The Antimicrobial Activity of Secondary Metabolites Produced by Bacterial Endophytes Isolated from Pellaea Calomelanos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insights on Long-Distance Dispersal, Ecological and Morphological Evolution in the Fern
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.07.138776; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Insights on long-distance dispersal, ecological and morphological evolution in the fern genus Microgramma from phylogenetic inferences Thaís Elias Almeida1, Alexandre Salino2, Jean-Yves Dubuisson3, Sabine Hennequin3 1Herbário HSTM, Universidade Federal do Oeste do Pará, Av. Marechal Rondon, s.n. – Santarém, Pará, Brazil. CEP 68.040-070. 2Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – Belo Horizonte, Minas Gerais, Brazil. Caixa Postal 486, CEP 30123-970 3Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, EPHE. Université des Antilles, 57 rue Cuvier, 75005 Paris, France Corresponding author: [email protected] Running title: Phylogenetic inferences of Microgramma bioRxiv preprint doi: https://doi.org/10.1101/2020.06.07.138776; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The epiphytic fern genus Microgramma (Polypodiaceae) comprises 30 species occurring mainly in the Neotropics with one species in Africa, being an example of trans-Atlantic disjunction. Morphologically and ecologically, Microgramma presents a wide variation that is not seen in its closest related genera. -
La Forêt Dense Sèche Tropophile Épineuse Du Domaine Du Sud Malgache
Geo-Eco-Trop, 2015, 39, 2: 151-168 La forêt dense sèche tropophile épineuse du domaine du Sud malgache The dense dry tropophilous prickly forest of the South Madagascan domain Sophie RUELLE1,2 & François MALAISSE3,4 Abstract : The existence, between 150 and 500 m above sea level, of a dense formation of small trees and tall deciduous shrubs, dominated with spaced baobabs in the South Madagascan domain, in particular in the Andohahela massif, has been quoted in diverse papers (HUMBERT, 1941 ; HUMBERT & COURS DARNE, 1965). These last authors insist on the two plant groups that characterized, from a physiognomic point of view, this vegetation, namely the Didieraceae and the arboreal euphorbias, with fleshy twigs, of the Tirucalli section. We have studied more in detail this vegetation unit in the Manarara basin (Hazoara valley). We consider this last as a dense dry tropophilous prickly forest. The floristic composition (> 120 spp.), the structure (vertical and horizontal profiles, structure diagram), density, basal area, family importance coefficients, biological spectrum (raw and weighed), raw spectum of leaf area and ecomorphosis of this forest are successively presented and discussed. Finally the relative importance of spine bearing and leaf succulence are shortly commented on. Key words: Madagascar, South domain, dense dry tropophilous prickly forest, endemism, diversity. Résumé : L’existence, entre 150 et 500 m d’altitude, d’une formation dense de petits arbres et d’arbustes de taille élevée à feuillage caduc, où dominent, espacés, des baobabs dans le domaine sud malgache, en particulier dans le massif de l’Andohahela, a été signalée dans divers travaux (HUMBERT, 1941 ; HUMBERT & COURS DARNE, 1965). -
Fern Gazette
ISSN 0308-0838 THE FERN GAZETTE VOLUME ELEVEN PART SIX 1978 THE JOURNAL OF THE BRITISH PTERIDOLOGICAL SOCIETY THE FERN GAZETTE VOLUME 11 PART6 1978 CONTENTS Page MAIN ARTICLES A tetraploid cytotype of Asplenium cuneifolium Viv. in Corisca R. Deschatres, J.J. Schneller & T. Reichstein 343 Further investigations on Asplenium cuneifolium in the British Isles - Anne Sleep, R.H. Roberts, Ja net I. Souter & A.McG. Stirling 345 The pteridophytes of Reunion Island -F. Badni & Th . Cadet 349 A new Asplenium from Mauritius - David H. Lorence 367 A new species of Lomariopsis from Mauritius- David H. Lorence Fire resistance in the pteridophytes of Zambia - Jan Kornas 373 Spore characters of the genus Cheilanthes with particular reference to Southern Australia -He/en Quirk & T. C. Ch ambers 385 Preliminary note on a fossil Equisetum from Costa Rica - L.D. Gomez 401 Sporoderm architecture in modern Azolla - K. Fo wler & J. Stennett-Willson · 405 Morphology, anatomy and taxonomy of Lycopodiaceae of the Darjeeling , Himalayas- Tuhinsri Sen & U. Sen . 