3' :5'-Cyclic Monophosphate Alfred G

Total Page:16

File Type:pdf, Size:1020Kb

3' :5'-Cyclic Monophosphate Alfred G Proceedings of the National Academy of Sciences Vol. 67, No. 1, pp. 305-312, September 1970 A Protein Binding Assay for Adenosine 3' :5'-Cyclic Monophosphate Alfred G. Gilman LABORATORY OF BIOCHEMICAL GENETICS, NATIONAL HEART AND LUNG INSTITUTE, NATIONAL INSTITUTES OF HEALTH, BETHESDA, MARYLAND 20014 Communicated by Marshall Nirenberg, June 24, 1970 Abstract. A simple and sensitive assay for adenosine 3':5'-cyclic monophos- phate (cAMP) has been developed that is based on competition for protein binding of the nucleotide, presumably to a cAMP-dependent protein kinase. The nucleotide-protein complex is adsorbed on a cellulose ester filter. Assay conditions are such that a binding constant approaching 10-9 M\1 is obtained, and the assay is thus sensitive to 0.05-0.10 pmol of cAMP. While assays for adenosine 3' :5'-cyclic monophosphate (cAMIP) are proliferat- ing almost as rapidly as are newly discovered actions of the nucleotide, the tremendous current interest in the biological role of cAMP dictates the need for a sensitive, accurate, and readily performed procedure for estimation of its cellular levels. The methods currently availablel-8 do not have the extreme sensitivity required by the low tissue levels of the compound, or else they are laborious to perform, or both. The present study was initiated with the thought that the binding of [5H]- cAMP to a cAMP-dependent protein kinase9-12 would form the basis for a sensitive assay, if a simple means could be found to isolate the protein-nucleotide complex. Further impetus was -provided by the discovery of Walsh et al.3 that a heat-stable protein, an inhibitor of the cAMP-dependent protein kinase,14"15 increased the affinity of the cyclic nucleotide for the enzyme. 'A protein kinase from muscle was chosen for investigation because of its favorable binding con- stant for cAMP.16 It was readily determined that cAMP-dependent protein kinase and cAMP-binding activities from muscle extracts could be quantitatively adsorbed on cellulose ester (Millipore) filters. The binding of cAMP to specific proteins from Escherichia coli and the adrenal cortex has recently been studied on Millipore filters.17'18 This simple means for estimating cAMP binding may be utilized for assay of unknown quantities of the cyclic nucleotide in deproteinized tissue extracts. As little as 0.05-0.10 pmol of cAMP can be detected; thus, less than milligram quantities of many tissues are sufficient for assay. Materials and Methods. cAMP-dependent protein kinase: Two purification schemes have been employed-a more extensive one to characterize the protein and a simplified method for routine use. Procedures are patterned after those of Walsh et at.9 and Miyamoto et al."' Fresh bovine muscle was prepared as described" through the ammonium sulfate precipitation step. This fraction, from 250 g of muscle, was applied to a column of DEAE-cellulose (Whatinan DE 11, 1 meq/g; 32 X 2.6 cm), previously equilibratcd with 5 mMI potassium phosphate, pH 7, and tile columni was 305 Downloaded by guest on September 30, 2021 306 BIOCHEMISTRY: A. G. GILMAN PROc. N. A. S. s A 30 I -300'7 *2R43E II - -430 I FIG. 1. DEAE-cellulose chroma- K20 200 I tography of protein kinase and cAMP xOOZEg O DO < binding activities: gradient elution lo- HO'Ewasperformed4> it as described under c. k Methods. Binding activity was as- B o sayed at pH 4 with 40 nM cAMP. 4 I l81E Fractions were 20 ml. (A): 0, pro- s03 . \ 6 ° tein kinase activity; --- potassium E , -; phosphatei gradient. (B): 0, cAMP l X4o binding activity; --- optical density C,,, 0~~~~~~at 280 nm. I0 20 30 40 50 60 70 Fraction washed with the same buffer. Elution was with a linear gradient of potassium phos- l)hate, pH 7, from 5 to 400 mM, as shown in Fig. 1. Two prominent peaks of kinase and binding activity are seen.i6 Fractions 39-51, the second major peak of kinase and bind- ing activity (DEAE II), were pooled and dialyzed against 5 mM potassium phosphate, pH 7. A portion of this preparation was concentrated by