New Evidence from the Copper Mountains, Nevada

Total Page:16

File Type:pdf, Size:1020Kb

New Evidence from the Copper Mountains, Nevada Transition from Contraction to Extension in the Northeastern Basin and Range: New Evidence from the Copper Mountains, Nevada Jeffrey M. Rahl,1 Allen J. McGrew,2 and Kenneth A. Foland 3 Department of Geology, University of Dayton, Dayton, Ohio 45469-2364, U.S.A. ABSTRACT New mapping, structural analysis, and 40Ar/39Ar dating reveal an unusually well-constrained history of Late Eocene extension in the Copper Mountains of the northern Basin and Range province. In this area, the northeast-trending Copper Creek normal fault juxtaposes a distinctive sequence of metacarbonate and granitoid rocks against a footwall of Upper Precambrian to Lower Cambrian quartzite and phyllite. Correlation of the hanging wall with footwall rocks to the northwest provides an approximate piercing point that requires 8–12 km displacement in an ESE direction. This displaced fault slice is itself bounded above by another normal fault (the Meadow Fork Fault), which brings down a hanging wall of dacitic to rhyolitic tuff that grades conformably upward into conglomerate. These relationships record the formation of a fault-bounded basin between 41.3 and 37.4 Ma. The results are consistent with a regional pattern in which volcanism and extension swept southward from British Columbia to southern Nevada from Early Eocene to Late Oligocene time. Because the southward sweep of volcanism is thought to track the steepening and foundering of the downgoing oceanic plate, these results suggest that the crucial mechanisms for the onset of regional extension were probably changes in plate boundary conditions coupled with convective removal of mantle lithosphere and associated regional magmatism and lithospheric weakening. Paleobotanical data indicate that surface elevations in northeastern Nevada were not significantly different than at present, suggesting that gravitational instability of overthickened continental crust was not the dominant force driving the onset of crustal thinning in mid-Tertiary time. Introduction During Late Cretaceous time, the Cordilleran mar- ing active rifting or in thermally weakening the gin of North America experienced an episode of lithosphere so that rifting could occur due to either contractional tectonics, the Sevier orogeny (Arm- back-arc extension or gravitational collapse (Gans strong 1968), that contrasts greatly with the wide- et al. 1989; Armstrong and Ward 1991). spread extension that ultimately formed the Basin Regardless of other mechanisms, evolving Cor- and Range province in Cenozoic time. Consider- dilleran plate boundary conditions undoubtedly able debate exists regarding the mechanisms re- played an important direct or indirect role in trig- sponsible for this transition from regional contrac- gering Late Paleogene extension. For example, rel- tion to extension (see review by Sonder and Jones ative convergence rates at the plate margin began 1999). Several workers argue that Paleogene exten- to decelerate at approximately 50 Ma, possibly lead- sion resulted from a release of potential energy as- ing to a time-transgressive transition from “flat- sociated with Mesozoic crustal thickening (Coney slab” to “steep-slab” subduction (Coney and Reyn- and Harms 1984; Axen et al. 1993; Janecke 1994; olds 1977; Engebretson et al. 1985). The southward Wells 1997; Jones et al. 1998). Others propose that sweep of volcanism across the Cordillera may track widespread magmatism was critical, either in driv- the progressive steepening and foundering of the subducting plate as the rate of plate convergence Manuscript received July 5, 2000; accepted August 14, 2001. 1 Present address: Department of Geology and Geophysics, decreased through much of Tertiary time (Cross Yale University, P.O. Box 208109, New Haven, Connecticut and Pilger 1978; Lipman 1980). Such a plate bound- 06520-8109, U.S.A. ary evolution would favor extension by both re- 2 Author for correspondence; e-mail: Allen.McGrew@notes laxing contractional boundary conditions and .udayton.edu. 3 Department of Geological Sciences, The Ohio State Uni- thermally weakening the lithosphere as a hot as- versity, Columbus, Ohio 43210, U.S.A. thenospheric wedge invaded the space opening be- [The Journal of Geology, 2002, volume 110, p. 179–194] ᭧ 2002 by The University of Chicago. All rights reserved. 0022-1376/2002/11002-0004$15.00 179 180 J. M. RAHL ET AL. tween the base of the overriding lithosphere and tains with important implications for the causes the downgoing slab (Best and Christiansen 1991). and evolution of extension in the northern Basin A similar process is proposed by Humphreys (1995), and Range. who argues that delamination of the shallowly sub- ducting Farallon slab allowed for the upwelling of Pre-Tertiary Geologic History hot asthenosphere against the base of the litho- sphere. Convective removal of thickened litho- The Copper Mountains and surrounding areas ex- spheric mantle is another possible cause of Basin pose a sequence of Late Precambrian and Early Pa- and Range extension (Platt and England 1994). De- leozoic metasedimentary rocks interpreted to rec- tachment of dense mantle lithosphere would lead ord passive margin sedimentation. The Copper to an influx of hot asthenospheric mantle that Mountains are composed of phyllite and quartzite could trigger melting and cause regional uplift due of the Precambrian McCoy Creek Group and the to mantle buoyancy, thus providing