Northern Dwarf Siren
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pond-Breeding Amphibian Guild
Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Pond-breeding Amphibians Guild Primary Species: Flatwoods Salamander Ambystoma cingulatum Carolina Gopher Frog Rana capito capito Broad-Striped Dwarf Siren Pseudobranchus striatus striatus Tiger Salamander Ambystoma tigrinum Secondary Species: Upland Chorus Frog Pseudacris feriarum -Coastal Plain only Northern Cricket Frog Acris crepitans -Coastal Plain only Contributors (2005): Stephen Bennett and Kurt A. Buhlmann [SCDNR] Reviewed and Edited (2012): Stephen Bennett (SCDNR), Kurt A. Buhlmann (SREL), and Jeff Camper (Francis Marion University) DESCRIPTION Taxonomy and Basic Descriptions This guild contains 4 primary species: the flatwoods salamander, Carolina gopher frog, dwarf siren, and tiger salamander; and 2 secondary species: upland chorus frog and northern cricket frog. Primary species are high priority species that are directly tied to a unifying feature or habitat. Secondary species are priority species that may occur in, or be related to, the unifying feature at some time in their life. The flatwoods salamander—in particular, the frosted flatwoods salamander— and tiger salamander are members of the family Ambystomatidae, the mole salamanders. Both species are large; the tiger salamander is the largest terrestrial salamander in the eastern United States. The Photo by SC DNR flatwoods salamander can reach lengths of 9 to 12 cm (3.5 to 4.7 in.) as an adult. This species is dark, ranging from black to dark brown with silver-white reticulated markings (Conant and Collins 1991; Martof et al. 1980). The tiger salamander can reach lengths of 18 to 20 cm (7.1 to 7.9 in.) as an adult; maximum size is approximately 30 cm (11.8 in.). -
Summary of Amphibian Community Monitoring at Canaveral National Seashore, 2009
National Park Service U.S. Department of the Interior Natural Resource Program Center Summary of Amphibian Community Monitoring at Canaveral National Seashore, 2009 Natural Resource Data Series NPS/SECN/NRDS—2010/098 ON THE COVER Clockwise from top left, Hyla chrysoscelis (Cope’s grey treefrog), Hyla gratiosa (barking treefrog), Scaphiopus holbrookii (Eastern spadefoot), and Hyla cinerea (Green treefrog). Photographs by J.D. Willson. Summary of Amphibian Community Monitoring at Canaveral National Seashore, 2009 Natural Resource Data Series NPS/SECN/NRDS—2010/098 Michael W. Byrne, Laura M. Elston, Briana D. Smrekar, Brent A. Blankley, and Piper A. Bazemore USDI National Park Service Southeast Coast Inventory and Monitoring Network Cumberland Island National Seashore 101 Wheeler Street Saint Marys, Georgia, 31558 October 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae. -
A Safe and Efficient Technique for Handling Siren Spp. and Amphiuma
Herpetological Review, 2009, 40(2), 169–170. © 2009 by Society for the Study of Amphibians and Reptiles A Safe and Efficient Technique for Handling Siren spp. and Amphiuma spp. in the Field DONALD J. BROWN* and MICHAEL R. J. FORSTNER Department of Biology, Texas State University-San Marcos 601 University Drive, San Marcos, Texas 78666, USA e-mail (MRJF): [email protected] FIG. 1. Siren texana being restrained for measurements using a snake Corresponding author; e-mail: [email protected] tube. Siren spp. and Amphiuma spp. are large eel-like salamanders sary data on a given individual in under ten minutes. A potential distributed throughout the coastal plain of the southeastern United drawback of this method is that the salamanders will never be States (Conant and Collins 1998). Much has been reported on perfectly linear due to the necessity of having enough space to capture methods for these species. Common methods include min- facilitate movement into the tube. However, once an individual is now and crayfish traps (Sorensen 2004), hoop nets (Snodgrass et placed in a given tube, a smaller tube can be inserted at the anterior al. 1999), dip nets (Fauth and Resetarits 1991), and baited hooks end and the salamander can be coerced into it by touching its tail, (Hanlin 1978). Recently, a trap capable of sampling these species resulting in a tighter fit and more accurate measurements. The at depths up to 70 cm was developed (Luhring and Jennison 2008). handling method we used was effective for collecting standard Because of their slippery skin and irritable nature, Siren spp. -
Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth odontini. The highly diversified tribe Bolitoglossini includes three super genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char acterized. Range maps are presented for all genera. Relationships of all genera are discussed. -
Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus Axanthus, in Southern Florida Zachary Cole Adcock University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida Zachary Cole Adcock University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Biology Commons Scholar Commons Citation Adcock, Zachary Cole, "Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/3941 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reproductive Biology of the Southern Dwarf Siren, Pseudobranchus axanthus, in Southern Florida by Zachary C. Adcock A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Integrative Biology College of Arts and Sciences University of South Florida Co-Major Professor: Earl D. McCoy, Ph.D. Co-Major Professor: Henry R. Mushinsky, Ph.D. Stephen M. Deban, Ph.D. Date of Approval: July 10, 2012 Keywords: aquatic salamander, life history, oviposition, clutch size, size at maturity Copyright © 2012, Zachary C. Adcock ACKNOWLEDGMENTS I thank my co-major professors, Henry Mushinsky and Earl McCoy, for their patience and guidance through a couple of thesis projects lasting several years. I also thank my committee member, Steve Deban, for providing excellent comments to improve this thesis document. -
Optimal Swimming Speed Estimates in the Early Permian Mesosaurid
This article was downloaded by: [Joaquín Villamil] On: 24 August 2015, At: 10:09 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG Historical Biology: An International Journal of Paleobiology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ghbi20 Optimal swimming speed estimates in the Early Permian mesosaurid Mesosaurus tenuidens (Gervais 1865) from Uruguay Joaquín Villamilab, Pablo Núñez Demarcoc, Melitta Meneghela, R. Ernesto Blancobd, Washington Jonesbe, Andrés Rinderknechtbe, Michel Laurinf & Graciela Piñeirog a Laboratorio de Sistemática e Historia Natural de Vertebrados, IECA, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay b Núcleo de Biomecánica, Espacio Interdisciplinario, Montevideo, Uruguay c Click for updates Facultad de Ciencias, Departamento de Geología, Montevideo, Uruguay d Facultad de Ciencias, Instituto de Física, Montevideo, Uruguay e Museo Nacional de Historia Natural, Montevideo, Uruguay f CR2P, Sorbonne Universités, CNRS/MNHN/UPMC, Muséum National d’Histoire Naturelle, Paris, France g Facultad de Ciencias, Departamento de Evolución de Cuencas, Montevideo, Uruguay Published online: 14 Aug 2015. To cite this article: Joaquín Villamil, Pablo Núñez Demarco, Melitta Meneghel, R. Ernesto Blanco, Washington Jones, Andrés Rinderknecht, Michel Laurin & Graciela Piñeiro (2015): Optimal swimming speed estimates in the Early Permian mesosaurid Mesosaurus tenuidens (Gervais 1865) from Uruguay, Historical Biology: An International Journal of Paleobiology, DOI: 10.1080/08912963.2015.1075018 To link to this article: http://dx.doi.org/10.1080/08912963.2015.1075018 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. -
Aquatic Feeding in Salamanders
