What Color Is YOUR Water? Monitoring the Coastal Ocean Through Color

Total Page:16

File Type:pdf, Size:1020Kb

What Color Is YOUR Water? Monitoring the Coastal Ocean Through Color What color is YOUR water? Monitoring the Coastal Ocean Through Color Anna R. McGaraghan*, Kendra Negrey, and Raphael M. Kudela University of California Santa Cruz *[email protected] What is Ocean Color? What do the colors mean? Ocean color as measured from satellite is a When the water looks especially green, it means there are a prominent tool in modern oceanography. lot of microscopic algae (phytoplankton) growing near the Satellite sensors record reflected light from the surface. surface of the water. Different colors represent how light interacts with different parTcles in the water. When the water looks murky and brown it means there is sediment, or mud, suspended in the water. Our eyes can do the same thing! People have been observing and recording the color of the water from the shore for centuries. Changing colors reflect the changing parTcles in the water. Phytoplankton blooms oNen turn the water green, but a dense bloom of certain species can be orange, brown or red. Colors below all from Monterey Bay! How is ocean color measured here? Why does it maer? In Monterey Bay, the water color is recorded each week in Monterey and Santa Monitoring the changing color of water can help researchers recognize paerns in Cruz while researchers are collecTng phytoplankton samples. the state of the ocean. Paerns can hold the keys to understanding phenomena like red Tdes and harmful algal blooms, weather events, and climate change. This color chart is used, and the color is recorded along with several other water quality measurements. Red Tdes, oNen harmless, are Harmful Algal Blooms are not. They are easy to see. (Can you spot the oNen colorless – but subtle changes in whale?) color can reveal changes in the phytoplankton community. Lingulodinium bloom (HAB) Pseudo-nitzschia bloom (HAB) Santa Cruz 15 April 2015 #UCSCcolorgallery Akashiwo bloom (harmless) Weekly colors at the Santa Cruz Wharf in 2014 ShiN from diatoms to dinoflagellates Diatoms + turbidity + rain Highest domoic acid Cochlodinium Join us! Santa Cruz High Tech: Two smartphone apps are available that gather water color Low Tech: informaon from all over the world. Water color exhibits can be found at the Santa Cruz Wharf and HydroColor Citclops Download either the Exploratorium in San Francisco. Take a photo and app and submit contribute to our Instagram gallery! water color photos from anywhere! Exploratorium Photos posted to the gallery allow us to compare Monterey Bay and San Francisco Bay, and observe Scan code at right for color chart and more info, or visit how the colors change through Tme. hUp://oceandatacenter.ucsc.edu/PhytoBlog/color.html .
Recommended publications
  • A Comparison of Global Estimates of Marine Primary Production from Ocean Color
    ARTICLE IN PRESS Deep-Sea Research II 53 (2006) 741–770 www.elsevier.com/locate/dsr2 A comparison of global estimates of marine primary production from ocean color Mary-Elena Carra,Ã, Marjorie A.M. Friedrichsb,bb, Marjorie Schmeltza, Maki Noguchi Aitac, David Antoined, Kevin R. Arrigoe, Ichio Asanumaf, Olivier Aumontg, Richard Barberh, Michael Behrenfeldi, Robert Bidigarej, Erik T. Buitenhuisk, Janet Campbelll, Aurea Ciottim, Heidi Dierssenn, Mark Dowello, John Dunnep, Wayne Esaiasq, Bernard Gentilid, Watson Greggq, Steve Groomr, Nicolas Hoepffnero, Joji Ishizakas, Takahiko Kamedat, Corinne Le Que´re´k,u, Steven Lohrenzv, John Marraw, Fre´de´ric Me´lino, Keith Moorex, Andre´Moreld, Tasha E. Reddye, John Ryany, Michele Scardiz, Tim Smythr, Kevin Turpieq, Gavin Tilstoner, Kirk Watersaa, Yasuhiro Yamanakac aJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91101-8099, USA bCenter for Coastal Physical Oceanography, Old Dominion University, Crittenton Hall, 768 West 52nd Street, Norfolk, VA 23529, USA cEcosystem Change Research Program, Frontier Research Center for Global Change, 3173-25,Showa-machi, Yokohama 236-0001, Japan dLaboratoire d’Oce´anographie de Villefranche, 06238, Villefranche sur Mer, France eDepartment of Geophysics, Stanford University, Stanford, CA 94305-2215, USA fTokyo University of Information Sciences 1200-1, Yato, Wakaba, Chiba 265-8501, Japan gLaboratoire d’Oce´anographie Dynamique et de Climatologie, Univ Paris 06, MNHN, IRD,CNRS, Paris F-75252 05, France hDuke University