potential en- overlying Cambrian Prospect Mountain Quartzite ergy for horizontal extension (Houseman et al. (Coats 1987). Above these units is the Ordovician 1981; Platt and England 1994; Sonder and Jones Tennessee Mountain Formation, which consists of 1999). laminated and thinly bedded marble and siltstone Distinguishing the relative contribution of the with a minimum thickness of approximately 1600 various mechanisms outlined above depends m (Bushnell 1967). mostly on the answers to two questions: (1) Was These upper Proterozoic–lower Paleozoic meta- the crust in a particularly overthickened condition sedimentary rocks contain a phyllitic cleavage (S1) at the onset of Paleogene extension? (2) What were commonly overprinted by a northeast-striking, the magnitude, kinematics, and timing of exten- steeply dipping crenulation cleavage (S2) oriented sional systems relative to regional volcanism? Al- parallel to the axial surfaces of northeast-trending though the issues are simple, the resolution is dif- outcrop-scale to map-scale folds. Field observations ficult due to the complexity and patchiness of suggest that the second deformational event was volcanism and extension in time and space on a synchronous with the intrusion of the Coffeepot regional scale (Axen et al. 1993). Consequently, the Stock, a granodiorite body intruded during the late answers to these questions do not depend on re- Cretaceous (McGrew et al. 2000b). The eastern part lationships in any one area but must emerge from of the stock displays a weak solid-state grain shape regional synthesis based on careful documentation foliation developed under greenschist facies con- of field relationships in numerous critical areas. ditions and striking parallel to the crenulation The timing and magnitude of the early phases of cleavage. Some dikes emanating from the eastern extension in the northern Basin and Range is cru- part of the stock are involved in folding, whereas cial to orogen-wide models for the driving forces of others cut folds, implying that the stock must have regional extension (Sonder and Jones 1999). Nev- been emplaced synkinematically with the second ertheless, regional Eocene extension in the north- deformational event (McGrew et al. 2000b). The eastern Basin and Range has been widely suspected older cleavage (S1) is constrained only to predate but only locally documented (Potter et al. 1995; the emplacement of the Cretaceous stock, but sim- Camilleri and Chamberlin 1997; Mueller et al. ilar deformation in the Mountain City area has 1999). To address these problems, this article doc- been bracketed between Triassic and Late Jurassic uments an early extensional fault system in the (Little 1987). Tectonic burial and imbrication of the Copper Mountains, Nevada, a previously little- Late Proterozoic to Ordovician metasedimentary studied terrain in the northeastern Basin and Range sequence may also date to this time period because province (figs. 1, 2). Because the Copper Mountains the Coffeepot Stock cuts premetamorphic thrust also preserve a history of Late Cretaceous short- faults north of Copper Mountain (McGrew et al. ening in the hinterland of the Sevier fold and thrust 2000b). belt, they shed light on the fundamental tectonic The Coffeepot Stock consists mostly of medium- transition from Late Cretaceous contraction to Ter- grained hornblende biotite quartz monzonite. Lo- tiary extension. Significantly, the area also contains cally, it contains distinctive cream-colored euhe- a well-studied Eocene flora that affords a rare op- dral orthoclase phenocrysts up to 2.5 cm in size. portunity to characterize Early Tertiary paleoele- Biotite and hornblende typically compose 5%–10% vation (Axelrod 1966; Povey et al. 1994; Wolfe et of the rock, although hornblende is not universally al. 1998). New geochronological and structural data present. Accessory phases include euhedral apatite, presented here constrain the timing, magnitude, sphene, allanite, and magnetite. Chlorite fre- and kinematics of extension in the Copper Moun- quently appears as an alteration product of biotite, Journal of Geology EXTENSION IN THE BASIN AND RANGE 181 Figure
Recommended publications
  • Tectonic Alteration of a Major Neogene River Drainage of the Basin and Range
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2016 TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE Stuart D. Parker Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Tectonics and Structure Commons Let us know how access to this document benefits ou.y Recommended Citation Parker, Stuart D., "TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE" (2016). Graduate Student Theses, Dissertations, & Professional Papers. 10637. https://scholarworks.umt.edu/etd/10637 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TECTONIC ALTERATION OF A MAJOR NEOGENE RIVER DRAINAGE OF THE BASIN AND RANGE By STUART DOUGLAS PARKER Bachelor of Science, University of North Carolina-Asheville, Asheville, North Carolina, 2014 Thesis Presented in partial fulfillment of the requirements for the degree of Master of Science in Geology The University of Montana Missoula, MT May, 2016 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School James W. Sears, Committee Chair Department of Geosciences Rebecca Bendick Department of Geosciences Marc S. Hendrix Department of Geosciences Andrew Ware Department of Physics and Astronomy Parker, Stuart, M. S., May, 2016 Geology Tectonic alteration of a major Neogene river drainage of the Basin and Range Chairperson: James W.
