Immune Surveillance in the Skin: Mechanisms and Clinical Consequences

Total Page:16

File Type:pdf, Size:1020Kb

Immune Surveillance in the Skin: Mechanisms and Clinical Consequences REVIEWS IMMUNE SURVEILLANCE IN THE SKIN: MECHANISMS AND CLINICAL CONSEQUENCES Thomas S. Kupper and Robert C. Fuhlbrigge The skin, as the primary interface between the body and the environment, provides the first line of defence against a broad array of microbial pathogens and trauma. In addition to its properties as a physical barrier, the skin has many active defence mechanisms. In this review, we discuss the interaction between the innate and adaptive immune systems in the skin as a model for immune function at epithelial-cell interfaces with the environment. How these mechanisms account for the robust nature of cutaneous immune surveillance and how their dysregulation drives the pathogenesis of inflammatory skin disorders and skin-based tumours are the subjects of this review. We live in a hostile environment, surrounded by micro- misdirected immune activity is implicated in the patho- bial pathogens and subject to a range of physical and genesis of a large variety of acquired inflammatory skin chemical insults. To survive in this environment, verte- disorders, including psoriasis, atopic and allergic contact brates have evolved complex immune systems. A key dermatitis, lichen planus, alopecia areata and vitiligo4–10. element of this defence is the deployment of rapid The role of immune dysfunction in these conditions is response elements at the most probable sites of attack, emphasized by their response to immunosuppressive which are the epithelial-cell boundaries between the therapeutic interventions11–14. body and the environment in the skin, gut and lungs. Understanding the mechanisms of immune surveil- As the body’s largest and most exposed interface with lance in the skin and tissue-specific immune responses the environment, the skin has a central role in host also has important implications for the rational design defence. Before the relatively recent discovery of the of vaccines. To promote protective immunity, an immunological defences of skin, the cutaneous interface immunization protocol must elicit not only an antigen- was viewed as a passive barrier between the host and the specific immune response, but also an effective memory hostile environment. In the past few decades, however, it response that will provide long-lived protection at the has become apparent that the mechanical aspects of epi- most probable sites of invasion. This applies equally to dermal defence are reinforced by a versatile and robust immunization against infectious organisms, which in system of immune surveillance1 (FIG. 1).The crucial role most cases invade through the skin or the epithelia of Department of Dermatology, of immune surveillance in maintaining homeostasis is the gastrointestinal or respiratory systems, and to the Brigham and Women’s Hospital, Harvard Institutes evident from the marked increase in the frequency and elicitation of immune responses against tumours. As we of Medicine, 77 Avenue severity of cutaneous malignancies and infections when discuss, the route and means of adjuvant stimulation Louis Pasteur, Boston, immune function is limited, for example in patients with that is used can affect the effectiveness and utility of Massachusetts 02115, USA. genetic and acquired immunodeficiency disorders and specific vaccine strategies. Correspondence to R.C.F. in those receiving immunosuppressive therapy after In this review, we discuss these issues in the context e-mail: rfuhlbrigge@ 2,3 partners.org organ transplantation .The regulation of skin of recent advances in our understanding of cutaneous doi:10.1038/nri1310 defence mechanisms is also crucial, as inappropriate or immune mechanisms, highlighting the interaction of NATURE REVIEWS | IMMUNOLOGY VOLUME 4 | MARCH 2004 | 211 © 2004 Nature Publishing Group REVIEWS innate and adaptive immune systems in the induc- cells (DCs) and macrophages, provide an early warning tion and maintenance of effective cutaneous