Ion, Xray, UV and Neutron Microbeam Systems for Cell Irradiation A

Total Page:16

File Type:pdf, Size:1020Kb

Ion, Xray, UV and Neutron Microbeam Systems for Cell Irradiation A Ion, XRay, UV And Neutron Microbeam Systems For Cell Irradiation A. W. Bigelow, G. RandersPehrson, G. Garty, C. R. Geard, Y. Xu et al. Citation: AIP Conf. Proc. 1336, 351 (2011); doi: 10.1063/1.3586118 View online: http://dx.doi.org/10.1063/1.3586118 View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1336&Issue=1 Published by the American Institute of Physics. Related Articles Design and specifications of the diagnostics for the instrumented calorimeter of Source for the Production of Ions of Deuterium Extracted from Radio frequency plasma Rev. Sci. Instrum. 83, 02B724 (2012) Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited) Rev. Sci. Instrum. 83, 02A913 (2012) The on-line charge breeding program at TRIUMF's Ion Trap For Atomic and Nuclear Science for precision mass measurements Rev. Sci. Instrum. 83, 02A912 (2012) Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP Rev. Sci. Instrum. 83, 02A335 (2012) First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS Rev. Sci. Instrum. 83, 02A323 (2012) Additional information on AIP Conf. Proc. Journal Homepage: http://proceedings.aip.org/ Journal Information: http://proceedings.aip.org/about/about_the_proceedings Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS Information for Authors: http://proceedings.aip.org/authors/information_for_authors Downloaded 19 Mar 2012 to 129.236.252.4. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions Ion, X-Ray, UV And Neutron Microbeam Systems For Cell Irradiation A.W. Bigelow, G. Randers-Pehrson, G. Garty, C.R. Geard, Y. Xu, A.D. Harken, G. W. Johnson, and D.J. Brenner Center for Radiological Research, Columbia University 630 West 168th Street, 11th floor, New York, NY 10032 Abstract. The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the electrostatic quadrupole lenses on the microbeam II system and the magnetic quadrupole lenses on the PMM system are arranged as compound lenses consisting of two quadrupole triplets with “Russian” symmetry. Also, the RARAF accelerator is a source for a proton-induced x-ray microbeam (undergoing testing) and is projected to supply protons to a neutron microbeam based on the 7Li(p,n)7Be nuclear reaction (under development). Leveraging from the multiphoton microscope technology integrated within the microbeam II endstation, a UV microspot irradiator – based on multiphoton excitation – is available for facility users. Highlights from radiation-biology demonstrations on single living mammalian cells are included in this review of microbeam systems for cell irradiation at RARAF. Keywords: Radiation biology, microbeam, x-ray, UV, neutron PACS: 87.53.-j INTRODUCTION MICROBEAM SYSTEMS AT THE RADIOLOGICAL RESEARCH Single-cell / single-particle microbeam irradiation ACCELERATOR FACILITY technology at Columbia University’s Radiological Research Accelerator Facility (RARAF) has evolved Microbeam platforms at Columbia University’s continuously starting with the user facility’s initial 1 Radiological Research Accelerator Facility (RARAF) aperture-based microbeam system installed in have evolved from an initial aperture-based February 1994. RARAF’s first microbeam system microbeam (decommissioned) to an array of micron- pioneered numerous radiobiology studies in particle- sized irradiation probes. Our microbeam platforms are: induced DNA damage and repair mechanisms. The microbeam II (electrostatic focusing system), the dominant interest among RARAF’s users is basic 2 Permanent Magnetic Microbeam (PMM), an x-ray research involving the bystander effect , where non- microbeam, the neutron microbeam (under targeted cell nuclei manifest damage similar to development), and the UV microspot. All these targeted cell nuclei. In investigating cell-signaling systems have a common irradiation protocol that pathways such as those potentially associated with the involves imaging, targeting and