    [Show full text]
  • Euphotic Zone Depth: Its Derivation and Implication to Ocean-Color Remote Sensing" (2007)
    University of South Florida Scholar Commons Marine Science Faculty Publications College of Marine Science 3-16-2007 Euphotic Zone Depth: Its Derivation and Implication to Ocean- Color Remote Sensing ZhongPing Lee Stennis Space Center Alan Weidemann Stennis Space Center John Kindle Stennis Space Center Robert Arnone Stennis Space Center Kendall L. Carder University of South Florida, [email protected] See next page for additional authors Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub Part of the Marine Biology Commons Scholar Commons Citation Lee, ZhongPing; Weidemann, Alan; Kindle, John; Arnone, Robert; Carder, Kendall L.; and Davis, Curtiss, "Euphotic Zone Depth: Its Derivation and Implication to Ocean-Color Remote Sensing" (2007). Marine Science Faculty Publications. 11. https://scholarcommons.usf.edu/msc_facpub/11 This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Authors ZhongPing Lee, Alan Weidemann, John Kindle, Robert Arnone, Kendall L. Carder, and Curtiss Davis This article is available at Scholar Commons: https://scholarcommons.usf.edu/msc_facpub/11 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C03009, doi:10.1029/2006JC003802, 2007 Euphotic zone depth: Its derivation and implication to ocean-color remote sensing ZhongPing Lee,1 Alan Weidemann,1 John Kindle,1 Robert Arnone,1 Kendall L. Carder,2 and Curtiss Davis3 Received 6 July 2006; revised 12 October 2006; accepted 1 November 2006; published 16 March 2007. [1] Euphotic zone depth, z1%, reflects the depth where photosynthetic available radiation (PAR) is 1% of its surface value.
    [Show full text]
  • Seeing Microbes from Space Remote Sensing Is Now a Critical Resource for Tracking Marine Microbial Ecosystem Dynamics and Their Impact on Global Biogeochemical Cycles
    Seeing Microbes from Space Remote sensing is now a critical resource for tracking marine microbial ecosystem dynamics and their impact on global biogeochemical cycles Douglas G. Capone and Ajit Subramaniam icrobiologists studying aquatic oceans or other large bodies of water to mean environments are benefiting that they are clean, whereas the brown color of from their use of remote sensing rivers and streams mean they are carrying sus- M technologies. With access to data pended mud or other materials. gathered by remote sensors on This instinctive knowledge forms the basis of aircraft and satellites, microbiologists now can ocean color science. Sunlight that enters the analyze microbial population dynamics with ocean can either be absorbed or scattered back greater breadth and a novel perspective. (Fig. 1). Pure water absorbs most red light but Remote sensing instruments exploit electro- strongly scatters most blue light. Thus, open magnetic radiation to study surface processes on ocean waters with very little material in them earth. Passive sensors use reflected sunlight or appear deep blue, while waters carrying dis- heat being emitted by objects along the earth’s solved organic materials that absorb blue light surface, while active sensors transmit laser or strongly appear brown. Chlorophyll-containing microwaves that are then reflected back to and microalgal assemblages—phytoplankton—ab- recorded by the sensor. Many orbiting satellites sorb both blue and red light, making phyto- currently map ocean properties such as color, plankton-containing waters look green. In addi- surface temperature, height, wind velocities, tion, chlorophyll emits a small fraction of the roughness of the ocean surface, and wave absorbed light at a longer wavelength as red height.