    [Show full text]
  • Mountain City, Ruby Mountains, and Jarbidge Combined Travel
    Mountain City, Ruby Mountains and Jarbidge Ranger Districts Combined Travel Management Project Environmental Impact Statement Chapter 3. Affected Environment and Environmental Consequences 3.1. Introduction This chapter summarizes the physical, biological, social, and economic environments that are affected by the alternatives and the effects on that environment that would result from implementation of any of the alternatives. This chapter also presents the scientif ic and analyt ical basis for comparison of the alternatives presented in chapter 2. 3.1.1. Analysis Process Most of the data used in the following analysis are from the Humboldt-Toiyabe National Forest corporate GIS layers. There is a certain amount of error in the location and alignments included in this GIS data. For example, the road layer overlying the stream layer may show more stream crossings than actually exist on the ground because of the different sources from which the different layers were obtained. Some perennial streams may show up on the map as being intermittent. This may also create some inaccuracies as to the exact location and extent of riparian zones. The Forest is constantly working to improve map accuracies and the corporate GIS layers. For the purposes of this analysis, the best data that is available was used. The data in the tables below and in the project record depict with a reasonable amount of accuracy what would be occurring on the ground for each alternative, within the limitations described above. The changes between alternatives remain relative to each other. 3.1.2. Cumulative Effects According to the Council on Environmental Quality (CEQ) National Environmental Protection Ac t (NEPA) regulations, “cumulative impact” is the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or non-federal) or person undertakes such actions (40 CFR 1508.7).
    [Show full text]
  • Copper Basin Mining District Is the Former Site of Extensive Copper and Sulfur Mining Operations Dating Copper Basin Mining District Site Back for More Than 150 Years
    ABSTRACT: SITE BACKGROUND The Copper Basin Mining District is the former site of extensive copper and sulfur mining operations dating Copper Basin Mining District Site back for more than 150 years. In 1998, Glenn Springs Holdings, Inc. (GSHI) began installing a two-acre CERCLIS ID: TN0001890839 demonstration passive wetland system in conjunction An area rich in mining history, the Copper Basin with limestone dissolution and bacteria sulfate treatment. The anaerobic cell was completed in 1998, Mining District is located in Polk County in with two additional aerobic cells completed in 2003. southeastern Tennessee and in Fannin County in The demonstration wetland system captured base flow northern Georgia near the North Carolina border water from McPherson Branch (a first-order watershed) (see Figures 1 and 2). Mining of copper and sulfur with average influent flows of 291 gallons per minute (gpm). The McPherson Branch flow concentrations of began at the Copper Basin site soon after copper iron, copper, zinc, and aluminum were reduced by an was discovered in 1843 in Ducktown, Tennessee. order of magnitude and acidity was reduced by 100 The only deep shaft mines east of the Mississippi percent after flowing through the demonstrative wetland. River, mining and processing of copper occurred at The alkalinity was increased from 0 milligrams per liter (mg/L) to an average of approximately 160 mg/L. The the site until 1987, with sulfuric acid production pH of the treated water increased from 3.82 to 6.50. continuing until 2000. During the more than 150 Flow capacity is limited, with treatment of only the base years of mining and processing activities flow of the McPherson Branch through the wetland— conducted at Copper Basin, a total of more than higher flows bypass the passive treatment system.