irradiating. In short: bystander effect, cell biologists at RARAF pursue 1) cells are imaged and their center-of-gravity fundamental understanding of low-dose effects. coordinates are registered within the control program, Highlights from radiation-biology demonstrations on 2) cells are accurately positioned at the irradiation single living mammalian cells are included in this location, 3) cells are irradiated with a prescribed review of microbeam systems for cell irradiation at radiation dose, and 4) the next cell is brought to the RARAF. irradiation location. Application of Accelerators in Research and Industry AIP Conf. Proc. 1336, 351-355 (2011); doi: 10.1063/1.3586118 © 2011 American Institute of Physics 978-0-7354-0891-3/$30.00 351 Downloaded 19 Mar 2012 to 129.236.252.4. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions Microbeam II As DNA damage occurred in the cell nucleus, XRCC1 repair protein formed foci at the damage sites. RARAF’s principal microbeam system, microbeam Immediately after the irradiation, a Z-stack of 21 wide- II, uses an electrostatic quadrupole lens system field fluorescent images was acquired using a water- capable of producing a submicron-diameter focused dipping objective (60X 1.0NA), and a step size of ΔZ beam in air3. The electrostatic lens system is a = 0.5 µm, to reveal GFP concentrations in the nucleus compound quadrupole triplet lens system designed exposed with the “NIH” pattern and in the neighboring with Russian symmetry by A. Dymnikov4. Incentives (control) cell nuclei. Autoquant software was used to for developing a microbeam system with a focused ion deblur the images in a post-processing step – result beam were: a) to overcome the penumbra or halo shown in Figure 1. artifact associated with aperture-based microbeam systems and b) to improve beam rate at target. While a Permanent Magnetic Microbeam sharp submicron beam spot is compatible with irradiating sub-cellular structures, we demonstrate the The permanent magnetic microbeam (PMM)5 horizontal-plane positioning stability of the vertical shown in figure 2 is a second focused charged-particle microbeam II ion beam in the section below. microbeam developed at RARAF. It uses permanent magnetic quadrupole lenses (STI Optronics, Inc., Microbeam II Demonstration Bellevue, WA) whose strengths are tunable by varying the insertion of permanent magnets into the shaped To demonstrate the resolution of the microbeam II yokes6. Originally designed as a stand-alone irradiator at RARAF, the letters “NIH” were irradiated microbeam with a 210Po source, the system remains onto a single live cell nucleus. The cells for this tethered to its accelerator-based test source of ions demonstration were HT1080 human Fibro Sarcoma following media attention of the 210Po-linked cell nuclei containing GFP-tagged XRCC1 (single- assassination of Alexander Litvinenko in November strand DNA repair protein). These cells were provided 20067 that led to heightened security and reduced by David Chen, UT Southwestern, Dallas, Texas; they availability of polonium. The use of an accelerator- were plated on microbeam dishes and kept under based ion source allows for higher beam rate and, due physiological conditions during the irradiation and to reduced chromatic aberrations, a smaller spot size imaging phases. A single cell nucleus was irradiated in than would be available with a 210Po source. With the an “NIH” dot-matrix stage-motion pattern with ~200 PMM fully functional as a second charged-particle 6-MeV alpha particles per spot. The pattern was microbeam line at RARAF, its design concept as a reproduced via precision stage motions to irradiation stand-alone microbeam is still valid and potentially locations. Typical spacing between points along each more economical for radiation-research laboratories letter was 1 µm. because it excludes purchase of a particle accelerator and support electronics. Contrary to electrostatic or electromagnetic lenses, the PMM requires neither high precision voltage/current supplies nor cooling. The