immune system by releasing stored and inducible ANTIMICROBIAL surveillance. PEPTIDES,chemotactic proteins and cytokines15–19 (FIG. 2). Keratinocyes are important and often under-appreciated Innate immune surveillance participants in cutaneous immune responses. They Central to our model of cutaneous immune surveil- produce large quantities of interleukin-1α (IL-1α), lance are the cells resident in the skin, which function tumour-necrosis factor (TNF) and antimicrobial pep- as sentinels for DANGER SIGNALS, including invasion by tides such as β-defensins in response to various stim- microorganisms. Keratinocytes and LANGERHANS CELLS in uli, including kinetic and thermal trauma, ultraviolet the epidermis, as well as dermal mast cells, dendritic radiation, cytokines and neuropeptides15,20–22.IL-1α (and IL-1β from epidermal Langerhans cells), in turn, acts as a potent stimulator of local immune function23. Keratinocytes also produce a large number of Keratinocyte Langerhans cell chemokines and other immunoregulatory cytokines in response to stimulation16,24–27.These products have vari- ous important effects on resident innate immune cells in the skin, such as mast cells, DCs and macrophages, resulting in the upregulation of expression of other inducible mediators and recruitment of additional immune cells from the blood28.The induction of local Epidermis inflammation through IL-1, however, depends on the balance of agonists (IL-1α,IL-1β, caspase-1 and IL-1 CLA receptor 1; IL-1R1) and antagonists (IL-1Ra and IL-1R2) Dermal fibroblast that are active in this pathway15,16,23.Each of these mole- cules can be produced by keratinocytes under various Memory T cell conditions, as well as by other cells that are resident in the skin, making it difficult to predict the effects of specific interventions. New members of the IL-1 family Dermal continue to be identified, adding to the complexity of DANGER SIGNALS dendritic cell Cell-wall components and other regulation of cutaneous inflammation29. products of pathogens that alert Both the epithelial barrier cells and resident innate the innate immune system to Dermis immune cells in the skin express pattern-recognition the presence of potentially harmful invaders, usually by receptors that recognize specific pathogen components interacting with Toll-like and can trigger downstream activation cascades. An CCL17 receptors and other pattern- E-selectin important subset of these receptors belong to the Toll- recognition receptors that are ICAM1 like receptor (TLR) family30–33,which bind pathogen- expressed by tissue cells and dendritic cells, for example. associated molecular pattern molecules such as Monocyte/ lipopolysaccharide34,bacterial lipoproteins35,36,flagellin37, macrophage/ 38 LANGERHANS CELLS NK cell yeast mannans and unmethylated CpG DNA Immature bone-marrow- Naive 39,40 T cell motifs . TLR expression is variable and might identify derived dendritic cells that Granulocyte subsets of innate immune cells, such as DCs, with spe- reside for long periods of time Dermal post-capillary venule 41–43 in the epidermis. They contain cific functions .DC activation through TLRs results Langerin and Birbeck granules, in increased production of pro-inflammatory cytokines express E-cadherin and bind Figure 1 | Immune-response elements in non-inflamed and antimicrobial peptides, increased nitric oxide syn- to contiguous keratinocytes. skin. Human skin is composed of three distinct thesis and enhanced bacterial killing, as well as increased Stimulation through Toll-like compartments relevant to its immune functions. First, the 30 receptors or other danger-signal epidermis is composed of keratinized epithelial cells and antigen presentation .The binding of TLR ligands is receptors causes them to migrate functions as both a physical barrier and an early warning associated with the recruitment of intracellular adaptor to the draining lymph node and system. Immune cells resident in the epidermis include proteins similar to those used by IL-1R and subse- mature into highly efficient specialized dendritic cells (DCs) known as Langerhans