    [Show full text]
  • Geologic Map of the Fish Creek Reservoir 7.5' Quadrangle, Blaine County, Idaho
    Geologic Map of the Fish Creek Reservoir 7.5’ Quadrangle, Blaine County, Idaho Scientific Investigations Map 3191 U.S. Department of the Interior U.S. Geological Survey Idavada volcanics measured section Fish Creek Reservoir dam West Fork Fish Creek CRATER Fish Creek NORTH Fish Creek Reservoir Road Mcb FRONT COVER: View looking west from low hill on east side of Fish Creek (see red star on geologic map), showing Fish Creek dam and reservoir, nearly dry; location of measured section (white dashed line on ridge) of lower Paleozoic carbonate rocks (Skipp and Sandberg, 1975); rim of crater, source for basalt flow of Snake River Group, and the junction of Fish Creek and West Fork of Fish Creek. Flat-lying distant caprock on Wood River Formation is rhyolitic ignimbrite of Miocene Idavada Volcanics. Mcb = Copper Basin Group Geologic Map of the Fish Creek Reservoir 7.5´ Quadrangle, Blaine County, Idaho By Betty Skipp and Theodore R. Brandt Scientific Investigations Map 3191 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Maintaining and Industrial Peace in the East Tennessee Copper Basin from the Great War Through the Second World War
    Georgia State University ScholarWorks @ Georgia State University History Dissertations Department of History 3-19-2010 Removing Reds from the Old Red Scar: Maintaining and Industrial Peace in the East Tennessee Copper Basin from the Great War through the Second World War William Ronald Simson Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/history_diss Part of the History Commons Recommended Citation Simson, William Ronald, "Removing Reds from the Old Red Scar: Maintaining and Industrial Peace in the East Tennessee Copper Basin from the Great War through the Second World War." Dissertation, Georgia State University, 2010. https://scholarworks.gsu.edu/history_diss/17 This Dissertation is brought to you for free and open access by the Department of History at ScholarWorks @ Georgia State University. It has been accepted for inclusion in History Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. REMOVING REDS FROM THE OLD RED SCAR: MAINTAINING AN INDUSTRIAL PEACE IN THE EAST TENNESSEE COPPER BASIN, FROM THE GREAT WAR THROUGH THE SECOND WORLD WAR by WILLIAM R. SIMSON ABSTRACT This study considers industrial society and development in the East Tennessee Copper Basin from the 1890s through World War II; its main focus will be on the primary industrial concern, Tennessee Copper Company (TCC 1899), owned by the Lewisohn Group, New York. The study differs from other Appalachian scholarship in its assessment of New South industries generally overlooked. Wars and increased reliance on organic chemicals tied the basin to defense needs and agricultural advance. Locals understood the basin held expanding economic opportunities superior to those in the surrounding mountains and saw themselves as participants in the nation’s industrial and economic progress, and a vital part of its defense.
    [Show full text]
  • Geologic Map of the Southern Portion of the Clayton Quadrangle, Custer
    IDAHO GEOLOGICAL SURVEY TECHNICAL REPORT 20-02 BOISE-MOSCOW IDAHOGEOLOGY.ORG KROHE AND OTHERS CORRELATION OF MAP UNITS Cash Creek Quartzite (middle Cambrian)—Quartzite, gray to 4TA09: Cambrian quartzite of Cash Creek (Єc) 5TA09: Ordovician Kinnikinic Quartzite (Ok) EOLOGIC AP OF THE OUTHERN ORTION OF THE LAYTON UADRANGLE, USTER OUNTY, DAHO Cc light-gray on weathered surface, light-gray to off-white on fresh G M S P C Q C C I Unconsolidated Sedimentary and Mass Movement Deposits surface. Unit is fine to coarse grained with pebbly layers and lenses 30 1785 n= 86 n= 87 (Hobbs and Hays, 1990); grains are subrounded and moderately to 1860 20 poorly sorted. All sand is quartz, there is no feldspar. Unit is medium Qls Qal Qc Qcq QUATERNARY to thick-bedded, has blocky weathering and is a cliff former. Unit 25 Volcanic Rocks has sharp contacts with the overlying Єs and underlying Єcb. The -------Unconformity------- CENOZOIC unit is ~396 m thick. Nicholas J. Krohe, Daniel T. Brennan, Paul K. Link, David M. Pearson, and L. Trent Armstrong 15 Lower carbonate of Squaw Creek (middle to early Cambrian)— 20 Tcv TERTIARY Ccb 1958 Idaho State University, Department of Geosciences Eocene Carbonaceous siltite, dark-gray to light-gray on weathered surface, dark purplish-gray to light-gray to turquoise on fresh surface. Unit is 2020 (modified from Plate 1 in Krohe, 2016, ISU M.S. Thesis) Sedimentary Rocks fine to very fine grained and well sorted. Unit contains mainly quartz 15 sand with some micaceous and calcareous layers. Unit is strikingly 10 Copper Basin Thrust Sheet Number laminated to thinly bedded, weathers fissile to flaggy, and has an Number Clayton-Bayhorse Section MISSISSIPPIAN 2102 2691 oily sheen.