use of permanent magnets also allows a much tighter pole- face gap, providing better optical properties compared to electromagnetic lenses. Presently, the PMM is used for cell-irradiation experiments when development projects occupy the microbeam II endstation or beamline. Also, the PMM is used for development of point & shoot technology as well as microfluidics-based flow and shoot technology (FAST). Impetus for a point & shoot device is increased throughput. Pointing the beam with electromagnetic steering coils to cellular targets within a frame of view relies on electronic switching, which is inherently faster than moving a mechanical stage. FIGURE 1. “NIH” written on a single cell nucleus with the Toward that end, a wide-field magnetic split-coil RARAF microbeam. A tribute to our primary funding deflector system (Technisches Büro Fischer, Ober agency and a demonstration of our microbeam resolution. Ramstadt, Germany) was integrated into the PMM beamline. FAST developments are in collaboration with Dr. Daniel
Recommended publications
  • 2021 V. 55 № 1/1 Special Issue the Organizers
    ISSN 0233-528X Aerospace and Environmental Medicine 2021 V. 55 № 1/1 special issue The Organizers: INTERNATIONAL ACADEMY OF ASTRONAUTICS (IAA) STATE SPACE CORPORATION “ROSCOSMOS” MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION RUSSIAN ACADEMY OF SCIENCES (RAS) STATE RESEARCH CENTER OF THE RUSSIAN FEDERATION – INSTITUTE OF BIOMEDICAL PROBLEMS RAS Aerospace and Environmental Medicine AVIAKOSMICHESKAYA I EKOLOGICHESKAYA MEDITSINA SCIENTIFIC JOURNAL EDITOR-IN-CHIEF Orlov O.I., M.D., Academician of RAS EDITORIAL BOARD The Organizers: Ardashev V.N., M.D., professor Baranov V.M., M.D., professor, Academician of RAS Buravkova L.B., M.D., professor, Corresponding Member of RAS Bukhtiyarov I.V., M.D., professor Vinogradova O.L., Sci.D., professor – Deputy Editor D’yachenko A.I., Tech. D., professor Ivanov I.V., M.D., professor Ilyin E.A., M.D., professor Kotov O.V., Ph.D. Krasavin E.A., Ph.D., Sci.D., professor, Corresponding Member of RAS Medenkov A.A., Ph.D. in Psychology, M.D., professor Sinyak YU.E., M.D., Tech.D., professor Sorokin O.G., Ph.D. Suvorov A.V., M.D., professor Usov V.M., M.D., professor Homenko M.N., M.D., professor Mukai Ch., M.D., Ph.D. (Japan) Sutton J., M.D., Ph.D. (USA) Suchet L.G., Ph.D. (France) ADVISORY BOARD Grigoriev A.I., M.D., professor, Academician of RAS, Сhairman Blaginin A.A., M.D., Doctor of Psychology, professor Gal’chenko V.F., Sci.D., professor, Corresponding Member of RAS Zhdan’ko I.M., M.D. Ostrovskij M.A., Sci.D., professor, Academician of RAS Rozanov A.YU., D.Geol.Mineral.S., professor, Academician of RAS Rubin A.B., Sci.D., professor, Corresponding Member of RAS Zaluckij I.V., Sci.D., professor, Corresponding Member of NASB (Belarus) Kryshtal’ O.A., Sci.D., professor, Academician of NASU (Ukraine) Makashev E.K., D.Biol.Sci., professor, Corresponding Member of ASRK (Kazakhstan) Gerzer R., M.D., Ph.D., professor (Germany) Gharib C., Ph.D., professor (France) Yinghui Li, M.D., Ph.D., professor (China) 2021 V.
    [Show full text]
  • Testing the Stand-Alone Microbeam at Columbia University G
    Radiation Protection Dosimetry Advance Access published December 21, 2006 Radiation Protection Dosimetry (2006), 1 of 5 doi:10.1093/rpd/ncl454 TESTING THE STAND-ALONE MICROBEAM AT COLUMBIA UNIVERSITY G. GartyÃ, G. J. Ross, A. W. Bigelow, G. Randers-Pehrson and D. J. Brenner Columbia University, Radiological Research Accelerator Facility, 136 S. Broadway, Irvington, NY 10533, USA The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a ‘home made’ 6.5 mCi polonium source, a 1 alpha particle s–1,10lm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here. INTRODUCTION AND OVERALL DESIGN the lenses. In addition to providing a secondary user facility at RARAF, the design is simple and Columbia University’s Radiological Research Accel- inexpensive enough that the SAM can be reproduced erator Facility (RARAF) currently offers its users in any large radiation biology laboratory.
