellulornis Vorona Patagopteryx Songlingornis Iteravis Yanornis clade probability Yixianornis Piscivoravis Longicrusavis 0.5 Hongshanornis Parahongshanornis Archaeornithura Tianyuornis Apsaravis Gansus Ichthyornis Vegavis Anas Hesperornis Gallus Parahesperornis Baptornis_varneri Baptornis_advenus Enaliornis -175 -150 -125 -100 - 7 5 - 5 0 - 2 5 0 Figure S1. Dated phylogeny (time tree) of the Mesozoic birds under the partitioned analysis. The color of the branch represents the mean relative
    [Show full text]
  • Previously Unrecognized Ornithuromorph Bird Diversity in the Early Cretaceous Changma Basin, Gansu Province, Northwestern China
    Previously Unrecognized Ornithuromorph Bird Diversity in the Early Cretaceous Changma Basin, Gansu Province, Northwestern China Ya-Ming Wang1,2*, Jingmai K. O'Connor2,3, Da-Qing Li4, Hai-Lu You2,3 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing, People’s Republic of China, 2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Beijing, People’s Republic of China, 3 Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, People’s Republic of China, 4 Gansu Geological Museum, Chengguan District, Lanzhou, Gansu Province, People’s Republic of China Abstract Here we report on three new species of ornithuromorph birds from the Lower Cretaceous Xiagou Formation in the Changma Basin of Gansu Province, northwestern China: Yumenornis huangi gen. et sp. nov., Changmaornis houi gen. et sp. nov., and Jiuquanornis niui gen. et sp. nov.. The last of these is based on a previously published but unnamed specimen: GSGM-05-CM-021. Although incomplete, the specimens can be clearly distinguished from each other and from Gansus yumenensis Hou and Liu, 1984. Phylogenetic analysis resolves the three new taxa as basal ornithuromorphs. This study reveals previously unrecognized ornithuromorph diversity in the Changma avifauna, which is largely dominated by Gansus but with at least three other ornithuromorphs. Body mass estimates demonstrate that enantiornithines were much smaller than ornithuromorphs in the Changma avifauna. In addition, Changma enantiornithines preserve long and recurved pedal unguals, suggesting an arboreal lifestyle; in contrast, Changma ornithuromorphs tend to show terrestrial or even aquatic adaptions. Similar differences in body mass and ecology are also observed in the Jehol avifauna in northeastern China, suggesting niche partitioning between these two clades developed early in their evolutionary history.
    [Show full text]
  • Fossil Evidence of Avian Crops from the Early Cretaceous of China
    Fossil evidence of avian crops from the Early Cretaceous of China Xiaoting Zhenga,b, Larry D. Martinc, Zhonghe Zhoud,1, David A. Burnhamc, Fucheng Zhangd, and Desui Miaoc aInstitute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; cDivision of Vertebrate Paleontology, Biodiversity Institute, University of Kansas, Lawrence, KS 66045; and dKey Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, August 3, 2011 (sent for review July 13, 2011) The crop is characteristic of seed-eating birds today, yet little is A number of other Mesozoic birds and their theropod relatives known about its early history despite remarkable discoveries of have recently been reported with gizzard stones (gastroliths), in- many Mesozoic seed-eating birds in the past decade. Here we re- cluding the basal ornithurines Yanornis (8) and Archaeorhynchus port the discovery of some early fossil evidence for the presence of (9), the oviraptosaur Caudipteryx, and the ornithomimosaur a crop in birds. Two Early Cretaceous birds, the basal ornithurine Shenzhousaurus (10), confirming that the presence of a muscular Hongshanornis and a basal avian Sapeornis, demonstrate that an grinding stomach is primitive for birds. It may well have occurred essentially modern avian digestive system formed early in avian in most species but is only documented in forms that foraged evolution. The discovery of a crop in two phylogenetically remote on the ground and thereby came into contact with small stones. lineages of Early Cretaceous birds and its absence in most inter- The discovery of crops in combination with stomach stones vening forms indicates that it was independently acquired as a spe- demonstrates the presence at an early date of an essentially cialized seed-eating adaptation.