    [Show full text]
  • Special Topics in Ocean Optics Protocols, Part 2
    NASA/TM-2004- Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI: Special Topics in Ocean Optics Protocols, Part 2 James L. Mueller and Giulietta S. Fargion and Charles R. McClain, Editors J. L. Mueller, S. W. Brown, D. K. Clark, B. C. Johnson, H. Yoon, K. R. Lykke, S. J. Flora, M. E. Feinholz, N. Souaidia, C. Pietras, T. C. Stone, M. A. Yarbrough, Y. S. Kim, R. A. Barnes, Authors. National Aeronautics and Space administration Goddard Space Flight Space Center Greenbelt, Maryland 20771 February 2004 NASA/TM-2004- James L. Mueller1 and Giulietta S. Fargion2 Editors Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI, Part 2: Special Topics in Ocean Optics Protocols, Part 2 James L Mueller, CHORS, San Diego State University, San Diego, California Giulietta S. Fargion, Science Applications International Corporation, Beltsville, Maryland Charles R. McClain, NASA Goddard Space Flight Center, Greenbelt, Maryland B. Carol Johnson, Steven W. Brown, Howard Yoon, Keith Lykke, Nordine Souaidia, National Institute of Standards and Technology, Gaithersburg Maryland Dennis K. Clark, National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, Camp Springs, Maryland Stephanie Flora, Michael E. Feinholz, Mark Yarbrough, Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California Yong Sung Kim, STG Inc., Rockville, Maryland Christophe Pietras, Robert A. Barnes, SAIC General Sciences Corporation, Beltsville,
    [Show full text]
  • Programma Dal 22 Al 25 Giugno 2017
    IL CORPO UMANO È COMPOSTO AL 70% DA ACQUA IL RESTO È CINEMA AQUA FILM FESTIVAL FILM FILM FILM FESTIVAL FESTIVAL FESTIVAL PROGRAMMA DAL 22 AL 25 GIUGNO 2017 www.aquafilmfestival.org [email protected] aquafilmfestival GIOVEDÌ 22 GIUGNO ORE 15.00 - Spiaggia “LA BIODOLA” - LEZIONE GRATUITA DI GINNASTICA IN ACQUA tenuta dalla Direttrice Artistica Eleonora Vallone, anche Master Trainer all’AQUANIENE e pioniera dell’AcquaGym in Italia, con l’istruttrice dell’Isola d’Elba Silvia Meiattini. CINEMA NELLO SANTI SALA GRANDE ORE 21.30 - ANTEPRIMA DEL FESTIVAL - OMAGGIO ALL’ISOLA D’ELBA Con gli alunni della Scuola Primaria “San Rocco” (Portoferraio) per il progetto “Mi impegno col mare” e “Come eravamo”. Realizzato grazie all’Insegnante Susanna Lemmi e al sostegno del Sindaco Mario Ferrari per le immagini di repertorio storiche. Montaggio di Angelo Del Mastro, testi di Senio Bonini e Michele Baldi. A SEGUIRE - Proiezione del film FUORI CONCORSO “IL BACIO AZZURRO” di P. Tordiglione (IT , 2015) - V.O. - 85 min. Alla presenza dell’attore Sebastiano Somma e dell’attrice Morgana Forcella. VENERDÌ 23 GIUGNO CINEMA NELLO SANTI SALA GRANDE ORE 10.00 - DESK ACCREDITI Distribuzione accrediti giornalisti ed accreditati sul sito di AquaFilmFestival. A SEGUIRE - Coffee Breck offerto da Caffè Corsini. ORE 11.00 - APERTURA FESTIVAL La Direttrice Artistica Eleonora Vallone presenta lo STAFF di AQUAFILMFESTIVAL e la Giuria di AFF composta da: Antonietta De Lillo (marechiarofilm),Simonetta Grechi (Legambiente), Enrico Magrelli (giornalista e critico cinematografico),Filippo Scicchitano (attore), Sara Serraiocco (attrice), Sebastiano Somma (attore) e Cinzia Th. Torrini (regista e scrittrice), alla presenza delle istituzioni di Portoferraio e dei rappresentanti di: Acqua dell’Elba, Visit Elba, Società Albergatori Isola d’Elba e Blue Navy.