    [Show full text]
  • Abstracts of Oral and Poster Presentations
    European Radiation Research 2004 The 33th Annual Meeting of the European Society for Radiation Biology Abstracts of Oral and Poster Presentations Guest Editor: Géza Sáfrány The abstracts published in this issue have not been peer-reviewed. Hence the opinions expressed in them are those of the authors and not necessarily those of the editor. The abstracts are in alphabetical order according to the first author. EUROPEAN RADIATION RESEARCH 2004, AUGUST 25–28, BUDAPEST, HUNGARY · 2004; 10: S5–S219 FACTORS INFLUENCING ON CLINICAL MANIFESTATION OF HCV IN GROUP OF CLEAN-UP WORKERS OF CHERNOBYL NPP ACCIDENT ABRAMENKO I. V., CHUMAK A. A., KOVALENKO A. N., BOYCHENKO P. K., AND PLESKACH O. Y. Research Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, Kyiv, Ukraine Imunological monitoring of 536 clean-up workers of Chornobyl NPP accident revealed significant prevalence of hepatitic C virus (HCV) infection (19.6%) compared with non- irratiated person (9.5%). Among 105 HCV carriers clinical signs of infection was found in 39 (37.41%) persons. Factors that influenced manifestation of HCV were male gender (r = 0.3553, p<0,0001), serological signs of previous hepatitic B virus (HBV) infection (r = 0.2896, p = 0.003), anti- bodies against cytomegalovirus (CMV) and T. gondii in serum (r = 0.3418, p<0.0001). –z Logistic regression (P = 1/1+e , where z = 1.5040 – 1.8405 × Mix(1) – 2.6026 × Mix(2) – 0.6567 × Mix(3); Mix(1) – serological signs of one of above menshioned infec- tions, Mix(2) – serological signs of two infections, and Mix(3) – serological signs of previous HBV, CMV and T.
    [Show full text]
  • Expanding the Question-Answering Potential of Single-Cell Microbeams at RARAF, USA
    J. Radiat. Res., 50: Suppl., A21-A28 (2009) Expanding the Question-answering Potential of Single-cell Microbeams at RARAF, USA Alan BIGELOW1,*, Guy GARTY1, Tomoo FUNAYAMA1,2, Gerhard RANDERS-PEHRSON1, David BRENNER1 and Charles GEARD1 Microbeam/Particle accelerator/Cell irradiation/Radiation biology. Charged-particle microbeams, developed to provide targeted irradiation of individual cells, and then of sub-cellular components, and then of 3-D tissues and now organisms, have been instrumental in chal- lenging and changing long accepted paradigms of radiation action. However the potential of these valuable tools can be enhanced by integrating additional components with the direct ability to measure biological responses in real time, or to manipulate the cell, tissue or organism of interest under conditions where information gained can be optimized. The RARAF microbeam has recently undergone an accelerator upgrade, and been modified to allow for multiple microbeam irradiation laboratories. Researchers with divergent interests have expressed desires for particular modalities to be made available and ongoing developments reflect these desires. The focus of this review is on the design, incorporation and use of mul- tiphoton and other imaging, micro-manipulation and single cell biosensor capabilities at RARAF. Addi- tionally, an update on the status of the other biology oriented microbeams in the Americas is provided. west National Laboratory,4) the Gray Cancer Institute,5,6) and INTRODUCTION Columbia University.7) Since that time, the number
    [Show full text]
  • A New Application of Microbeam Radiation Therapy (MRT) on the Treatment of Epilepsy and Brain Disorders
    A new application of microbeam radiation therapy (MRT) on the treatment of epilepsy and brain disorders. Erminia Fardone To cite this version: Erminia Fardone. A new application of microbeam radiation therapy (MRT) on the treatment of epilepsy and brain disorders.. Human health and pathology. Université de Grenoble, 2013. English. NNT : 2013GRENV060. tel-01552806 HAL Id: tel-01552806 https://tel.archives-ouvertes.fr/tel-01552806 Submitted on 3 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Neurosciences - Neurobiologie Arrêté ministériel : 7 août 2006 Présentée par Erminia Fardone Thèse dirigée par Serge PEREZ codirigée par Alberto BRAVIN et Pantaleo ROMANELLI préparée au sein de l’ Installation européenne de rayonnement synchrotron (ESRF) dans l'École Doctorale Chimie et Sciences du Vivant A new application of microbeam radiation therapy (MRT) on the treatment of epilepsy and brain disorders Thèse soutenue publiquement le Vendredi 29 Novembre 2013, devant le jury composé de : Prof Alain Buisson (Président) Prof Université Joseph Fourier, Grenoble, France Prof Paola Coan (Examinateur) Prof Ludwig Maximilians University, Munich, Germany Prof Guido Cavaletti (Rapporteur) Prof University of Milan-Bicocca, Italy Prof Elisabeth Schültke (Rapporteur) MD, Dr Freiburg University Medical Center, Freiburg, Germany Dr Serge Perez (Directeur de Thèse) D.R.
