History of Neuroscience
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Behavioral Neuroscience Uab Graduate Handbook
Behavioral Neuroscience Ph.D. Program Policies, Guidelines, & Procedures Student Handbook 2021-2022 University of Alabama at Birmingham Table of Contents Mission Statement __________________________________________ 3 History of the Program _______________________________________ 3 Policies and Procedures ______________________________________ 4 Overview of Student Career ___________________________________ 5 Typical Courses ____________________________________________ 5 Progress Reports ___________________________________________ 6 2nd Year Research Project __________________________________ 7 Qualifying Examination _______________________________________ 8 Dissertation ________________________________________________ 10 Behavioral Neuroscience Student Checklist _______________________ 13 Master’s Degree ____________________________________________ 15 Policies Regarding Adequate Progress __________________________ 16 Policies on Remunerated Activities _____________________________ 16 Vacation, Leave, Holiday Guidelines ____________________________ 17 Degree Requirements and Associated Procedures ________________ 18 2 BEHAVIORAL NEUROSCIENCE PROGRAM Mission Statement and History of the Program Mission Statement Behavioral neuroscience is represented by scientists with interests in the physiological and neural substrates of behavior. The mission of the Behavioral Neuroscience Ph.D. program is to produce outstanding young scientists capable of pursuing independent research careers in the field of behavioral neuroscience by providing graduate -
The Creation of Neuroscience
The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits. -
The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions. -
NEUROSCIENCE Neuroscience the Science of the Brain
InformatIon sheet NEUROSCIENCE Neuroscience The science of the brain “ Everything you think, everything you Neuroscientists study the nervous system. They do, everything you feel, comes from apply a wide range of scientific disciplines: anatomy, biochemistry, computer science, pharmacology, that 2kg of ugly grey matter inside physiology, psychology, and zoology. It’s all about your skull, and if you start from that understanding how the brain and nervous system work, premise, it’s hard not to be curious and it’s one of the fastest growing areas of science. about how that even begins to be The University of Otago is the only New Zealand possible.” university to offer an undergraduate degree in neuroscience. As an interdisciplinary programme, it is Irene Ballagh Neuroscience Graduate taught by staff from a large number of departments. Each teaches a separate “neuro” component – but the result is a coherent, integrated subject in its own right. YoUr PLaCe In the WorLD 0800 80 80 98 www.otago.ac.nz txt 866 [email protected] Why study neuroscience? You can read details about what several How will I study? neuroscience graduates are doing on our The brain is a final frontier… a last great website. Due to the interdisciplinary nature of the unknown. neuroscience programme, teaching styles vary between papers. Many first and second year Neuroscientists are its explorers. They try What papers do I take? papers are taught through a combination to understand how the brain functions, how First year of lectures and laboratory sessions, while it deals with injury or damage, and how it Essential first year papers provide third year papers will have group projects develops and changes over time. -
Immersive Virtual Reality Methods in Cognitive Neuroscience and Neuropsychology: Meeting the Criteria of the National Academy Of
Immersive virtual reality methods in cognitive neuroscience and neuropsychology: Meeting the criteria of the National Academy of Neuropsychology and American Academy of Clinical Neuropsychology Panagiotis Kourtesisa,b,c,d* and Sarah E. MacPhersone,f aNational Research Institute of Computer Science and Automation, INRIA, Rennes, France; bUniv Rennes, Rennes, France; cResearch Institute of Computer Science and Random Systems, IRISA, Rennes, France; dFrench National Centre for Scientific Research, CNRS, Rennes, France. eHuman Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK; fDepartment of Psychology, University of Edinburgh, Edinburgh, UK; * Panagiotis Kourtesis, National Research Institute of Computer Science and Automation, INRIA, Rennes, France. Email: [email protected] Abstract Clinical tools involving immersive virtual reality (VR) may bring several advantages