    [Show full text]
  • Advances in the Monitoring of Algal Blooms by Remote Sensing: a Bibliometric Analysis
    applied sciences Article Advances in the Monitoring of Algal Blooms by Remote Sensing: A Bibliometric Analysis Maria-Teresa Sebastiá-Frasquet 1,* , Jesús-A Aguilar-Maldonado 1 , Iván Herrero-Durá 2 , Eduardo Santamaría-del-Ángel 3 , Sergio Morell-Monzó 1 and Javier Estornell 4 1 Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, C/Paraninfo, 1, 46730 Grau de Gandia, Spain; [email protected] (J.-A.A.-M.); [email protected] (S.M.-M.) 2 KFB Acoustics Sp. z o. o. Mydlana 7, 51-502 Wrocław, Poland; [email protected] 3 Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; [email protected] 4 Geo-Environmental Cartography and Remote Sensing Group, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] Received: 20 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Since remote sensing of ocean colour began in 1978, several ocean-colour sensors have been launched to measure ocean properties. These measures have been applied to study water quality, and they specifically can be used to study algal blooms. Blooms are a natural phenomenon that, due to anthropogenic activities, appear to have increased in frequency, intensity, and geographic distribution. This paper aims to provide a systematic analysis of research on remote sensing of algal blooms during 1999–2019 via bibliometric technique. This study aims to reveal the limitations of current studies to analyse climatic variability effect. A total of 1292 peer-reviewed articles published between January 1999 and December 2019 were collected.
    [Show full text]
  • An Overview of the Seawifs Project and Strategies for Producing a Climate Research Quality Global Ocean Bio-Optical Time Series
    ARTICLE IN PRESS Deep-Sea Research II 51 (2004) 5–42 An overview of the SeaWiFS project andstrategies for producing a climate research quality global ocean bio-optical time series Charles R. McClain*, Gene C. Feldman, Stanford B. Hooker Code 970.2, Office for Global Carbon Studies, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Received1 April 2003; accepted19 November 2003 Abstract The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project Office was formally initiated at the NASA Goddard Space Flight Center in 1990. Seven years later, the sensor was launched by Orbital Sciences Corporation under a data- buy contract to provide 5 years of science quality data for global ocean biogeochemistry research. To date, the SeaWiFS program has greatly exceeded the mission goals established over a decade ago in terms of data quality, data accessibility andusability, ocean community infrastructure development,cost efficiency, andcommunity service. The SeaWiFS Project Office andits collaborators in the scientific community have madesubstantial contributions in the areas of satellite calibration, product validation, near-real time data access, field data collection, protocol development, in situ instrumentation technology, operational data system development, and desktop level-0 to level-3 processing software. One important aspect of the SeaWiFS program is the high level of science community cooperation andparticipation. This article summarizes the key activities andapproaches the SeaWiFS Project Office pursuedto define,achieve, and maintain the mission objectives. These achievements have enabledthe user community to publish a large andgrowing volume of research such as those contributedto this special volume of Deep-Sea Research. Finally, some examples of major geophysical events (oceanic, atmospheric, andterrestrial) capturedby SeaWiFS are presentedto demonstratethe versatility of the sensor.