    [Show full text]
  • Structural Reconstruction of Copper Basin, Battle Mountain District
    STRUCTURAL RECONSTRUCTION OF THE COPPER BASIN AREA, BATTLE MOUNTAIN DISTRICT, NEVADA by David A. Keeler A Prepublication Manuscript Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2010 1 Structural Reconstruction of the Copper Basin Area, Battle Mountain District, Nevada David A. Keeler* Newmont Mining Corp. P.O. Box 1657, Battle Mountain, NV 89820-1657 and Eric Seedorff Institute for Mineral Resources, Department of Geosciences University of Arizona, Tucson, AZ 85721-0077 *Corresponding author: email, [email protected] 2 Abstract The Copper Basin area of the Battle Mountain district in north-central Nevada contains a porphyry Mo-Cu deposit (Buckingham), several porphyry-related Au ± Cu deposits in skarn and silica-pyrite bodies (Labrador, Empire, Northern Lights, Surprise, Carissa), and three supergene Cu deposits (Contention, Sweet Marie, Widow). This study uses the results of field mapping, U- Pb dating of zircons from igneous rocks, and structural analysis to assess the age, original geometry, depth of emplacement, and degree of tilting and dismemberment of the Late Cretaceous and Eocene hydrothermal systems the Copper Basin area and the source of the supergene copper. The Copper Basin area consists primarily of clastic rocks of the Cambrian(?) Harmony Formation overlain unconformably by Pennsylvanian-Permian clastic and carbonate rocks of the Antler overlap sequence. On the eastern side of Copper Basin, the Antler overlap sequence is overlain by the late Eocene tuff of Cove Mine, in which the compaction foliation dips 15 to 25° east.
    [Show full text]
  • Birth of the Mountains
    As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural and cultural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen par- ticipation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration. Birth of the Mountains The Geologic Story of the Southern Appalachian Mountains Printed on recycled paper U.S. Department of the Interior U.S. Geological Survey WVA Roanoke VA KY Knoxville NC TN Asheville Chattanooga SC AL GA Atlanta Location of the Southern Appalachians Front and back covers. Great Smoky Mountains from Newfound Gap Road, Great Smoky Mountains National Park. Frontispiece. Creek at the Noah “Bud” Ogle Place on Cherokee Orchard Road, Great Smoky Mountains National Park. Birth of the Mountains The Geologic Story of the Southern Appalachian Mountains By Sandra H.B. Clark The mountains are the soul of the region. To understand the mountains is to know ourselves. Introduction WV Jefferson NF KY The Southern Appalachian Mountains include the Great Smoky Mountains VA National Park, the Blue Ridge Parkway, several National Forests, Cherokee NF TN Blue Ridge and numerous State and Parkway privately owned parks Great Smoky Mountains NP NC and recreation areas Cherokee NF Pisgah NF (fig.