precipitation with ammonium sulfate (0.33 g/ml), dialyzed, and applied to a column of Sephadex G-200 (2.5 X 100 cm), equilibrated and eluted with 5 mM potassium phosphate, pH 7. For routine purposes a satisfactory preparation was obtained by applying the am- monium sulfate fraction1' to a column of D)EAE-cellulose aiid eluting the early peak(s) of activity with 100 mM potassium phosphate, pH 7. The last l)eak (D)EAE II) was theft collected with 300 mM potassium phosphate and was dialyzed against 5 mM potassium phosphate, pH 7. Such a preparation was utilized in this work and had an enzymatic activity of 24 pmol of 32P/,gg protein per 10 mil, and bound 0.3 l)nol of cAMP/Jug protein under standard assay conditions. Up to 200 /Ag protein of this l)relparatioii could be applied to a single Millipore filter with resultant quantitative removal of kinase, binding activity, and protein. When larger amounts were filtered, the kinase, binding activity, and protein were removed to a very similar extent. Both kinase and binding activity are stable for several months at -400C. Ptotein-kinase inhibitor: The inhibitor preparation was modeled after that of Appleman et al.', Bovine muscle was homogenized in 10 mM Tris chloride, pH 7.5 and was boiled for 10 min. After removal of particulate material by filtration, activity was precipitated with 1/9 volume of 50% trichloroacetic acid. The precipitate was col- lected at 15,000 X g and dissolved in water, and pH was adjusted to 7 with 1 N NaOH. This fraction was dialyzed against distilled water at room temperature, and the pre- cipitate which formed was discarded. The preparation was used at this stage of purity, although it was verified that the kinase-inhibitory activity fractionated on Sephadex G-75 as previously described." Cyclic 3' :5'-nucleotide phosphodiesterase: This enzyme was purified from bovine cardiac muscle through the dialyzed acid-supernatant fraction of Butcher and Suther- land.19 Protein kinase assay: cAMP-dependent protein kinase was assayed essentially as described,ii although phosphorylated protein was precipitated with 8% trichloro- acetic acid, and precipitates were collected on glass fiber filters (Millipore). cAMP binding and cAMP assay: The standard binding reaction was conducted in a volume of 50 or 200 ,l in 50 mM sodium acetate/acetic acid, pH 4.0 and incubated for longer than 60 min at 0C. The only other components of the incubation were [3H]- cAMP (Schwarz BioResearch, 16.3 Ci/mmole), sufficient binding protein to bind less than 30% of the nucleotide, and, where indicated, a maximally effective concentration of Downloaded by guest on September 30, 2021 VOL. 67, 1970 ASSAY FOR CYCLIC AMP 307 the protein-kinase inhibitor preparation. Reactions were initiated by addition of bind- ing protein. At equilibrium, the mixtures were diluted to 1 ml with cold 20 mM potas- sium phosphate, pH 6; 4-5 min later they were passed through a 24-mm cellulose ester (Millipore) filter (0.45 Am) previously rinsed with the same buffer. The filter was then washed with 10 ml of this buffer and placed in a counting vial with 1 ml of Cellosolve, in which the filter readily dissolves. A scintillation mixture of toluene-Cellosolve (3:1) plus fluors was utilized, and efficiency was approximately 30% (10,750 cpm/pmol). Bowud counts were independent of filtration speed and the volume of rinse from 3 to 20 ml. The blank in the absence of binding protein was 20-50 cpm. For the assay of cAMP, [(H]cAMP was utilized at 10-20 nM (0.5-1.0 pmol/50 Al) in the presence of the inhibitor or 40 nM in its absence. These are saturating concentra- tions of cAMP, and the effect of added unknown or standard cAMP solutions could thus be evaluated from a linear, and nearly theoretical, decrease in the total bound [3H]- cAMP. Protein-kinase inhibitor assay: The inhibitor preparation may be assayed in the cAMP-dependent protein kinase reaction or by its enhancement of [3H]cAMP binding at submaximal concentrations of the nucleotide. Tissue extracts: Tissue samples were homogenized in 1 ml of 5% trichloroacetic acid, and supernatants were extracted 5 times with 