quent activation of the JUN N-terminal kinase (JNK) antigen-presenting cells. cells and intraepithelial lymphocytes. Second, the dermis is and nuclear factor-κB (NF-κB) signalling pathways30. mainly composed of connective tissue produced by dermal The NF-κB signalling pathway is seen as a key link ANTIMICROBIAL PEPTIDES fibroblasts. Immune system cells resident in non-inflamed Evolutionarily conserved dermis include dermal DCs, mast cells and a small number between the innate and adaptive immune systems. In peptides that directly bind to κ of cutaneous lymphocyte antigen (CLA)-positive memory the skin, NF- B regulates the expression of numerous and interact with cell surfaces T cells. Third, dermal post-capillary venules constitutively genes that are involved in the initiation of the inflam- of bacteria and fungi, usually express low levels of E-selectin, CC-chemokine ligand 17 inducing the formation of matory response, including adhesion molecules, pores, leading to the death (CCL17) and intercellular adhesion molecule 1 (ICAM1). chemokines and cytokines (such as IL-1 and TNF), of target cells. These support the margination and baseline emigration of matrix metalloproteases, nitric oxide synthase and CLA+ memory T cells into non-inflamed skin. CLA– T cells, enzymes that control PROSTANOID synthesis44.Beyond the including both naive cells and memory/effector cells that PROSTANOID direct effects of these compounds on pathogens and A member of the broad family are targeted to other tissues, as well as granulocytes
Recommended publications
  • Clinical and Basic Immunodermatology Clinical and Basic Immunodermatology
    Clinical and Basic Immunodermatology Clinical and Basic Immunodermatology Edited by Anthony A. Gaspari, MD Department of Dermatology University of Maryland School of Medicine Baltimore, MD USA Stephen K. Tyring, MD, PhD Department of Dermatology University of Texas Medical School at Houston Houston, TX USA Editors Anthony A. Gaspari, MD University of Maryland School of Medicine Baltimore, MD USA Stephen K. Tyring, MD, PhD University of Texas Medical School at Houston Houston, TX USA ISBN 978-1-84800-164-0 e-ISBN 978-1-84800-165-7 DOI 10.1007/978-1-84800-165-7 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008923739 © Springer-Verlag London Limited 2008 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. Product liability: The publisher can give no guarantee for information about drug dosage and application thereof contained in this book.
    [Show full text]
  • Immunodermatology
    Editorial Volume 8:2,2021 Journal of Dermatology and Dermatologic Diseases ISSN: 2684-4281 Open Access Editorial Note on Immunodermatology Bindu Madhavi* Department of Biotechnology, Vignan’s University, Vadlamudi Editorial Immunodermatology studies the skin as an invulnerable organ of both health and infection. Many ranges, such as photographic immunology (impacts of ultraviolet light on skin resistance), provocative diseases, are uncommonly considered, For starters, unfavourably prone contact dermatitis and atopic inflammation of the skin, immune system-related skin conditions such as vitiligo and psoriasis, and finally, the immunology of microbial skin infections such as retrovirus contamination and impurity. This area has some experience treating non-susceptible interceptible skin diseases like lupus, bullous pemphigoid, pemphigus vulgaris, and other skin problems that can be safely intervened. The skin has a great influence on ensuring shape against infection as an unpredictable invulnerable organ. Inalienable resistance requires an early reaction to remote antigens, so it is not a specific pathogen, whereas an adjustable reaction to the differentiation of antigens and the advancement of memory is specific, but it takes more time to function. Infections have strengthened mechanisms to prevent their descendants from contaminating or discharging the skin-resistant reaction. By managing a rapid invulnerable response, with abnormal levels of protective antibodies to their target viral antigens, immunizations may safeguard against infections.