CHAPTER 3 Aquatic Feeding in Salamanders STEPHEN M. DEBAN AND DAVID B. WAKE Museum of Vertebrate Zoology and Department oflntegrative Biology University of California Berkeley, California 94720 I. INTRODUCTION canum. Some undergo partial metamorphosis and pos- A. Systematics sess both adult and larval features when reproductive, B. Natural History such as the fully aquatic Cryptobranchus. Others are C. Feeding Modes and Terminology primarily terrestrial and become secondarily aquatic 11. MORPHOLOGY as metamorphosed adults, notably during the breed- A. Larval Morphology ing season. The family Salamandridae contains the B. Adult Morphology most representatives of this type, known commonly C. Sensory and Motor Systems as newts. 111. FUNCTION A. Ingestion Behavior and Kinematics Salamanders covered in this chapter may be terres- B. Prey Processing trial, semiaquatic, or fully aquatic. They may return to C. Functional Morphology the water only periodically and may feed on both land D. Biomechanics and in water. Discussion here focuses on the aquatic E. Metamorphosis feeding biology of these taxa. Terrestrial feeding of F. Performance semiaquatic and terrestrial salamanders is discussed G. Variation in the next chapter. Here we describe the various feed- IV. DIVERSITY AND EVOLUTION ing behaviors: foraging, ingestion (prey capture), prey A. Features of Salamander Families processing, intraoral prey transport, and swallowing. B. Phylogenetic Patterns of Feeding Form and Function We review the relevant morphology and function of V. OPPORTUNITIES FOR FUTURE RESEARCH the sensory and motor systems and analyze the bio- References mechanical function of the feeding apparatus. Finally, we consider the evolution of aquatic feeding systems within and among the major taxa of salamanders. -
TRAPPING SUCCESS and POPULATION ANALYSIS of Siren Lacertina and Amphiuma Means
TRAPPING SUCCESS AND POPULATION ANALYSIS OF Siren lacertina AND Amphiuma means By KRISTINA SORENSEN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003 ACKNOWLEDGMENTS I thank my committee members Lora Smith, Franklin Percival, and Dick Franz for all their support and advice. The Department of Interior's Student Career Experience Program and the U.S. Geological Survey's Amphibian Research and Monitoring Initiative provided funding for this project. I thank those involved with these programs who have helped me over the last three years: David Trauger, Ken Dodd, Jamie Barichivich, Jennifer Staiger, Kevin Smith, and Steve Johnson. Numerous people helped with field work: Audrey Owens, Maya Zacharow, Chris Gregory, Matt Chopp, Amanda Rice, Paul Loud, Travis Tuten, Steve Johnson, and Jennifer Staiger, Lora Smith, and the UF Wildlife Field Techniques Courses of2001-2002. Paul Moler and John Jensen provided advice and shared their wealth of herpetological knowledge. I thank the staff of Okefenokee National Wildlife Refuge and Steve Coates, manager of the Ordway Preserve, for their assistance on numerous occasions and for permission to conduct research on their property. Marinela Capanu of the IFAS Statistical Consulting Unit assisted with statistical analysis. Julien Martin, Bob Dorazio, Rob Bennets, and Cathy Langtimm provided advice on population analysis. I also thank the administrative staff of the Florida Caribbean Science Center and the Florida Cooperative Fish and Wildlife Research Unit. I am much indebted to all of these people, without whom this thesis would not have been possible. -
The Salamanders of Tennessee
Salamanders of Tennessee: modified from Lisa Powers tnwildlife.org Follow links to Nongame The Salamanders of Tennessee Photo by John White Salamanders are the group of tailed, vertebrate animals that along with frogs and caecilians make up the class Amphibia. Salamanders are ectothermic (cold-blooded), have smooth glandular skin, lack claws and must have a moist environment in which to live. 1 Amphibian Declines Worldwide, over 200 amphibian species have experienced recent population declines. Scientists have reports of 32 species First discovered in 1967, the golden extinctions, toad, Bufo periglenes, was last seen mainly species of in 1987. frogs. Much attention has been given to the Anurans (frogs) in recent years, however salamander populations have been poorly monitored. Photo by Henk Wallays Fire Salamander - Salamandra salamandra terrestris 2 Why The Concern For Salamanders in Tennessee? Their key role and high densities in many forests The stability in their counts and populations Their vulnerability to air and water pollution Their sensitivity as a measure of change The threatened and endangered status of several species Their inherent beauty and appeal as a creature to study and conserve. *Possible Factors Influencing Declines Around the World Climate Change Habitat Modification Habitat Fragmentation Introduced Species UV-B Radiation Chemical Contaminants Disease Trade in Amphibians as Pets *Often declines are caused by a combination of factors and do not have a single cause. Major Causes for Declines in Tennessee Habitat Modification -The destruction of natural habitats is undoubtedly the biggest threat facing amphibians in Tennessee. Housing, shopping center, industrial and highway construction are all increasing throughout the state and consequently decreasing the amount of available habitat for amphibians. -