2 volumes of ether after the addition of 0.1 ml of 1 N HCl. The eltracts were then dried and redissolved in 50 mM sodium acetate, pH 4. Results. The choice of the DEAE peak (Fig. 1) of binding and protein kinase activity to use in this assay (DEAE II) was made because of its apparent greater purity and because of a slightly greater affinity for cAl\IP (data not shown). The first peak of activity (DEAE I) had the advantage of little de- pendence of binding affinity and total binding sites on pH. An additional small peak(s) of binding and kinase activity between DEAE peaks I and II may be seen in Fig. 1; it was not investigated further. Proof that the binding protein is in fact the cAl\IP-dependent protein kinase must await further purification of the protein. However, cochromatography of the two activities on DEAE-cellulose and Sephadex G-200 (data not shown) supports the hypothesis that they are properties of a single molecule. Cochro- matography on Sephadex G-200 was also apparent when the binding protein was labeled with [3H ]cAMP before gel filtration. During initial purification (Table 1), the specific activity of the protein kinase increased somewhat more than that for binding, perhaps because of removal of inhibitors of kinase activity" or additional cAMP-binding proteins.
Recommended publications
  • Molecular Targets and Biological Functions of Camp Signaling in Arabidopsis
    biomolecules Article Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis Ruqiang Xu 1,2,*, Yanhui Guo 1, Song Peng 1, Jinrui Liu 1, Panyu Li 1, Wenjing Jia 1 and Junheng Zhao 1 1 School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; [email protected] (Y.G.); [email protected] (S.P.); [email protected] (J.L.); [email protected] (P.L.); [email protected] (W.J.); [email protected] (J.Z.) 2 Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China * Correspondence: [email protected]; Tel.: +86-0371-6778-5095 Abstract: Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but + they are also implicated in lipid, sugar, K , nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling Citation: Xu, R.; Guo, Y.; Peng, S.; in plant plasticity are discussed.
    [Show full text]
  • Mechanisms Whereby Extracellular Adenosine 3',5'- Monophosphate Inhibits Phosphate Transport in Cultured Opossum Kidney Cells and in Rat Kidney
    Mechanisms whereby extracellular adenosine 3',5'- monophosphate inhibits phosphate transport in cultured opossum kidney cells and in rat kidney. Physiological implication. G Friedlander, … , C Coureau, C Amiel J Clin Invest. 1992;90(3):848-858. https://doi.org/10.1172/JCI115960. Research Article The mechanism of phosphaturia induced by cAMP infusion and the physiological role of extracellular cAMP in modulation of renal phosphate transport were examined. In cultured opossum kidney cells, extracellular cAMP (10-1,000 microM) inhibited Na-dependent phosphate uptake in a time- and concentration-dependent manner. The effect of cAMP was reproduced by ATP, AMP, and adenosine, and was blunted by phosphodiesterase inhibitors or by dipyridamole which inhibits adenosine uptake. [3H]cAMP was degraded extracellularly into AMP and adenosine, and radioactivity accumulated in the cells as labeled adenosine and, subsequently, as adenine nucleotides including cAMP. Radioactivity accumulation was decreased by dipyridamole and by inhibitors of phosphodiesterases and ecto-5'-nucleotidase, assessing the existence of stepwise hydrolysis of extracellular cAMP and intracellular processing of taken up adenosine. In vivo, dipyridamole abolished the phosphaturia induced by exogenous cAMP infusion in acutely parathyroidectomized (APTX) rats, decreased phosphate excretion in intact rats, and blunted phosphaturia induced by PTH infusion in APTX rats. These results indicate that luminal degradation of cAMP into adenosine, followed by cellular uptake of the nucleoside by tubular cells, is a key event which accounts for the phosphaturic effect of exogenous cAMP and for the part of the phosphaturic effect of PTH which is mediated by cAMP added to the tubular lumen under the influence of the hormone.