    [Show full text]
  • Psoriasis Review
    JULY 2018 VOL 14 NUMBER 2 PSORIASIS REVIEW Included in this Issue 1 Top 5 Research and Clinical Papers IPC’S SEMI-ANNUAL REVIEW OF THE • Clinically resolved psoriatic lesions TOP 5 PAPERS: JULY–DECEMBER 2017 contain psoriasis-specific IL-17- producing αβ T cell clones • Psoriasis and suicidality: A systematic Every 6 months, IPC’s board and councilors recommend and vote on articles that review and meta-analysis make the greatest impact on psoriasis research. The 5 papers that received the • An analysis of IL-36 signature genes most votes for articles published July through December 2017 are reviewed here. and individuals with IL1RL2 knockout Summaries and commentaries were written by this issue’s co-editors, Dr. Colby mutations validates IL-36 as a Evans, Evans Dermatology, Austin, Texas, United States, and Dr. Nancy Podoswa, psoriasis therapeutic target Hospital General Regional No. 1 Dr. Carlos MacGregor Sanchez Navarro, Mexican • Coronary plaque characterization in psoriasis reveals high-risk features Institute of Social Security, Mexico City, Mexico. that improve after treatment in a prospective observational study 1. Residual T-cell clones in both active and resolved • Association between skin and aortic vascular inflammation in patients psoriatic plaques may reinitiate disease if treatment with psoriasis: a case-cohort study stops using Positron Emission Tomography/ Computed Tomography Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing 2 A Letter from the President αβ T cell clones. Matos TR, O’Malley JT, Lowry EL, et al. J Clin Invest. 2017 Nov 1;127(11):4031-4041. doi: 10.1172/JCI93396. Epub 2017 Sep 25.
    [Show full text]
  • Clinical and Basic Immunodermatology Clinical and Basic Immunodermatology
    Clinical and Basic Immunodermatology Clinical and Basic Immunodermatology Edited by Anthony A. Gaspari, MD Department of Dermatology University of Maryland School of Medicine Baltimore, MD USA Stephen K. Tyring, MD, PhD Department of Dermatology University of Texas Medical School at Houston Houston, TX USA Editors Anthony A. Gaspari, MD University of Maryland School of Medicine Baltimore, MD USA Stephen K. Tyring, MD, PhD University of Texas Medical School at Houston Houston, TX USA ISBN 978-1-84800-164-0 e-ISBN 978-1-84800-165-7 DOI 10.1007/978-1-84800-165-7 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008923739 © Springer-Verlag London Limited 2008 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. Product liability: The publisher can give no guarantee for information about drug dosage and application thereof contained in this book.
    [Show full text]
  • Histamine in Atopic Disorders: Atopic Dermatitis and Pruritus
    Edited by Holger Stark Chapter 6 Histamine in Atopic Disorders: Atopic Dermatitis and Pruritus W. Bäumer1,2, F. Glatzer3, K. Roßbach1, H. Ohtsu4, M. Seike5, S. Mommert3, T. Werfel3, R. Gutzmer3 1Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany 2 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, USA, e mail: [email protected] 3Division of Immunodermatology and Allergy Research, Hannover Medical School, Germany 4Applied Quantum Medical Engineering, Department of Engineering, Tohoku University, Japan 5Department of Food and Nutrition Science, Sagami Women’s Junior College, Japan 6.1. Role of Histamine and Histamine H4 Receptor in Inflammatory Skin Diseases in Man 6.1.1. Introduction The skin is the primary interface between the environment and the inside of an organism and protects the body against harmful agents, pathogens, allergens, physical trauma, UV radiation and excessive electrolyte and water loss. Different diseases interfere with this function, including the extremely common chronic inflammatory skin diseases. Chronic inflammatory skin diseases are characterized by chronic inflammation of the skin, often with severe pruritus. The most diseases include psoriasis and eczema, including atopic dermatitis (AD) and allergic contact dermatitis (ACD). Numerous different inflammatory cell populations are involved in the pathogenesis of inflammatory skin diseases, including T cells, antigen presenting cells (APC), granulocytes and keratinocytes. The inflamed skin in these diseases becomes dry, red, itchy and scaly, resulting Chapter 6 1 7 3 Histamine H4 Receptor: A Novel Drug Target in Immunoregulation and Inflammation in decreased quality of life. At present, the responsible mechanisms that are involved in inflammation and pruritus in these disorders and how they lead to pathogenesis are not completely understood.