to cognitive neuroscience and neuropsychology. However, there are some technical and methodological pitfalls. The American Academy of Clinical Neuropsychology (AACN) and the National Academy of Neuropsychology (NAN) raised 8 key issues pertaining to Computerized Neuropsychological Assessment Devices. These issues pertain to: (1) the safety and effectivity; (2) the identity of the end-user; (3) the technical hardware and software features; (4) privacy and data security; (5) the psychometric properties; (6) examinee issues; (7) the use of reporting services; and (8) the reliability of the responses and results. The VR Everyday Assessment Lab (VR-EAL) is the first immersive VR neuropsychological battery with enhanced ecological validity for the assessment of everyday cognitive functions by offering a pleasant testing experience without inducing cybersickness. The VR-EAL meets the criteria of the NAN and AACN, addresses the methodological pitfalls, and brings advantages for neuropsychological testing. -
Michael M. Merzenich
Michael M. Merzenich BORN: Lebanon, Oregon May 15, 1942 EDUCATION: Public Schools, Lebanon, Oregon (1924–1935) University of Portland (Oregon), B.S. (1965) Johns Hopkins University, Ph.D. (1968) University of Wisconsin Postdoctoral Fellow (1968–1971) APPOINTMENTS: Assistant and Associate Professor, University of California at San Francisco (1971–1980) Francis A. Sooy Professor, University of California at San Francisco (1981–2008) President and CEO, Scientifi c Learning Corporation (1995–1996) Chief Scientifi c Offi cer, Scientifi c Learning Corporation (1996–2003) Chief Scientifi c Offi cer, Posit Science Corporation (2004–present) President and CEO, Brain Plasticity Institute (2008–present) HONORS AND AWARDS (SELECTED): Cortical Discoverer Prize, Cajal Club (1994) IPSEN Prize (Paris, 1997) Zotterman Prize (Stockholm, 1998) Craik Prize (Cambridge, 1998) National Academy of Sciences, U.S.A. (1999) Lashley Award, American Philosophical Society (1999) Thomas Edison Prize (Menlo Park, NJ, 2000) American Psychological Society Distinguished Scientifi c Contribution Award (2001) Zülch Prize, Max-Planck Society (2002) Genius Award, Cure Autism Now (2002) Purkinje Medal, Czech Academy (2003) Neurotechnologist of the Year (2006) Institute of Medicine (2008) Michael M. Merzenich has conducted studies defi ning the functional organization of the auditory and somatosensory nervous systems. Initial models of a commercially successful cochlear implant (now distributed by Boston Scientifi c) were developed in his laboratory. Seminal research on cortical plasticity conducted in his laboratory contributed to our current understanding of the phenomenology of brain plasticity across the human lifetime. Merzenich extended this research into the commercial world by co-founding three brain plasticity-based therapeutic software companies (Scientifi c Learning, Posit Science, and Brain Plasticity Institute). -
Origins of Behavioral Neuroscience
ALBQ155_ch1.qxp 10/26/09 10:15 AM Page 1 chapter Origins of Behavioral OUTLINE ● Understanding Human Neuroscience Consciousness: A Physiological Approach Split Brains ● The Nature of Behavioral Neuroscience The Goals of Research 1 Biological Roots of Behavioral Neuroscience ● Natural Selection and Evolution Functionalism and the Inheritance of Traits Evolution of the Human Species Evolution of Large Brains ● Ethical Issues in Research with Animals ● Careers in Neuroscience ● Strategies for Learning LEARNING OBJECTIVES 1. Describe the behavior of people with split brains and explain what study of this phenomenon contributes to our understanding of self-awareness. 2. Describe the goals of scientific research. 3. Describe the biological roots of behavioral neuroscience. 4. Describe the role of natural selection in the evolution of behavioral traits. 5. Describe the evolution of the human species. 6. Discuss the value of research with animals and ethical issues concerning their care. 7. Describe career opportunities in neuroscience. 8. Outline the strategies that will help you learn as much as possible from this book. ALBQ155_ch1.qxp 10/26/09 10:15 AM Page 2 PROLOGUE René’s Inspiration René, a lonely and intelligent young man of pursued her, an imposing statue of Neptune rose in front of him, eighteen years, had secluded himself in Saint- barring the way with his trident. Germain, a village to the west of Paris. He recently had suffered René was delighted. He had heard about the hydraulically a nervous breakdown and chose the retreat to recover. Even operated mechanical organs and the moving statues, but he had before coming to Saint-Germain, he had heard of the fabulous not expected such realism. -