    [Show full text]
  • Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights Since 2016
    International Journal of Molecular Sciences Review Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016 Susann Schröder 1,2,* , Matthias Scheunemann 2, Barbara Wenzel 2 and Peter Brust 2 1 Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany 2 Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; [email protected] (M.S.); [email protected] (B.W.); [email protected] (P.B.) * Correspondence: [email protected]; Tel.: +49-341-234-179-4631 Abstract: Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform- selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE Citation: Schröder, S.; Scheunemann, radioligands since 2016. M.; Wenzel, B.; Brust, P. Challenges on Cyclic Nucleotide Keywords: positron emission tomography; cyclic nucleotide phosphodiesterases; PDE inhibitors; Phosphodiesterases Imaging with PDE radioligands; radiochemistry; imaging; recent (pre-)clinical insights Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016.
    [Show full text]
  • Geochemical Influences on Nonenzymatic Oligomerization Of
    bioRxiv preprint doi: https://doi.org/10.1101/872234; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Geochemical influences on nonenzymatic oligomerization of prebiotically relevant cyclic nucleotides Authors: Shikha Dagar‡, Susovan Sarkar‡, Sudha Rajamani‡* ‡ Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India Correspondence: [email protected]; Tel.: +91-20-2590-8061 Running title: Cyclic nucleotides and emergence of an RNA World Key words: Dehydration-rehydration cycles, lipid-assisted oligomerization, cyclic nucleotides, analogue environments Dagar, S. 1 bioRxiv preprint doi: https://doi.org/10.1101/872234; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The spontaneous emergence of RNA on the early Earth continues to remain an enigma in the field of origins of life. Few studies have looked at the nonenzymatic oligomerization of cyclic nucleotides under neutral to alkaline conditions, in fully dehydrated state. Herein, we systematically investigated the oligomerization of cyclic nucleotides under prebiotically relevant conditions, where starting reactants were subjected to repeated dehydration-rehydration (DH- RH) regimes, like they would have been on an early Earth. DH-RH conditions, a recurring geological theme, are driven by naturally occurring processes including diurnal cycles and tidal pool activity. These conditions have been shown to facilitate uphill oligomerization reactions in terrestrial geothermal niches, which are hypothesized to be pertinent sites for the emergence of life.
    [Show full text]
  • Oxidative Stress and the Guanosine Nucleotide Triphosphate Pool: Implications for a Biomarker and Mechanism of Impaired Cell Function
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2008 OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION Celeste Maree Bolin The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bolin, Celeste Maree, "OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION" (2008). Graduate Student Theses, Dissertations, & Professional Papers. 728. https://scholarworks.umt.edu/etd/728 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION By Celeste Maree Bolin B.A. Chemistry, Whitman College, Walla Walla, WA 2001 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Toxicology The University of Montana Missoula, Montana Spring 2008 Approved by: Dr. David A. Strobel, Dean Graduate School Dr. Fernando Cardozo-Pelaez,