    [Show full text]
  • Think Clinical Immunodermatology Laboratory
    Clinical ImmunodermatologyThink ImmunodermatologyLaboratory Testing! Kristin M. Leiferman, M.D. Professor of Dermatology Co-Director Immunodermatology Laboratory University of Utah History Late 1800s Paul Ehrlich put forth the concept of autoimmunity calling it “horror autotoxicus” History Early 1940s Albert Coons was the first to conceptualize and develop immunofluorescent techniques for labeling antibodies History 1945 Robin Coombs (and colleagues) described the Coombs antiglobulin reaction test, used to determine if antibodies or complement factors have bound to red blood cell surface antigens in vivo causing hemolytic anemia •Waaler-Rose rheumatoid factor •Hargraves’ LE cell •Witebsky-Rose induction of thyroiditis with autologous thyroid gland History Mid 1960s Ernest Beutner and Robert Jordon demonstrated IgG cell surface antibodies in pemphigus, autoantibodies in circulation and bound to the dermal-epidermal junction in bullous pemphigoid Immunobullous Diseases Immunobullous Diseases • Desmogleins / Desmosomes – Pemphigus • BP Ags in hemidesmosomes / lamina lucida – Pemphigoid – Linear IgA bullous dermatosis • Type VII collagen / anchoring fibrils – Epidermolysis bullosa acquisita Immunodermatology Tests are Diagnostic Aids in Many Diseases • Dermatitis herpetiformis & • Mixed / undefined celiac disease connective tissue disease • Drug reactions • Pemphigoid (all types) • Eosinophil-associated disease • Pemphigus (all types, including paraneoplastic) • Epidermolysis bullosa acquisita • Porphyria & pseudoporphyria • Lichen planus
    [Show full text]
  • William Abramovits, MD
    MEDICAL DERMATOLOGY SOCIETY 2020-2021 Mentors WILLIAM ABRAMOVITS, MD Dermatology Treatment & Research Center, Dallas, Texas (P) 972.661.2729 / (E) [email protected] Areas of Expertise: Clinical Research; Eczema; Atopic Dermatitis; Auto-Inflammatory Diseases; Psoriasis LINDSAY SKYE ACKERMAN, MD Medical Dermatology Specialists, PC, Phoenix, Arizona (P) 602.354.5770 / (E) [email protected] Areas of Expertise: Managing Patients with Cutaneous Lymphomas; Severe Psoriasis; Autoimmune Cutaneous Diseases; Collagen Vascular Diseases; Blistering Disorders; Dermatologic Consultations; Clinical Research A RAZZAQUE AHMED, MD/DSC/MPA Center for Blistering Diseases, Boston, Massachusetts (P) 617.562.1040 / (E) [email protected] Areas of Expertise: Autoimmune Blistering Diseases; Comprehensive Approach to Diagnosis and Treatment; Clinical Research; Collaborative Lab Research; Development of Treatment Protocols for New Biologic Agents MILAN ANADKAT, MD Washington University in St. Louis, St. Louis, Missouri (P) 314.362.9859 / (E) [email protected] Areas of Expertise: Chemotherapy Induced Skin Reactions; Dermatologic Therapeutics; Collagen Vascular Disease; Autoimmune Bullous Disease; Graft-versus-Host Disease and Psoriasis DANIEL BACH, MD/MPH University of California, Los Angeles, Los Angeles, California (P) 310.917.3376 / (E) [email protected] Areas of Expertise: Inpatient Dermatology; Oncodermatology; Complex Medical Dermatology JEAN BOLOGNIA, MD Yale University School of Medicine, New Haven, Connecticut (P) 203.785.4092 / (E)
    [Show full text]
  • By Bachelor of Science Oklahoma State University Stillwater
    THE ROLE OF KERATINOCYTE DERIVED INTERLEUKIN-1 a AND TUMOR NECROSIS FACTOR a IN EPIDERMAL LANGERHANS CELL DEPLETION By STEPHANIE PICKARD ELIAS Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1993 Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1994 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE DECEMBER, 1996 THE ROLE OF KERATfNOCYTE DERIVED INTERLEUKIN-1 a AND TUMOR NECROSIS FACTOR a IN EPIDERMAL LANGERHANS CELL DEPLETION Dean of the Graduate College II PREFACE Advances in the area of skin immunology have been increasing at an explosive rate. With the discovery of skin associated lymphoid tissues and classification of the cells associated wilth this system, much has been learned about how the mammalian body protects itself from invasion by potentially harmful environmental factors. The purpose of this study was to determine, in part, the effect of staphylococcal enterotoxin A (SEA) on cells of the epidermis with regard Langerhans cell migration and cytokine production. This was achieved by Langerhans cell enumeration in murine epidermal sections following exposure to SEA, interleukin-1 a and tumor necrosis factor a through immunohistochemical staining. Results suggested that keratinocyte derived interleukin-1 a and tumor necrosis factor a playa pivotal role in inducing Langerhans cell migration from the skin to the draining lymph node in response to antigenic challenge with SEA. Application of these two cytokines directly to skin sections resulted in depletion of Langerhans cells from the epidermis equivalent to that observed by treatment with SEA.