    [Show full text]
  • Animal Models in Microbeam Radiation Therapy: a Scoping Review
    cancers Review Animal Models in Microbeam Radiation Therapy: A Scoping Review Cristian Fernandez-Palomo 1 , Jennifer Fazzari 1, Verdiana Trappetti 1 , Lloyd Smyth 2 , Heidrun Janka 3, Jean Laissue 1 and Valentin Djonov 1,* 1 Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; [email protected] (C.F.-P.); [email protected] (J.F.); [email protected] (V.T.); [email protected] (J.L.) 2 Department of Obstetrics & Gynaecology, University of Melbourne, 3057 Parkville, Australia; [email protected] 3 Medical Library, University Library Bern, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-31-631-8432 Received: 24 January 2020; Accepted: 21 February 2020; Published: 25 February 2020 Abstract: Background: Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres. Objective: This scoping review was conducted to map the available evidence and provide a comprehensive overview of the similarities, differences, and outcomes of all experiments that have employed animal models in MRT. Methods: We considered articles that employed animal models for the purpose of studying the effects of MRT. We searched in seven databases for published and unpublished literature. Two independent reviewers screened citations for inclusion. Data extraction was done by three reviewers. Results: After screening 5688 citations and 159 full-text papers, 95 articles were included, of which 72 were experimental articles.
    [Show full text]
  • The Oncogenic Transforming Potential of the Passage of Single Particles
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 19–22, January 1999 Applied Biological Sciences The oncogenic transforming potential of the passage of single a particles through mammalian cell nuclei RICHARD C. MILLER,GERHARD RANDERS-PEHRSON,CHARLES R. GEARD,ERIC J. HALL, AND DAVID J. BRENNER* Center for Radiological Research, Columbia University, 630 West 168th Street, New York, NY 10032 Communicated by Richard B. Setlow, Brookhaven National Laboratory, Upton, NY, November 3, 1998 (received for review June 2, 1998) ABSTRACT Domestic, low-level exposure to radon gas is cell at risk will be traversed by more than one a particle in a considered a major environmental lung-cancer hazard involv- lifetime (1). ing DNA damage to bronchial cells by a particles from radon Even in the laboratory, there has until now been no direct progeny. At domestic exposure levels, the relevant bronchial way of measuring the oncogenic transforming effects of exactly cells are very rarely traversed by more than one a particle, one a particle without the confounding effects of a significant whereas at higher radon levels—at which epidemiological fraction of exposed cells being subject to multiple a-particle studies in uranium miners allow lung-cancer risks to be traversals, and this has led to significant uncertainty in low- quantified with reasonable precision—these bronchial cells dose radon risk estimates (2). are frequently exposed to multiple a-particle traversals. Mea- In recent years, several groups have developed charged- suring the oncogenic transforming effects of exactly one a particle microbeams, in which cells on a dish are individually particle without the confounding effects of multiple traversals irradiated by a predefined exact number of a particles, thus has hitherto been unfeasible, resulting in uncertainty in allowing the effects of exactly one (or more) a particle extrapolations of risk from high to domestic radon levels.