    [Show full text]
  • The Metabolic Building Blocks of a Minimal Cell Supplementary
    The metabolic building blocks of a minimal cell Mariana Reyes-Prieto, Rosario Gil, Mercè Llabrés, Pere Palmer and Andrés Moya Supplementary material. Table S1. List of enzymes and reactions modified from Gabaldon et. al. (2007). n.i.: non identified. E.C. Name Reaction Gil et. al. 2004 Glass et. al. 2006 number 2.7.1.69 phosphotransferase system glc + pep → g6p + pyr PTS MG041, 069, 429 5.3.1.9 glucose-6-phosphate isomerase g6p ↔ f6p PGI MG111 2.7.1.11 6-phosphofructokinase f6p + atp → fbp + adp PFK MG215 4.1.2.13 fructose-1,6-bisphosphate aldolase fbp ↔ gdp + dhp FBA MG023 5.3.1.1 triose-phosphate isomerase gdp ↔ dhp TPI MG431 glyceraldehyde-3-phosphate gdp + nad + p ↔ bpg + 1.2.1.12 GAP MG301 dehydrogenase nadh 2.7.2.3 phosphoglycerate kinase bpg + adp ↔ 3pg + atp PGK MG300 5.4.2.1 phosphoglycerate mutase 3pg ↔ 2pg GPM MG430 4.2.1.11 enolase 2pg ↔ pep ENO MG407 2.7.1.40 pyruvate kinase pep + adp → pyr + atp PYK MG216 1.1.1.27 lactate dehydrogenase pyr + nadh ↔ lac + nad LDH MG460 1.1.1.94 sn-glycerol-3-phosphate dehydrogenase dhp + nadh → g3p + nad GPS n.i. 2.3.1.15 sn-glycerol-3-phosphate acyltransferase g3p + pal → mag PLSb n.i. 2.3.1.51 1-acyl-sn-glycerol-3-phosphate mag + pal → dag PLSc MG212 acyltransferase 2.7.7.41 phosphatidate cytidyltransferase dag + ctp → cdp-dag + pp CDS MG437 cdp-dag + ser → pser + 2.7.8.8 phosphatidylserine synthase PSS n.i. cmp 4.1.1.65 phosphatidylserine decarboxylase pser → peta PSD n.i.
    [Show full text]
  • Cyclic Nucleotide-Independent Forms of a Protein Kinase from Beef Heart
    Proc. Nat. Acad. Sci. USA Vol. 68, No. 4, pp. 731-735, April 1971 Interconversion of Cyclic Nucleotide-Activated and Cyclic Nucleotide-Independent Forms of a Protein Kinase from Beef Heart JACK ERLICHMAN, ALLEN H. HIRSCH, AND ORA M. ROSEN* Departments of Medicine and Molecular Biology, Division of Biological Sciences, Albert Einstein College of Medicine, Bronx, New York 10461 Communicated by B. L. Horecker, January 14, 1971 ABSTRACT A protein kinase activated by cyclic nucle- presence. This observation suggests that cyclic AMP activates otides was purified from beef heart. Upon exposure to the protein kinase by relieving an inhibition brought about adenosine 3': 5'-cyclic monophosphate (cyclic AMP) during kinase with a AMP- gel filtration on Sephadex G-200, the protein kinase dis- by the association of the protein cyclic sociated into a cyclic nucleotide-independent protein binding protein. A similar mechanism for the regulation of kinase and a cyclic nucleotide-binding protein. A similar protein kinases from skeletal muscle and parotid gland has or identical cyclic nucleotide-independent protein kinase also been suggested (Z. Sellinger and M. Schramm, personal could be obtained in highly purified form by elution from communication). Tao et al. (15) reported that a cyclic AMP- a DEAE-cellulose column with 10-6 M cyclic AMP; the cyclic AMP-binding protein was apparently retained by dependent protein kinase from rabbit reticulocytes was dis- the resin. The addition of cyclic nucleotide-binding pro- sociated into two subunits in the presence of cyclic AMP. tein to cyclic nucleotide-independent protein kinas e One subunit bound cyclic AMP and lacked catalytic activity, resulted in the reappearance of cyclic nucleotide-depen- whereas the other subunit possessed kinase activity and dent protein kinase, which could be isolated by filtration on nucleotides.