    [Show full text]
  • Derivation of Red Tide Index and Density Using Geostationary Ocean Color Imager (GOCI) Data
    remote sensing Article Derivation of Red Tide Index and Density Using Geostationary Ocean Color Imager (GOCI) Data Min-Sun Lee 1,2, Kyung-Ae Park 2,3,* and Fiorenza Micheli 1,4,5 1 Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; [email protected] (M.-S.L.); [email protected] (F.M.) 2 Department of Earth Science Education, Seoul National University, Seoul 08826, Korea 3 Research Institute of Oceanography, Seoul National University, Seoul 08826, Korea 4 Department of Biology, Stanford University, Stanford, CA 94305, USA 5 Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA 93950, USA * Correspondence: [email protected]; Tel.: +82-2-880-7780 Abstract: Red tide causes significant damage to marine resources such as aquaculture and fisheries in coastal regions. Such red tide events occur globally, across latitudes and ocean ecoregions. Satellite observations can be an effective tool for tracking and investigating red tides and have great potential for informing strategies to minimize their impacts on coastal fisheries. However, previous satellite- based red tide detection algorithms have been mostly conducted over short time scales and within relatively small areas, and have shown significant differences from actual field data, highlighting a need for new, more accurate algorithms to be developed. In this study, we present the newly developed normalized red tide index (NRTI). The NRTI uses Geostationary Ocean Color Imager (GOCI) data to detect red tides by observing in situ spectral characteristics of red tides and sea water using spectroradiometer in the coastal region of Korean Peninsula during severe red tide events. The bimodality of peaks in spectral reflectance with respect to wavelengths has become the basis for developing NRTI, by multiplying the heights of both spectral peaks.
    [Show full text]
  • Remote Sensing of Euphotic Depth in Lake Naivasha
    REMOTE SENSING OF EUPHOTIC DEPTH IN LAKE NAIVASHA NOBUHLE PATIENCE MAJOZI February, 2011 SUPERVISORS: Dr. Ir. Mhd, S, Salama Prof. Dr. Ing., W, Verhoef REMOTE SENSING OF EUPHOTIC DEPTH IN LAKE NAIVASHA NOBUHLE PATIENCE MAJOZI Enschede, The Netherlands, February, 2011 Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation. Specialization: Water Resources and Environmental Management SUPERVISORS: Dr. Ir. Mhd, S., Salama Prof. Dr. Ing., W., Verhoef THESIS ASSESSMENT BOARD: Dr. Ir., C.M.M., Mannaerts (Chair) Dr, D.M., Harper (External Examiner, Department of Biology - University of Leicester – UK) DISCLAIMER This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty. ABSTRACT Euphotic zone depth is a fundamental measurement of water clarity in water bodies. It is determined by the water constituents like suspended particulate matter, dissolved organic matter, phytoplankton, mineral particles and water molecules, which attenuate solar radiation as it transits down a water column. Primary production is at its maximum within the euphotic zone because there is sufficient Photosynthetically Active Radiation (PAR) for photosynthesis to take place. The study was conducted in Lake Naivasha, Kenya. Rich in biodiversity, it supports a thriving fishery, an intensive flower-growing industry and geothermal power generation, thereby contributing significantly to local and national economic development.
    [Show full text]
  • Red Tide Report, 1954
    Explanatory Rots The series embodies results of i~vesti~ations,usually of restricted scope, intended to aid or direct mnnagm.ent or utilization practices and as !?ides for udministratiw or legislative action. It C is issued in limited quantities for the official use of Federal, Stnte or cooperating Agencies and in processed form for ecommy and to avoid delay in puhlioation. ? United States Department of the Interior, Douglas McKay, Secretary Fish and Wildlife Service, John L. Farley, Director RED TIDE Progress Report on the Investigations of the Cause of the Mortality of Fish Along the West Coast of Florida Conducted by the U. S. Fish and Wildlife Service and Cooperating Organizations Paul S. Galtsoff Fishery Biologist Fish and Wildlife Service special Scientific Report No. 46 Issued February 1948 Reissued October. 1954 Washington - 1954 I:This report was issued in a limited quantity in 1948, shortly eter the occurrence of red tides off the Florida gulf coast in late 1946 and in 1947. The original supply ras soon exhausted. Public interest in red tides has continued since the earlier outbreaks and has increased recently ag a result of new outbreak@in ths fgll md, winter of 1953-54. Because it contains infonna- tion of general interest, this report is reissued, pending preparation of reports on the latest findings of research on red tides. CONTENTS Page Redtide .............................. 1 Blooming of the sea ........................ 3 . A review of the literature ................... 3 The mortality of fish and the red tide ................9 First outbreak of red tidea November 19b6 .April 19b7 ..... 9 Fish mortality: June 19L7 ..................