Key to the Identification of Streamside Salamanders
Key to the Identification of Streamside Salamanders Ambystoma spp., mole salamanders (Family Ambystomatidae) Appearance : Medium to large stocky salamanders. Large round heads with bulging eyes . Larvae are also stocky and have elaborate gills. Size: 3-8” (Total length). Spotted salamander, Ambystoma maculatum Habitat: Burrowers that spend much of their life below ground in terrestrial habitats. Some species, (e.g. marbled salamander) may be found under logs or other debris in riparian areas. All species breed in fishless isolated ponds or wetlands. Range: Statewide. Other: Five species in Georgia. This group includes some of the largest and most dramatically patterned terrestrial species. Marbled salamander, Ambystoma opacum Amphiuma spp., amphiuma (Family Amphiumidae) Appearance: Gray to black, eel-like bodies with four greatly reduced, non-functional legs (A). Size: up to 46” (Total length) Habitat: Lakes, ponds, ditches and canals, one species is found in deep pockets of mud along the Apalachicola River floodplains. A Range: Southern half of the state. Other: One species, the two-toed amphiuma ( A. means ), shown on the right, is known to occur in A. pholeter southern Georgia; a second species, ,Two-toed amphiuma, Amphiuma means may occur in extreme southwest Georgia, but has yet to be confirmed. The two-toed amphiuma (shown in photo) has two diminutive toes on each of the front limbs. Cryptobranchus alleganiensis , hellbender (Family Cryptobranchidae) Appearance: Very large, wrinkled salamander with eyes positioned laterally (A). Brown-gray in color with darker splotches Size: 12-29” (Total length) A Habitat: Large, rocky, fast-flowing streams. Often found beneath large rocks in shallow rapids. Range: Extreme northern Georgia only. -
Streamside Salamander Identification Guide
Key to the Identification of Streamside Salamanders 1 Ambystoma spp., mole salamanders (Family Ambystomatidae) Appearance: Medium to large stocky salamanders. Large round heads with bulging eyes. Larvae are also stocky and have elaborate gills. Size: 3-8” (Total length). Spotted salamander, Ambystoma maculatum Habitat: Burrowers that spend much of their life below ground in terrestrial habitats. Some species, (e.g. marbled salamander) may be found under logs or other debris in riparian areas. All species breed in fishless isolated ponds or wetlands. Range: Statewide. Other: Five species in Georgia. This group includes some of the largest and most dramatically patterned terrestrial species. Marbled salamander, Ambystoma opacum Amphiuma spp., amphiuma (Family Amphiumidae) Appearance: Gray to black, eel-like bodies with four greatly reduced, non-functional legs (A). Size: up to 46” (Total length) Habitat: Lakes, ponds, ditches and canals, one species is found in deep pockets of mud along the Apalachicola River floodplains. A Range: Southern half of the state. A Other: One species, the two-toed amphiuma (A. means), shown on the right, is known to occur in A. pholeter southern Georgia; a second species, ,Two-toed amphiuma, Amphiuma means may occur in extreme southwest Georgia, but has yet to be confirmed. The two-toed amphiuma (shown in photo) has two diminutive toes on each of the front limbs. 2 Cryptobranchus alleganiensis, hellbender (Family Cryptobranchidae) Appearance: Very large, wrinkled salamander with eyes positioned laterally (A). Brown-gray in color with darker splotches Size: 12-29” (Total length) A Habitat: Large, rocky, fast-flowing streams. Often found beneath large rocks in shallow rapids.