    [Show full text]
  • New Advances in Cyclic AMP Signalling”—An Editorial Overview
    cells Editorial Special Issue on “New Advances in Cyclic AMP Signalling”—An Editorial Overview Stephen John Yarwood Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Edinburgh Campus, Heriot-Watt University, Edinburgh EH14 4AS, UK; [email protected] Received: 9 October 2020; Accepted: 10 October 2020; Published: 12 October 2020 Abstract: The cyclic nucleotides 30,50-adenosine monophosphate (cyclic AMP) signalling system underlies the control of many biological events and disease processes in man. Cyclic AMP is synthesised by adenylate cyclase (AC) enzymes in order to activate effector proteins and it is then degraded by phosphodiesterase (PDE) enzymes. Research in recent years has identified a range of cell-type-specific cyclic AMP effector proteins, including protein kinase A (PKA), exchange factor directly activated by cyclic AMP (EPAC), cyclic AMP responsive ion channels (CICs), and the Popeye domain containing (POPDC) proteins, which participate in different signalling mechanisms. In addition, recent advances have revealed new mechanisms of action for cyclic AMP signalling, including new effectors and new levels of compartmentalization into nanodomains, involving AKAP proteins and targeted adenylate cyclase and phosphodiesterase enzymes. This Special Issue contains 21 papers that highlight advances in our current understanding of the biology of compartmentlised cyclic AMP signalling. This ranges from issues of pathogenesis and associated molecular pathways, functional assessment of novel nanodomains, to the development of novel tool molecules and new techniques for imaging cyclic AMP compartmentilisation. This editorial aims to summarise these papers within the wider context of cyclic AMP signalling. Keywords: cyclic AMP; EPAC; PKA; POPDC; AKAP; adenylate cyclase; cyclic AMP phosphodiesterases; GPCRs 1.
    [Show full text]
  • Relationship Between the Levels of Cyclic Cytidine 3':5'-Monophosphate
    [CANCER RESEARCH 41, 3222-3227, August 1981] 0008-5472/81 /0041 -OOOOS02.00 Relationship between the Levels of Cyclic cytidine 3':5'-Monophosphate, Cyclic Guanosine 3':5'-Monophosphate, and Cyclic Adenosine 3':5'- Monophosphate in Urines and Leukocytes and the Type of Human Leukemias1 Joëlle Scavennec,2 Yves Carcassonne, Jean-Albert Gastaut, AndréBlanc, and HélèneL.Cailla3 Centre ¿Immunologie INSERM-CNRS de Marsei/le-Luminy. Case 906, 13288 Marseille cédex9[J. S.. H. L. C.], and Clinique des Maladies du Sang, Hôpital de la Conception, 13005 Marseille [A. B., J-A. G., Y. C.], France ABSTRACT Since then, specific cyclic CMP phosphodiesterase has been described (10, 13), but an enzymatic activity converting CTP Cyclic cytidine 3':5'-monophosphate (cyclic CMP), cyclic into cyclic CMP has not yet been clearly established. Little is guaríosme 3':5'-monophosphate (cyclic GMP), and cyclic known about cyclic CMP itself because no quantitative assay adenosine 3':5'-monophosphate (cyclic AMP) contents of leu was available until we developed a sensitive radioimmunoassay kocytes and urines of leukemic patients have been investi for cyclic CMP based on our previous work with cyclic AMP gated. We have studied four types of leukemia: acute myelo- and cyclic GMP radioimmunoassays (6, 7). blastic leukemia; chronic myelocytic leukemia; acute lympho- This new tool enabled us to study the cyclic CMP content in blastic leukemia; and chronic lymphocytic leukemia. As con urine and blood cells of patients with leukemia in an attempt to trols, the cyclic nucleotide content of leukocytes and urines of correlate the cyclic CMP concentration with the type or the healthy volunteers and patients with solid tumors selected for stage of leukemia.