    [Show full text]
  • Polk County: an Appalachian Perspective
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-1990 Polk County: An Appalachian Perspective Jéanne M. Brooks University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Brooks, Jéanne M., "Polk County: An Appalachian Perspective" (1990). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/53 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. A §JPEC1LJRUM OF CHANGE SENKOR lPROlTJEC'f COLLEGE SCHOLARS TENNESSEE SCHOLARS lEANNE M. BROOKS APRIL 17, 1990 Appalachia: An Overview.................................................................... 1 Introduction Definitions of Appalachia The Appalachian Regional Commission The Tennessee Valley Authority Appalachian Coal Communities The Case Study: Polk County, Tennessee ................................... 1 7 History to 1978 1 Polk County: An Appalachian Perspective...... Similarities between coal c . les and e aSln The role of TV A and the ARC in Polk County Regional Development Development in Polk County Conclusion Pictures ofPolk County........ ...... ........ ....... .......... ..... ........ ....................... 6 0 Burra Burra Mine Site Landscape Around Ducktown Cherokee National Forest Tennessee Chemical Company Hiwasee Baptist Church Rafters on the Ocoee River This project would not have been possible without the help of Dr.John Gaventa, Dr. Jim Cobb, and Dr. Anne Mayhew. Having the opportunity to work with professors of their calibre has been a true thrill for me.
    [Show full text]
  • Central Copper River Region, Alaska
    A, Economic Geology, 48 Series Professional Paper NO. 41 B, Descriptive Geology, 60 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR GEOLOGY OF THE CENTRAL COPPER RIVER REGION, ALASKA WALTER C. XENDENHALL GOVERNMENT PRINTIKG OFFICE 1905 CONTENTS. Page. Letter of transmittal ...................................................................... 9 Introduction .............................................................................. 11 Organization and itinerary ................................................................. 13 Geography ............................................................................... 16 Chugach Mountains ............................................................... 17 Wrangell hlou~itains............................................................. 17 Alaska Range .................................................................... 19 Interior valley .................................................................... 19 Copper River and its tributaries ................................................... 20 Relations of geography to settlement ...................................................... 22 Geology .................................................................................. Geologic summary .................................................................... Description of formations ............................................................. Dadina schists .................................................................... Occurrence and
    [Show full text]
  • Copper Basin Mining District Case Study
    Copper Basin Mining District Case Study Use of Cooperative Agreements Toward a Common Goal he Copper Basin Mining District has been heavily scarred by mining activities and is currently an area in transition. Once considered the Tlargest man-made biological desert in the nation, a 50-square mile tract of land was completely denuded following years of mining; farmers’ crops were destroyed by sulfur dioxide gas emissions from mining wastes; and creek waters were so acidic that no life flourished. In the 1970s, a biological survey found • Approximately 95 million tons of ore have only one living organism–an insect–in the waters downstream of the mining been processed in the mining district. area. Today, EPA, private companies, and the State of Tennessee are working • EPA, Tennessee, and private companies are together to reforest the land, clean the polluted waters, and stabilize and contain coordinating detailed investigations, com- munications, and cleanup efforts. mine wastes. On land that was once devoid of vegetation and clear waters, trees • A new wastewater treatment plant has have taken root and aquatic life is gradually returning. Tourists and locals alike removed approximately 6 million pounds of metals from the Davis Mill Creek in its fi rst enjoy white water raft trips in the nearby Ocoee river, scenic train excursions, two years of operation. and visits to a historic mining museum. It is only through coordinated efforts by EPA, the State of Tennessee, and private companies–with much input from the surrounding communities—that this turnaround is possible. With continued coordination and the ongoing work by all parties, the future for this mining area looks promising.
    [Show full text]
  • National Register of Historic Places Multiple Property Documentation Form
    NPS Form 10-900-b OMB No. 1024^)018 (June 1991) United States Department of the Interior National Park Service National Register of Historic Places Multiple Property Documentation Form This form is used for documenting muttiple property groups relating to one or several historic contexts. See instructions in How to Complete the Multiple Property Documentation Form (National Register Bulletin 16B). Complete each item by entering the requested information. For additional space, use continuation sheets (Form 10-900-a). Use a typewriter, word processor, or computer to complete all items. New Submission Amended Submission A. Name of Multiple Property Listing Historic Resources of the Tennessee Copper Basin B. Associated Historic Contexts (Name ea«h historic context, identifying theme, geographical area, and chronological period for each.) Early Mining Development 1847-1878 Late Mining Development 1890-1987 Development of Communities 1850-1941 C. Form Prepared by name/title Karen L. Daniels/ Historic Preservation Planner organization Southeast Tennessee Development District date February 1992 street & number 25 Cherokee Boulevard telephone (615) 266-5781 Chattanooga city or town state Tennessee zip code 37405______ D. Certification As the designated authority .nder the National Historic Preservation Act of 1966, as amended. I hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission
    [Show full text]