413 SHORT NOTES The range extension of the genus Cibotium to New Guinea - B.S. Parris 428 Notes on soil types on a fern-rich tropical mountain summit in Malaya - A.G. Piggott 428 lsoetes in Rajasthan, India - S. Misra & T. N. Bhardwaja 429 Paris Herbarium Pteridophytes - F. Badre, 430 REVIEWS 366, 37 1, 399, 403, 404 [T HE FERN GAZETTE Volume 11 Part 5 was published 12th December 1977] Published by THE BRITISH PTERIDOLOGICAL SOCI ETY, c/o Oepartment of Botany, British Museum (Natural History), London SW7 5BD. FERN GAZ. 11(6) 1978 343 A TETRAPLOID CYTOTYPE OF ASPLENIUM CUNEIFOLIUM VIV. -
Rare and Threatened Pteridophytes of Asia 2. Endangered Species of India — the Higher IUCN Categories
Bull. Natl. Mus. Nat. Sci., Ser. B, 38(4), pp. 153–181, November 22, 2012 Rare and Threatened Pteridophytes of Asia 2. Endangered Species of India — the Higher IUCN Categories Christopher Roy Fraser-Jenkins Student Guest House, Thamel. P.O. Box no. 5555, Kathmandu, Nepal E-mail: [email protected] (Received 19 July 2012; accepted 26 September 2012) Abstract A revised list of 337 pteridophytes from political India is presented according to the six higher IUCN categories, and following on from the wider list of Chandra et al. (2008). This is nearly one third of the total c. 1100 species of indigenous Pteridophytes present in India. Endemics in the list are noted and carefully revised distributions are given for each species along with their estimated IUCN category. A slightly modified update of the classification by Fraser-Jenkins (2010a) is used. Phanerophlebiopsis balansae (Christ) Fraser-Jenk. et Baishya and Azolla filiculoi- des Lam. subsp. cristata (Kaulf.) Fraser-Jenk., are new combinations. Key words : endangered, India, IUCN categories, pteridophytes. The total number of pteridophyte species pres- gered), VU (Vulnerable) and NT (Near threat- ent in India is c. 1100 and of these 337 taxa are ened), whereas Chandra et al.’s list was a more considered to be threatened or endangered preliminary one which did not set out to follow (nearly one third of the total). It should be the IUCN categories until more information realised that IUCN listing (IUCN, 2010) is became available. The IUCN categories given organised by countries and the global rarity and here apply to political India only. -
A Review on the Potential Uses of Ferns M
Ethnobotanical Leaflets 12: 281-285. 2008. A Review on the Potential Uses of Ferns M. Mannar Mannan, M. Maridass* and B.Victor Animal Health Research Unit, St. Xavier’s College (Autonomous) Palayamkottai, Tamil Nadu – 627002 *Corresponding Author: Dr. M. Maridass, DST-SERC-Young Scientist Animal Health Research Unit St. Xavier’s College (Autonomous), Palayamkottai, Tamil Nadu – 627002. Email: [email protected] Issued 24 May 2008 Introduction Man has been using plants as a source of food, medicines and many other necessities of life since ancient times. Even to this day the primitive tribal societies that exist depend on the plant life in their surroundings. Though there were investigations of the edible economic values of the higher plants, especially the pteridophytes and angiosperms have been unfortunately ignored. The pteridophytes are used in Homoeopathic, Ayurvedic, Tribal and Unani medicines and provides food, insecticides and ornamentations. Ferns used as food With very few exception ferns have not been widely used as a source of food. The fern stems, rhizomes, leaves, young fronds and shoots and some whole plants are used for food. Tree ferns have often been used as food and starch in Hawaii. Also, ferns are supposed to increase milk production when fed to cows in Sicily. The young fronds and underground stem of the fern Asplenium ensiforme are used for food by hilly tribes. In Malaysia, Blechnum orientalis L., rhizome is eaten and whole plant is used as feed and as poultice in boil. The fronds of Ceratopteris thalictroides are used as a vegetable. The young fronds of Diplazium esculentum are eaten either as salad or as vegetable after cooking. -