    [Show full text]
  • Satellite Remote Sensing: Ocean Color☆ P Jeremy Werdell and Charles R Mcclain, NASA Goddard Space Flight Center, Greenbelt, MD, United States
    Satellite Remote Sensing: Ocean Color☆ P Jeremy Werdell and Charles R McClain, NASA Goddard Space Flight Center, Greenbelt, MD, United States © 2019 Elsevier Ltd. All rights reserved. Introduction 444 Ocean Color Theoretical and Observational Basis 444 Satellite Ocean Color Methodology 446 Sensor Design and Performance 447 Postlaunch Sensor Calibration Stability 449 Atmospheric Correction 449 Bio-optical Algorithms 450 Product Validation 450 Satellite Ocean Color Example Applications 451 Conclusions and Future Directions 454 References 454 Nomenclature Symbol Description (Units) À a Absorption coefficient (m 1) À1 aCDOM Absorption coefficient for colored dissolved organic matter (m ) À1 aNAP Absorption coefficient for nonalgal particles (m ) À1 aph Absorption coefficient for phytoplankton (m ) À1 aw Absorption coefficient for seawater (m ) À1 bb Backscattering coefficient (m ) À1 bb,NAP Backscattering coefficient for nonalgal particles (m ) À1 bb,ph Backscattering coefficient for phytoplankton (m ) À1 bb,w Backscattering coefficient for seawater (m ) À [Chla] Concentration of chlorophyll-a (mg m 3) À2 À1 Ed Downwelling irradiance (mWcm nm ) À2 À1 Eu Upwelling irradiance (mWcm nm ) f Factor that relates R to a and bb (unitless) À2 À1 F0 Solar irradiance (mWcm nm ) À1 Kd Diffuse attenuation coefficient of downwelling irradiance (m ) À1 KLu Diffuse attenuation coefficient of upwelling radiance (m ) À2 À1 À1 La Aerosol radiance (mWcm nm sr ) À2 À1 À1 Lf Foam (white cap) radiance (mWcm nm sr ) À2 À1 À1) Lg Sun glint radiance (mWcm nm sr À2
    [Show full text]
  • A Beginner's Guide to Water Management — Color
    A Beginner’s Guide to Water Management — Color Information Circular 108 Joe Richard Florida LAKEWATCH Department of Fisheries and Aquatic Sciences Institute of Food and Agricultural Sciences University of Florida Gainesville, Florida January 2004 1st Edition This publication was produced by: Florida LAKEWATCH © 2004 University of Florida / Institute of Food and Agricultural Sciences Department of Fisheries and Aquatic Sciences 7922 NW 71st Street Gainesville, FL 32653-3071 Phone: (352) 392-4817 Toll-Free Citizen Hotline: 1-800-LAKEWATch (1-800-525-3928) E-mail: [email protected] Web Address: http://lakewatch.ifas.ufl.edu/ Copies of this document and other information circulars are available for download from the Florida LAKEWATCH website: http://lakewatch.ifas.ufl.edu/LWcirc.html As always, we welcome your questions and comments. A Beginner’s Guide to Water Management — Color Information Circular 108 Florida LAKEWATCH Department of Fisheries and Aquatic Sciences Institute of Food and Agricultural Sciences University of Florida Gainesville, Florida January 2004 1st Edition This publication was produced by: Florida LAKEWATCH © 2004 University of Florida / Institute of Food and Agricultural Sciences Department of Fisheries and Aquatic Sciences 7922 NW 71st Street Gainesville, FL 32653-3071 Phone: (352) 392-4817 Toll-Free Citizen Hotline: 1-800-LAKEWATch (1-800-525-3928) E-mail: [email protected] Web Address: http://lakewatch.ifas.ufl.edu/ Copies of this document and other information circulars are available for download from the Florida LAKEWATCH website: http://lakewatch.ifas.ufl.edu/LWcirc.html As always, we welcome your questions and comments. A Listing of Florida LAKEWATCH Information Circulars Note: For more information related to color in lakes, we recommend that you read Circulars 101, 102 and 103.
    [Show full text]