    [Show full text]
  • Meeting Summary President's Cancer Panel
    MEETING SUMMARY PRESIDENT’S CANCER PANEL ENVIRONMENTAL FACTORS IN CANCER January 27, 2009 Phoenix, Arizona OVERVIEW This meeting was the last in the President’s Cancer Panel’s (PCP, the Panel) 2008/2009 series, Environmental Factors in Cancer. The meeting focused on radiation exposures as they relate to cancer risk. The agenda for the meeting was organized into three discussion panels. PARTICIPANTS President’s Cancer Panel LaSalle D. Leffall, Jr., M.D., F.A.C.S., Chair Margaret Kripke, Ph.D. National Cancer Institute (NCI), National Institutes of Health (NIH) Abby Sandler, Ph.D., Executive Secretary, PCP, NCI Beverly Laird, Ph.D., Vice-Chair, Director’s Consumer Liaison Group Panelists David J. Brenner, Ph.D., D.Sc., Director and Higgins Professor of Radiation Biophysics, Center for Radiological Research, Columbia University Medical Center David O. Carpenter, M.D., Director, Institute for Health and Environment, University at Albany School of Public Health Thomas H. Essig, M.S., Rehired Annuitant, Office of Federal and State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission (NRC) Michael Lerner, Ph.D., President and Founder, Commonweal Martha S. Linet, M.D., M.P.H., Chief and Senior Investigator, Radiation Epidemiology Branch, National Cancer Institute Mahadevappa Mahesh, Ph.D., M.S., Associate Professor of Radiology and Cardiology, Johns Hopkins University School of Medicine Fred A. Mettler, M.D., M.P.H., Professor Emeritus, Department of Radiology, New Mexico VA Healthcare System Neal A. Palafox, M.D., M.P.H., Professor and Chair, Family Medicine and Community Health, John A. Burns School of Medicine, University of Hawai’i at Manoa Trisha Thompson Pritikin, Esq., M.Ed., Hanford Downwinder, Berkeley, CA Jonathan Samet, M.D., M.S., Professor and Chair, Department of Preventive Medicine, University of Southern California (USC)/Norris Comprehensive Cancer Center William A.
    [Show full text]
  • Induction of a Bystander Mutagenic Effect of Alpha Particles in Mammalian Cells
    Induction of a bystander mutagenic effect of alpha particles in mammalian cells Hongning Zhou*, Gerhard Randers-Pehrson*, Charles A. Waldren†, Diane Vannais†, Eric J. Hall*, and Tom K. Hei*‡§ *Center for Radiological Research, College of Physicians and Surgeons, and ‡Environmental Health Sciences, School of Public Health, Columbia University, New York, NY 10032; and †Department of Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 Edited by Richard B. Setlow, Brookhaven National Laboratory, Upton, NY, and approved December 10, 1999 (received for review October 1, 1999) Ever since the discovery of X-rays was made by Ro¨ntgen more than effect would require an area 350 times the typical size of a CHO a hundred years ago, it has always been accepted that the dele- nucleus (9). The additional responding cells that received no terious effects of ionizing radiation such as mutation and carcino- irradiation were ‘‘bystanders’’ of either directly hit cells or genesis are attributable mainly to direct damage to DNA. Although resulted from agents released from the irradiated medium (8, evidence based on microdosimetric estimation in support of a 10). Subsequent studies suggested that reactive oxygen species bystander effect appears to be consistent, direct proof of such might contribute to the induction of SCE among the bystander extranuclear͞extracellular effects are limited. Using a precision cells (11). Enhanced expression of the p53 tumor suppressor charged particle microbeam, we show here that irradiation of 20% gene in bystander cells has also been reported in immortalized of randomly selected AL cells with 20 alpha particles each results in rat lung epithelial cells and human diploid fibroblast cells a mutant fraction that is 3-fold higher than expected, assuming no irradiated with alpha particles (12, 13).