Pteridophyte Richness, Climate and Topography in the Iberian Peninsula
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2005) 14, 155–165 Blackwell Publishing, Ltd. RESEARCH Pteridophyte richness, climate and PAPER topography in the Iberian Peninsula: comparing spatial and nonspatial models of richness patterns Dolores Ferrer-Castán*1 and Ole R. Vetaas2 1Unit of Ecology, Faculty of Biology, University ABSTRACT of Salamanca, C.U. Miguel de Unamuno, Aim To describe the spatial variation in pteridophyte species richness; evaluate E-37007 Salamanca, Spain, 2Centre for the importance of macroclimate, topography and within-grid cell range variables; Development Studies, University of Bergen, Nygaardsgaten 5, N-5015 Bergen, Norway assess the influence of spatial autocorrelation on the significance of the variables; and to test the prediction of the mid-domain effect. Location The Iberian Peninsula. Methods We estimated pteridophyte richness on a grid map with c. 2500 km2 cell size, using published geocoded data of the individual species. Environmental data were obtained by superimposing the grid system over isoline maps of precipita- tion, temperature, and altitude. Mean and range values were calculated for each cell. Pteridophyte richness was related to the environmental variables by means of nonspatial and spatial generalized least squares models. We also used ordinary least squares regression, where a variance partitioning was performed to partial out the spatial component, i.e. latitude and longitude. Coastal and central cells were compared to test the mid-domain effect. Results Both spatial and nonspatial models showed that pteridophyte richness was best explained by a second-order polynomial of mean annual precipitation and a quadratic elevation-range term, although the relative importance of these two variables varied when spatial autocorrelation was accounted for. -
Summer 2012 - 45 President’S Message ~ Summer 2012
THE HARDY FERN FOUNDATION P.O. Box 3797 Federal Way, WA 98063-3797 Web site: www.hardyfernfoundation.org The Hardy Fern Foundation was founded in 1989 to establish a comprehen¬ sive collection of the world’s hardy ferns for display, testing, evaluation, public education and introduction to the gardening and horticultural community. Many rare and unusual species, hybrids and varieties are being propagated from spores and tested in selected environments for their different degrees of hardiness and ornamental garden value. The primary fern display and test garden is located at, and in conjunction with, The Rhododendron Species Botanical Garden at the Weyerhaeuser Corporate Headquarters, in Federal Way, Washington. Affiliate fern gardens are at the Bainbridge Island Library, Bainbridge Island, Washington; Bellevue Botanical Garden, Bellevue, Washington; Birmingham Botanical Gardens, Birmingham, Alabama; Coastal Maine Botanical Garden, Boothbay, Maine; Dallas Arboretum, Dallas, Texas; Denver Botanic Gardens, Denver, Colorado; Georgia Perimeter College Garden, Decatur, Georgia; Inniswood Metro Gardens, Columbus, Ohio; Lakewold, Tacoma, Washington; Lotusland, Santa Barbara, California; Rotary Gardens, Janesville, Wisconsin; Strybing Arboretum, San Francisco, California; University of California Berkeley Botanical Garden, Berkeley, California; and Whitehall Historic Home and Garden, Louisville, Kentucky. Hardy Fern Foundation members participate in a spore exchange, receive a quarterly newsletter and have first access to ferns as they are ready -
Appendix A: Habitats & Flora of the Heritage Park
APPENDIX A: HABITATS & FLORA OF THE HERITAGE PARK 1. Thornveld & mixed bushveld of the plains 1.1. Thornveld on black clay soils Aspilia Commelina Turf thornveld mossambicensis bhengalensis Open thorny Gladiolus elliotii Striga forbesia bushveld Gladiolus elliotii Ipomoea magnusiana Striga gesnerioides Hibiscus trionum Crabbea angustifolia Convolvulus sagittatus 205 1.2. Thornveld on red to brown loams Thornveld Hibiscus cannabinus Hermannia boraginiflora Open thorny parkland Chamaechrista Commelina africana savanna mimosoides Harpagophytum Asclepias meliodora Euphorbia clavaroides procumbens Thornveld Ammocharis sp. Harpagophytum zeyheri Aloe