The Behavioral Neuroscientist and Comparative Psychologist
BUSINESS NAME The Behavioral Neuroscientist and Comparative Psychologist Division 6, American Volume 25, Issue 2 Fall/Winter, 2010 Psychological Association Editor A Message From Division 6 President Gordon Burghardt David J. Bucci, PhD Dartmouth College As incoming president of Division 6 I was not totally aware of what would be entailed. Now that I am in the thick of helping plan the APA convention program, facilitating the operation of our various Division President committees such as Membership, Fellows, Awards, Gordon Burghhardt, PhD Students, and others, I see that I, along with many other Div. 6 members, take for granted the ‗gift‘ we have as one of the oldest APA divisions and the sup- port and resources available to us from APA. None- theless, there are problems that we need to discuss both within and across the many APA Divisions. In Inside this issue: this and future newsletter essays I want to raise is- sues, present proposals, and try to elicit some feed- back and dialogue that can be discussed within our Message from 1, 4- division listserv [email protected] or through President 5 personal exchanges at [email protected]. In any event, vigorous conversations seem to be needed. Membership Crisis & the Scientific Imperative APA council, but only one seat due to our small Division 6 2-3 The Division Services office of APA is concerned membership. Still, our impact on the field, as Officers about the health of all divisions, as many APA mem- shown by articles and research blurbs in the APA bers are not affiliating with any division and those Monitor and the flagship American Psychologist, belie remaining in divisions are rapidly aging and member- our small numbers. -
Can We Talk? How the Cognitive Neuroscience of Attention Emerged from Neurobiology and Psychology, 1980-2005
Can We Talk? How the Cognitive Neuroscience of Attention Emerged from Neurobiology and Psychology, 1980-2005 Abstract This study uses author co-citation analysis to trace prospectively the development of the cognitive neuroscience of attention between 1985 and 2005 from its precursor disciplines: cognitive psychology, single cell neurophysiology, neuropsychology, and evoked potential research. The author set consists of 28 authors highly active in attentional research in the mid-1980s. PFNETS are used to present the co-citation networks. Authors are clustered via the single-link clustering intrinsic to the PFNET algorithm. By the 1990 a distinct cognitive neuroscience specialty cluster emerges, dominated by authors engaged in brain imaging research. Introduction In 1986, Joseph LeDoux and William Hirst (1986) co-edited Mind and Brain: Dialogues in cognitive neuroscience. In the preface, they state: “Researchers in both the brain and cognitive sciences are attempting to understand the mind. Neuroscientists and cognitive psychologists should be natural allies, but tend to work in isolation of one another. Mind and Brain represents a pioneering attempt to bring these two fields closer together. The editors’ objective was to force scientists who are working on the same problem but from different perspectives to address each other.” (p. i) Since the publication of LeDoux and Hirst’s book, a new mind-brain science, cognitive neuroscience, had emerged from this initially forced dialogue. Cognitive neuroscience is now a vigorous, expanding, institutionalized discipline, with its own departments, centers, chairs, journals, and societies. The present study examines how cognitive neuroscience developed from those initial, forced exchanges. It will concentrate on one research area within cognitive neuroscience, research on attentional systems. -
Mitochondrial Alarmins Released by Degenerating Motor Axon Terminals
Mitochondrial alarmins released by degenerating PNAS PLUS motor axon terminals activate perisynaptic Schwann cells Elisa Duregottia, Samuele Negroa, Michele Scorzetoa, Irene Zornettaa, Bryan C. Dickinsonb,c,1, Christopher J. Changb,c, Cesare Montecuccoa,d,2, and Michela Rigonia,2 aDepartment of Biomedical Sciences, University of Padua, Padua 35131, Italy; bDepartment of Chemistry and Molecular and Cell Biology and cHoward Hughes Medical Institute, University of California, Berkeley, CA 94720; and dItalian National Research Council Institute of Neuroscience, Padua 35131, Italy Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved December 22, 2014 (received for review September 5, 2014) An acute and