    [Show full text]
  • Cyclic Nucleotides As Mediators of Acinar and Ductal Function Maria E
    Cyclic Nucleotides as Mediators of Acinar and Ductal Function Maria E. Sabbatini, PhD Augusta University e-mail: [email protected] Version 1.0, March 17, 2016 [DOI: 10.3998/panc.2016.2] 1. Cyclic Nucleotides and their pyrophosphate. This cyclic conformation allows Biosynthesis cyclic nucleotides to bind to proteins to which other nucleotides cannot. The reaction is an intracellular 2+ Cyclic nucleotides, like other nucleotides, are nucleophilic catalysis and requires Mg as a composed of three functional groups: a ribose cofactor, whose function is to decrease the overall sugar, a nitrogenous base, and a single phosphate negative charge on the ATP by complexing with group. There are two types of nitrogenous bases: two of its negatively charged oxygens. If its purines (adenine and guanine) and pyrimidines negative charge is not reduced, the nucleotide (cytosine, uracil and thymine). A cyclic nucleotide, triphosphate cannot be approached by a unlike other nucleotides, has a cyclic bond nucleophile, which is, in this reaction, the 3’ arrangement between the ribose sugar and the hydroxyl group of the ribose (162). Soluble AC 2+ 2+ phosphate group. There are two main groups of prefers Ca to Mg as the coenzyme to coordinate cyclic nucleotides: the canonical or well-stablished ATP binding and catalysis (135). and the non-canonical or unknown function cyclic nucleotides. The two well-established cyclic 2. Canonical Cyclic Nucleotide nucleotides are adenosine 3’,5’-cyclic Signaling in the Exocrine Pancreas monophosphate (cyclic AMP) and guanine-3’,5’- cyclic monophosphate (cyclic GMP). Both cyclic Cyclic nucleotide signaling can be initiated by two AMP and cyclic GMP are second messengers.
    [Show full text]
  • Molecular Diagnosis for Heterogeneous Genetic Diseases
    Molecular diagnosis for heterogeneous genetic diseases with high-throughput DNA sequencing applied to retinitis pigmentosa David Arthur Simpson, Graeme Richard Clark, Sharon Alexander, Giuliana Silvestri, Colin Eric Willoughby To cite this version: David Arthur Simpson, Graeme Richard Clark, Sharon Alexander, Giuliana Silvestri, Colin Eric Willoughby. Molecular diagnosis for heterogeneous genetic diseases with high-throughput DNA se- quencing applied to retinitis pigmentosa. Journal of Medical Genetics, BMJ Publishing Group, 2010, 48 (3), pp.145. 10.1136/jmg.2010.083568. hal-00591224 HAL Id: hal-00591224 https://hal.archives-ouvertes.fr/hal-00591224 Submitted on 8 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TITLE PAGE Molecular diagnosis for heterogeneous genetic diseases with targeted high- throughput DNA sequencing applied to retinitis pigmentosa David A. Simpson, Graeme R Clark, Sharon Alexander, Giuliana Silvestri, Colin E. Willoughby Corresponding author: David Arthur Simpson Queen's University Belfast, Centre for Vision & Vascular
    [Show full text]
  • Properties of Cyclic Nucleotide-Gated Channels Mediating Olfactory Transduction
    Published July 1, 1992 Properties of Cyclic Nucleotide-gated Channels Mediating Olfactory Transduction Activation, Selectivity, and Blockage STEPHAN FRINGS, JOSEPH W. LYNCH, and BERND LINDEMANN Downloaded from From the Department of Physiology, Universit~it des Saarlandes, D-6650 Homburg/Saar, Germany ABSTRACT Cyclic nucleotide-gated channels (cng channels) in the sensory mem- brane of olfactory receptor cells, activated after the odorant-induced increase of cytosolic cAMP concentration, conduct the receptor current that elicits electrical jgp.rupress.org excitation of the receptor neurons. We investigated properties of cng channels from frog and rat using inside-out and outside-out membrane patches excised from isolated olfactory receptor cells. Channels were activated by cAMP and cGMP with activation constants of 2.5-4.0 ~M for cAMP and 1.0-1.8 for cGMP. Hill coefficients of dose-response curves were 1.4-1.8, indicating cooperativity of ligand binding. Selectivity for monovalent alkali cations and the Na/Li mole-fraction behavior on October 21, 2015 identified the channel as a nonselective cation channel, having a cation-binding site of high field strength in the pore. Cytosolic pH effects suggest the presence of an additional titratable group which, when protonated, inhibits the cAMP-induced current with an apparent pK of 5.0-5.2. The pH effects were not voltage depen- dent. Several blockers of Ca 2+ channels also blocked olfactory cng channels. Amiloride, D 600, and diltiazem inhibited the cAMP-induced current from the cytosolic side. Inhibition constants were voltage dependent with values of, respec- tively, 0.1, 0.3, and 1 mM at -60 mV, and 0.03, 0.02, and 0.2 mM at +60 mV.
    [Show full text]