greatheadii Aloe greatheadii Aerva leucura 206 Thorny bushveld Coccinia sessilifolia Coccinia sessilifolia Cyphostemma Ipomoea papilio Ipomoea gracilisepala lanigerum Heliotropium strigosum Raphionacme hirsuta Tephrosia plicata 1.3. Mixed bushveld Mixed Bushveld on Xerophyta retinervis Xerophyta retinervis rocky soil Mixed bushveld on Aptosimum lineare Ledebouria apertiflora hillslope 207 Semi-open bushveld Boophane disticha Oxalis smithiana Cucumis zeyheri Closed bushveld Hirpicium bechuanense Oxalis depressa Aptosimum elongatum Lippia javanica 2. Kloofs, ravines & rocky mountain sites of the Dwarsberg Rang 2.1. Mountain footslopes Rocky footslope Striga gesnerioides Oldenlandia herbacea 208 2.2. Rocky mountain kloofs & ravines Mountain kloof Ficus sp. Hibiscus sp Pavonia sp. Kloof Rocky ravine 2.3. Middle and upper slopes Closed mountain Midslopes Abutilon grandiflorum bushveld Plumbago zeylanica -
First Report of Bacterial Endophytes from the Leaves of Pellaea
Research Article Page 1 of 9 First report of bacterial endophytes from the AUTHORS: leaves of Pellaea calomelanos in South Africa Siphiwe G. Mahlangu1 Mahloro H. Serepa-Dlamini1 Bacteria have an endosymbiotic association with plants. Previous studies have identified endophytic AFFILIATION: bacteria and their importance in biocontrol and drug development. However, most medicinal plants 1Department of Biotechnology identified have not been assayed for bacterial endophytes. In this study, we characterised and identified and Food Technology, University of Johannesburg, Johannesburg, bacterial endophytes from surface-sterilised leaves of Pellaea calomelanos, a common fern in the South Africa Limpopo and Gauteng Provinces, South Africa. Using morphological data and 16S rRNA gene sequencing, we differentiated and identified six putative endophytic bacteria, with Pantoea as the dominant genus; the CORRESPONDENCE TO: other two identified bacteria belong to genera Arthrobacter and Bacillus. Data from this study are an Mahloro Serepa-Dlamini addition to the previously less studied phylloplane bacteria. This study is a pilot in cataloguing bacterial endophytes from Pellaea calomelanos. EMAIL: [email protected] Significance: • This study provides the first report of six putative bacterial endophytes from Pellaea calomelanos. DATES: Received: 16 Oct. 2017 • Our results will pave the way for exploring the antimicrobial activity of P. calomelanos bacterial endophytes and whole genome comparisons between plant bacterial endophytes and plant bacterial pathogens. Revised: 18 Jan. 2018 Accepted: 21 May 2018 Published: 11 Sep. 2018 Introduction Plants have a mutualistic relationship with varied endophytes.1 Endophytes are endosymbiotic; they are often KEYWORDS: 3 Pantoea; medicinal plant; bacterial or fungal species which colonise the plants without causing harm or pathogenic infection and can spend 2-4 phylogenetic analysis; biolog part or their entire life cycle within the plant host . -
Plant Species List for Bezuidenhoutshoek
ANNEXURE 1 PLANT SPECIES LIST FOR BEZUIDENHOUTSHOEK Enviroguard Ecological services cc 89 Spp SCIENTIFIC NAME no Acanthaceaea 28483 Barleria species 5924 Crabbea angustifolia Nees 5930 Crabbea species 6319 Crossandra greenstockii S.Moore 14598 Isoglossa grantii C.B.Clarke 14929 Justicia anagalloides (Nees) T.Anderson 22391 Rhus dentata Thunb. 22472 Rhus gracillima Engl. 22418 Rhus leptodictya Diels 57382 Rhus lucida L. 22425 Rhus magalismontana Sond. ssp. magalismontana 22476 Rhus pyroides Burch. 22471 Rhus zeyheri Sond. Amaranthaceae 178 Achyranthes aspera L. 12213 Gomphrena celosioides Mart. 15182 Kyphocarpa angustifolia (Moq.) Lopr. 21931 Pupalia lappacea (L.) A.Juss. Amaryllidaceae 3394 Boophane disticha (L.f.) Herb. 6281 Crinum graminicola I.Verd. 12458 Haemanthus humilis Jacq. 12442 Haemanthus humilis Jacq. ssp. hirsutus (Baker) Snijman 23648 Scadoxus puniceus (L.) Friis & Nordal Anacardiaceae 15646 Lannea edulis (Sond.) Engl. 19547 Ozoroa paniculosa (Sond.) R.