    [Show full text]
  • COVID-19 Vaccination and Dermatologic Patients on Immunotherapy and Biologic Therapies a Position Paper from the Philippine Dermatological Society
    POSITION PAPER JPDSJournal of the Philippine Dermatological Society COVID-19 vaccination and dermatologic patients on immunotherapy and biologic therapies A Position Paper from the Philippine Dermatological Society Clarisse G. Mendoza, MD, FPDS,1 Bryan Edgar K. Guevara, MD, FPDS,2 Cybill Dianne C. Uy, MD, FPDS PDS Immunodermatology Subspecialty Core Group KEY POINTS • Immunocompromised patients have a higher risk of developing severe and life-threatening COVID-19 infection compared to the general population. • The five Philippine FDA-authorized for emergency use COVID-19 vaccines are all non-live vaccines. These vaccines may provide benefits for dermatologic patients with immunosuppressed states or who are taking immunomodulating medications, upon appropriate advice and counseling. • COVID-19 vaccination should not replace transmission prevention measures, such as proper mask wearing, frequent disinfection, and physical distancing. I. INTRODUCTION SARS-CoV-2, the virus causing COVID-19, has infected more than 140 million people and has caused more than three million deaths worldwide since it was first detected in 2019.1 Patients with diabetes mellitus, chronic obstructive pulmonary disease, cardiovascular disease, hypertension, malignancies, and other immunocompromised states could develop severe and life-threatening infections.2 Numerous dermatologic conditions result from immune dysfunction or necessitate chronic and prolonged treatment with agents that may cause drug-induced immunosuppression. Patients with pso- riasis, eczemas, connective
    [Show full text]
  • Clinical Faculty
    Clinical Faculty Bankova, Lora G.,M.D. Specialty: Allergy and Immunology Clinical Interests: Allergic Rhinitis, Chronic rhinosinusitis, Adverse Drug Reactions, Eczema, Allergic Contact Dermatitis Medical School: Medical University of Sofia, 2000 Residencies: Friederich Schiller University, 2002 – 2004 Johns Hopkins Bayview Medical Center, 2007 – 2010 Fellowship: Brigham and Women's Hospital, 2010 – 2013 Board Certifications: Internal Medicine, 2010 Allergy and Immunology, 2012 Barrett, Nora A.,M.D. Specialty: Allergy and Immunology Clinical Interests: Severe Asthma, Eosinophilic Disorders, Immunodeficiency, Food allergy Medical School: University of Virginia School of Medicine, 2000 Residencies: Brigham and Women's Hospital, 2000 – 2003 Fellowship: Brigham and Women's Hospital, 2003 - 2007 Board Certifications: Internal Medicine, 2004 Allergy and Immunology, 2006 Boyce, Joshua,M.D. Specialty: Allergy and Immunology Leadership Title: Division Chief, Allergy and Clinical Immunology Clinical Interests: Pediatric Lung Disease, Asthma, Eosinophilic Disorders, Eosinophilic Esophagitis, Food Allergy Medical School: University of Massachusetts Medical School, 1985 Residencies: University of Massachusetts Medical Center, 1985 - 1988 Fellowship: Massachusetts General Hospital, 1991 - 1994 Board Certifications: Pediatrics, 1989 Pediatric Pulmonology, 1994 Allergy and Immunology, 1997 Brennan, Patrick J.,M.D.,Ph.D. Specialty: Allergy and Immunology Clinical Interests: Food Allergy, Asthma Medical School: University of Pennsylvania School of Medicine,