    [Show full text]
  • New Information on Postcranial Skeleton of the Early Cretaceous Gansus Yumenensis (Aves: Ornithuromorpha)
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 New information on postcranial skeleton of the Early Cretaceous Gansus yumenensis (Aves: Ornithuromorpha) Ya-Ming Wang, Jingmai K. O'Connor, Da-Qing Li & Hai-Lu You To cite this article: Ya-Ming Wang, Jingmai K. O'Connor, Da-Qing Li & Hai-Lu You (2016) New information on postcranial skeleton of the Early Cretaceous Gansus yumenensis (Aves: Ornithuromorpha), Historical Biology, 28:5, 666-679, DOI: 10.1080/08912963.2015.1006217 To link to this article: http://dx.doi.org/10.1080/08912963.2015.1006217 View supplementary material Published online: 17 Feb 2015. Submit your article to this journal Article views: 130 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [Shanghai Jiaotong University] Date: 08 October 2016, At: 19:48 Historical Biology, 2016 Vol. 28, No. 5, 666–679, http://dx.doi.org/10.1080/08912963.2015.1006217 New information on postcranial skeleton of the Early Cretaceous Gansus yumenensis (Aves: Ornithuromorpha) Ya-Ming Wanga,b*, Jingmai K. O’Connorb,c, Da-Qing Lid and Hai-Lu Youb,c aSchool of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, P.R. China; bKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Beijing 100044, P.R. China; cInstitute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, P.R.
    [Show full text]
  • Chapter 2 the Fossil Record of Mesozoic and Paleocene Pennaraptorans
    Chapter 2 The Fossil Record of Mesozoic and Paleocene Pennaraptorans MICHAEL PITTMAN,1 JINGMAI O’CONNOR,2 EDISON TSE,1 PETER MAKOVICKY,3 DANIEL J. FIELD,4 WAISUM MA,5 ALAN H. TURNER,6 MARK A. NORELL,7 RUI PEI,2 AND XING XU2 ABSTRACT An unabated surge of new and important discoveries continues to transform knowledge of pen- naraptoran biology and evolution amassed over the last 150+ years. This chapter summarizes prog- ress made thus far in sampling the pennaraptoran fossil record of the Mesozoic and Paleocene and proposes priority areas of attention moving forward. Oviraptorosaurians are bizarre, nonparavian pennaraptorans first discovered in North America and Mongolia within Late Cretaceous rocks in the early 20th century. We now know that oviraptorosaurians also occupied the Early Cretaceous and their unquestionable fossil record is currently limited to Laurasia. Early Cretaceous material from China preserves feathers and other soft tissues and ingested remains including gastroliths and other stomach contents, while brooding specimens and age-structured, single- species accumulations from China and Mongolia provide spectacular behavioral insights. Less specialized early oviraptorosaurians like Incisivosaurus and Microvenator remain rare, and ancestral forms expected in the Late Jurassic are yet to be discovered, although some authors have suggested Epidexipteryx and possibly other scansoriopterygids may represent early-diverging oviraptorosaurians. Long-armed scansoriopterygids from the Middle-Late Jurassic of Laurasia are either early-diverg- ing oviraptorosaurians or paravians, and some have considered them to be early-diverging avialans. Known from five (or possibly six) feathered specimens from China, only two mature individuals exist, representing these taxa. These taxa,Yi and Ambopteryx, preserve stylopod-supported wing membranes that are the only known alternative to the feathered, muscular wings that had been exclusively associated with dinosaurian flight.
    [Show full text]
  • Evolution and Ecological Associations in Herbivorous Theropods Albert Chen 4/25/2016 Advisor: Dr
    Evolution and Ecological Associations in Herbivorous Theropods Albert Chen 4/25/2016 Advisor: Dr. Thomas Holtz GEOL 394 1 Abstract Theropod dinosaurs are inferred to have been ancestrally carnivorous and include numerous lineages specialized for hypercarnivory. However, evidence from fossil gut contents, anatomical characteristics, and phylogenetic bracketing suggests that several theropod clades convergently transitioned away from a carnivorous lifestyle to become herbivores or omnivores. The evolutionary drivers of these trophic shifts are unknown. Methods involving the use of the Paleobiology Database (PBDB) were used to test for the potential impact of ecological factors that may have affected the diversification of non-hypercarnivorous theropods, such as the diversity of other herbivorous vertebrates, the diversity of plants, and change in global sea level. After demonstrating feasibility of the proposed methods by using restricted parameters (solely considering oviraptorosaurian theropods from the Cretaceous of Asia and contemporaneous herbivores), said methods were applied to an expanded dataset including more than 500 taxa from 51 geologic formations. No statistically significant correlations were found between non- hypercarnivorous theropod diversity and that of plants, but overall diversity of non- hypercarnivorous theropods was found to positively correlate through space and time with the diversity of other herbivores. These results suggest that non-hypercarnivorous theropods did not strongly compete with contemporaneous herbivores.
    [Show full text]