    [Show full text]
  • UV Microspot Irradiator at Columbia University
    Radiat Environ Biophys (2013) 52:411–417 DOI 10.1007/s00411-013-0474-9 SHORT COMMUNICATION UV microspot irradiator at Columbia University Alan W. Bigelow • Brian Ponnaiya • Kimara L. Targoff • David J. Brenner Received: 8 February 2013 / Accepted: 13 May 2013 / Published online: 26 May 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract The Radiological Research Accelerator Facility Accelerator Facility (RARAF), Columbia University at Columbia University has recently added a UV microspot (Bigelow et al. 2011). While ion beams from the HVE irradiator to a microbeam irradiation platform. This UV 5.5 MeV Singletron particle accelerator at the facility also microspot irradiator applies multiphoton excitation at the support secondary X-ray and neutron microbeam develop- focal point of an incident laser as the source for cell ments (Harken et al. 2011; Xu et al. 2011), a UV microspot damage, and with this approach, a single cell within a 3D irradiator is now combined with a charged-particle micro- sample can be targeted and exposed to damaging UV. The beam irradiator to enable experiments that require both UV microspot’s ability to impart cellular damage within photon and particle irradiations on the same platform. In 3D is an advantage over all other microbeam techniques, contrast to cellular damage along the particle tracks from which instead impart damage to numerous cells along charged-particle microbeam irradiators, the UV microspot microbeam tracks. This short communication is an over- delivers damage through multiphoton excitation at localized view, and a description of the UV microspot including the cellular regions within a 3D sample. This integrated design following applications and demonstrations of selective allows the UV microspot to operate in two modes: (1) as a damage to live single cell targets: DNA damage foci for- stand-alone UV microspot irradiator and (2) as a probe to mation, patterned irradiation, photoactivation, targeting of work in concert with ion-beam irradiation experiments.
    [Show full text]
  • Biological Measure of DNA Damage After Single-Ion Microbeam
    Biological measure of DNA damage after single-ion microbeam irradiation and Monte Carlo simulations Geraldine Gonon, Carmen Villagrasa, Pascale Voisin, Sylvain Meylan, Mohamedamine Benadjaoud, Nicolas Tang, Frank Langner, Hans Rabus, Joan Francesc Barquinero, Ulrich Giesen, et al. To cite this version: Geraldine Gonon, Carmen Villagrasa, Pascale Voisin, Sylvain Meylan, Mohamedamine Benadjaoud, et al.. Biological measure of DNA damage after single-ion microbeam irradiation and Monte Carlo sim- ulations. 16th International Congress of Radiation Research ICRR 2019, Aug 2019, MANCHESTER, France. 2019. hal-02635559 HAL Id: hal-02635559 https://hal.archives-ouvertes.fr/hal-02635559 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright N° 404 Biological measure of DNA damage after single-ion microbeam irradiation and Monte Carlo simulations Géraldine Gonon1,Carmen Villagrasa1, Pascale Voisin1, Sylvain Meylan1, Mohamed Amine Benadjaoud1, Nicolas Tang1, Frank Langner2, Hans Rabus2, Joan Francesc Barquinero3, Ulrich Giesen2, Gaëtan
    [Show full text]
  • Collimated Microbeam Reveals That the Proportion of Non-Damaged
    biology Article Collimated Microbeam Reveals that the Proportion of Non-Damaged Cells in Irradiated Blastoderm Determines the Success of Development in Medaka (Oryzias latipes) Embryos Takako Yasuda 1,*, Tomoo Funayama 2 , Kento Nagata 1, Duolin Li 1, Takuya Endo 1, Qihui Jia 1, Michiyo Suzuki 2 , Yuji Ishikawa 3, Hiroshi Mitani 1 and Shoji Oda 1 1 Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; [email protected] (K.N.); [email protected] (D.L.); [email protected] (T.E.); [email protected] (Q.J.); [email protected] (H.M.); [email protected] (S.O.) 2 Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; [email protected] (T.F.); [email protected] (M.S.) 3 National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-4-7136-3663; Fax: +81-4-7136-3669 Received: 2 October 2020; Accepted: 29 October 2020; Published: 5 December 2020 Simple Summary: Studies on teratogenesis in mammals have revealed that exposure to ionizing radiation (IR) during the pre-implantation period induces a high frequency of lethality instead of teratogenesis. Here, to elucidate the IR-induced disturbance of embryonic development when IR exposure occurs during the pre-implantation period, we utilized medaka as a vertebrate model for clear observation of developmental process for its transparency.
    [Show full text]