highly reproducible motor axon terminal degeneration of nerve terminal degeneration (21). Indeed, these neurotoxins followed by complete regeneration is induced by some animal cause activation of the calcium-activated calpains that contribute to presynaptic neurotoxins, representing an appropriate and controlled cytoskeleton fragmentation (22). system to dissect the molecular mechanisms underlying degeneration Although clearly documented (4, 5, 20), the regeneration of and regeneration of peripheral nerve terminals. We have previously the motor axon terminals after presynaptic neurotoxins injection shown that nerve terminals exposed to spider or snake presynaptic is poorly known in its cellular and molecular aspects. Available neurotoxins degenerate as a result of calcium overload and mito- evidence indicates that, in general, regeneration of mechan- chondrial failure. Here we show that toxin-treated primary neurons ically damaged motor neuron terminals relies on all three cel- release signaling molecules derived from mitochondria: hydrogen lular components of the neuromuscular junction (NMJ): the peroxide, mitochondrial DNA, and cytochrome c. -
In 2002, UC Santa Barbara Neuroscientist Michael Miller Conducted a Study of Verbal Memory. One by One, Sixteen Participants
In 2002, UC Santa Barbara neuroscientist Michael Miller conducted a study of verbal memory. One by one, sixteen participants lay down in an fMRI brain scanner and were shown a set of words. After a rest period, a second series of words was presented and they pressed a button whenever they recognized a word from the first series. As each participant decided whether he had seen a particular word before, the machine scanned his brain and created a digital “map” of his brain’s activity. When Miller finished his experiment, he reported his findings the same way every neuroscientist does: by averaging together all the individual brain maps from his subjects to create a map of the Average Brain. Miller’s expectation was that this average map would reveal the neural circuits involved in verbal memory in the typical human brain. Whenever you read about some new neuroscience discovery accompanied by a blob-splotched cross section of a brain—here are the regions that light up when you feel love; here are the regions that light up when you feel fear—it’s a near certainty that you are looking at a map of an Average Brain. As a graduate student, I was also taught the method of producing and analyzing the Average Brain (referred to as the “random effects model” in the jargon of science) when I was trained in brain imaging at Massachusetts General Hospital. The driving assumption of this method is that the Average Brain represents the normal, typical brain, while each individual brain represents a variant of this normal brain. -
Reflections on the Past Two Decades of Neuroscience
VIEWPOINT medium of conceptual space is: how do we combine these twin paths to understand Reflections on the past two decades the transmission of representations in the network of the brain? Although answering of neuroscience that question will surely build on the prior paradigms, neither seems equipped to Danielle S. Bassett , Kathleen E. Cullen , Simon B. Eickhoff , provide a complete solution; the former offers the dots within, whereas the latter Martha J. Farah , Yukiko Goda , Patrick Haggard , Hailan Hu , offers the lines between. Yet obtaining such Yasmin L. Hurd , Sheena A. Josselyn , Baljit S. Khakh , Jürgen A. Knoblich , a solution is important for deciphering the Panayiota Poirazi , Russell A. Poldrack , Marco Prinz , Pieter R. Roelfsema , mechanism of the brain’s fundamental goal: Tara L. Spires-Jones , Mriganka Sur and Hiroki R. Ueda information processing. The efforts towards such a solution that I find particularly Abstract | The first issue of Nature Reviews Neuroscience was published 20 years promising are those that move beyond ago, in 2000. To mark this anniversary, in this Viewpoint article we asked a selection descriptive characterization or correlative of researchers from across the field who have authored pieces published in the approaches, and towards theory; that is, journal in recent years for their thoughts on notable and interesting developments theory instantiated in an interpretable and generalizable mathematical model in neuroscience, and particularly in their areas of the field, over the past two that encodes a conceptual principle, and decades. They also provide some thoughts on current lines of research and theory as supported by (but not composed questions that excite them.