& A.Fern. Anemiaceae 17784 Mohria caffrorum (L.) Desv. Anthericaceae 28468 Anthericum species (now Chlorophytum sp.) 4802 Chlorophytum fasciculatum (Baker) Kativu Apiaceae 4260 Centella asiatica (L.) Urb. Apocynaceae 218 Acokanthera oppositifolia (Lam.) Codd 220 Acokanthera species 644 Ageratum conyzoides L. 1340 Ancylobotrys capensis (Oliv.) Pichon 28474 Asclepias species Enviroguard Ecological services cc 90 7779 Diplorhynchus condylocarpon (Müll.Arg.) Pichon 6448 Ectadiopsis oblongifolia (Meisn.) Benth. ex Schltr. (now Cryptolepis oblongifolia) 12203 Gomphocarpus fruticosus (L.) Aiton f. 13820 Hoodia gordonii (Masson) Sweet ex Decne. 19572 Pachycarpus schinzianus (Schltr.) N.E.Br. 22114 Raphionacme hirsuta (E.Mey.) R.A.Dyer ex E.Phillips 23576 Sarcostemma viminale (L.) R.Br. 24011 Secamone alpini Schult. 28723 Tenaris species Araceae 22655 Richardia brasiliensis Gomes 25759 Stylochiton natalensis Schott Araliaceae 6566 Cussonia paniculata Eckl. -
Drakensberg Park, Kwazulu-Natal, South Africa
Bothalia - African Biodiversity & Conservation ISSN: (Online) 2311-9284, (Print) 0006-8241 Page 1 of 15 Original Research The alpine flora on inselberg summits in the Maloti– Drakensberg Park, KwaZulu-Natal, South Africa Authors: Background: Inselberg summits adjacent to the Maloti–Drakensberg escarpment occupy an 1,2 Robert F. Brand alpine zone within the Drakensberg Alpine Centre (DAC). Inselbergs, the escarpment and Charles R. Scott-Shaw3† Timothy G. O’Connor4 surrounding mountains such as Platberg experience a severe climate; inselberg summits are distinct by being protected from human disturbance. Affiliations: 1Cuyahoga County Board of Objectives: The aim of this article was to describe for the first time the flora of inselberg Health, Ohio, United States summits and to assess their potential contribution to conservation of DAC plant diversity. 2Department of Soil, Crop and Method: We investigated whether the flora of inselberg summits formed a representative Climate Science, University of subset of the DAC flora in terms of shared, especially endemic or near endemic, species and the Free State, Bloemfontein, representation of families. All species were listed for six inselbergs between Giant’s Castle and South Africa Sentinel, located in the Royal Natal National Park (RNNP) during November 2005. Comparisons, using literature, were made with floras of the DAC, as well as Platberg, an 3Ezemvelo KwaZulu-Natal Wildlife, Pietermaritzburg, inselberg approximately 60 km north from Sentinel in the RNNP. South Africa Results: We recorded 200 species of pteridophytes and angiosperms on inselbergs, 114 DAC 4South African Environmental endemics or near endemics, one possible new species, and several range and altitudinal Observation Network, extensions. -
Eastern Massachusetts Fern Foray 2010 by Weston L
Volume 37 Number 5 Nov-Dec 2010 Editors: Joan Nester-Hudson and David Schwartz Eastern Massachusetts Fern Foray 2010 by Weston L. Testo and James D. Montgomery Colgate University, Hamilton, NY and Ecology III, Berwick, PA To start off their Botany 2010 experience, three As the trail began to flatten out, we came across a dozen fern enthusiasts ventured to three sites in east- large grouping of Osmundas, with robust specimens ern Massachusetts on Saturday, July 31. We departed of Cinnamon Fern (O. cinnamomea), Interrupted Fern from the Rhode Island Convention Center in Provi- (O. claytoniana), and Royal Fern, (O. regalis) grow- dence, Rhode Island shortly after eight am and arrived ing together to the right of the trail. While Don Lu- at Houghton Pond in Milton, Massachusetts, less than bin discussed field identification of these species with one hour later. most of the members of the trip, Ray Abair led small Eager to get into the field, we met with the trip coor- groups down a short path to see a single specimen dinators, Don Lubin and Ray Abair of the New England of Dryopteris x slossonae (Fig.1), a hybrid of Mar- Wild Flower Society, and reboarded the tour bus for a short trip to the day’s first site, Ponka- poag Pond in the 7000-acre Blue Hills Metro- politan District Commission Reservation, just south of Boston. At this site, we encountered 16 taxa, including several notable Dryopteris. The bus stopped on a dead-end road and soon we were on a well-made dirt and gravel path which began immediately down a gen- tle slope into the woods.