    [Show full text]
  • Atopic Dermatitis Update – 2016: Unveiling a New Treatment Paradigm Brad P. Glick DO, MPH, FAOCD Dermatologist Clinical
    Atopic Dermatitis Update – OMED 2017: Connecting Science and Practice Brad P. Glick DO, MPH, FAOCD Dermatologist Director, Dermatology Residency Larkin Community Hospital Palm Springs Campus A LECOM OPTI Skin and Cancer Associates Clinical Assistant Professor of Dermatology FIU Herbert Wertheim College of Medicine Miami, Florida Disclosures . Speakers Bureau - SunPharma/Ranbaxy, LEO, Abbvie, Novartis, Janssen, Celgene, Galderma, Lilly . Advisory Board – Lilly . Stockholder – TopMd Objectives . Review and characterize the clinical features of atopic dermatitis (AD) . Discuss the current immune pathophysiology of AD . Identify strategies for comprehensive treatment of atopic dermatitis in pediatric and adult populations . Update and position new and emerging topical therapies as well as targeted biologic agents as a new treatment option for patients with AD AAD 2016/2017 5 AD - The Dermatologist’s “Working” Definition Atopic dermatitis (AD) is characterized by a pruritic eruption that follows a chronically relapsing course, with a predilection for specific body areas depending on the age of the patient. Also called “atopic eczema”, “flexural eczema”, “disseminated neurodermatitis”, “prurigo diasthésique” . Eczema from Greek ekzein (to boil over) . Associated with a personal or FH of atopy Epidemiology, Comorbidities and Burden of Disease . AD is the most common chronic skin disease of children (onset < 1 yr 60% / > 5yrs 85%) . Persists into adulthood in in 10-30% of cases . 2-3% of young adults . All races affected ( some increase if African American) . Increased prevalence noted in industrialized countries (appears to coincide w increasing prevalence of asthma) Atopic Dermatitis – Multiple Pathogenic Factors Factors Contributing to the Pathogenesis of Atopic Dermatitis Genetics Atopic Skin Environmental Atopic Immunology Dermatitis Epidermal Barrier Dysfunction Bieber T, Prolss J.
    [Show full text]
  • T Cell Receptor Sequencing Specifies Psoriasis As a Systemic and Atopic Dermatitis As a Skin
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.14.21260435; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 T cell receptor sequencing specifies psoriasis as a systemic and atopic dermatitis as a skin- 2 focused, allergen-driven disease 3 Authors: Lennart M. Roesner,1,2*† Ahmed K. Farag,1†‡ Rebecca Pospich,1 Stephan Traidl,1,2 4 Thomas Werfel.1,2 5 1Division of Immunodermatology and Allergy Research, Department of Dermatology and 6 Allergy, Hannover Medical School, Hannover, Germany. 7 2 Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany. 8 ‡ present address: Boehringer Ingelheim Pharma GmbH, Biberach, Germany. 9 †equal contribution 10 *To whom correspondence should be addressed: 11 Lennart Roesner 12 https://orcid.org/0000-0001-6651-0458 13 [email protected] 14 Hannover Medical School (MHH) 15 Division of Immunodermatology and Allergy Research (OE6610) 16 Carl-Neuberg-Str.1 17 30625 Hannover 18 Germany 19 Tel: +49 (0)511 532-5054; Fax: +49 (0)511 532-8112 20 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.07.14.21260435; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]