Discovering New Species & More Publication & Digital Archives

Total Page:16

File Type:pdf, Size:1020Kb

Discovering New Species & More Publication & Digital Archives “We belong to the first generation to Planetary Biological Inventories (PBIs) are learn that a mass extinction event is large-scale projects to discover and docu- ment all species of a “major clade” (i.e., large impending, and to the last generation group of descendent species from a common with the opportunity to inventory ALL CATFISH SPECIES INVENTORY ancestor, including fossils). PBIs empower much of our planet’s biodiversity 2008 CNSF Poster Presentation by international teams of scientists and institu- before it disappears forever.” tions to assemble a comprehensive frame- Mark Sabaj Pérez work for understanding Earth’s biodiversity, 2003 NSF Announcement & John Sullivan history and ecosystems. No projects of such of New Program: magnitude have ever been attempted. Given Planetary Biodiversity Inventories The Academy of Natural Sciences the accelerated rate of change of our planet 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103 – the time is now. A Five-Year Exploration Discovering new Publication & Applications of Education Freshwater Synergistic Global Effort & Collections species & more Digital Archives New Technology & Outreach Conservation Collaborations An integrated approach for under- Catfishes found on all continents ACSI’s primary goal: the complete ACSI funds publication of papers Transforming anatomical science ACSI creates opportunities for Species inventories are the basis Natural ties exist between ACSI & standing Earth’s catfish diversity including fossils on Antarctica classification of all catfish species on catfish species & classification for the 21st Century young scientists & the public for sound conservation policies many other NSF-supported projects • ACSI comprises an International research • Over 3100 valid living & fossil species in 40 Step 1: compilation of all previously named • Catscan or x-ray computed tomography • ACSI expeditions yield valuable collections network of 422 participants (including 133 families worldwide (about 1 in 4 freshwater and described species. Published in “Check- (HRXCT) developed by the DigiMorph team of fishes and aquatic organisms shared with students) in 53 countries. fishes, 1 in 10 fishes and 1 in 20 vertebrates list of catfishes, recent and fossil…” by ACSI at the University of Texas, Austin generates the Cypriniformes Tree of Life and Mussel is a catfish). co-PI Carl J. Ferraris, Jr.: summarizes impor- detailed 3D images of entire specimens that Project. • 221 ACSI grants and fellowships awarded tant taxonomic information for all 4,624 spe- ACSI digitally dissects to study and document to participants at home and abroad created • Most diverse in the large equatorial water- cies of catfishes ever described. complex internal anatomy. • ACSI studies on the phylogenetic history of new opportunities for fieldwork, museum sheds of South America, Southeast Asia and catfishes create branches for theTree of Life research, specimen imaging projects and Africa. Step 2: discovery, naming and description • Skeletal atlases for representative catfishes Web Project. communication of results via print and web- of new species: ongoing with over 350 new and is made available via the Catfish Bones based publications. • 45 living species in one family (Ictaluridae) species described since the start of the proj- website: http://catfishbone.acnatsci.org/. • ACSI expertise provides accurate informa- endemic to North America. ect. tion and materials for public exhibits such as Amazon Voyage developed by the Miami • Special issues in two scientific journals: Step 3: organization of all species into hierar- Musuem of Science. Such cooperative work Neotropical Ichthyology (in 2005 & 2008, chical groups (i.e., genera, families) based on • Taxonomy is the global language for com- elevates the profiles and productivity of many † published by the Sociedade Brasileira de † evolutionary relationships: DNA sequences municating information about biodiversity NSF projects, such as those shown below. Ictiologia) and the Proceedings of the Acad- compiled and analyzed for over 130 species † emy of Natural Sciences of Philadelphia Catalog of Fishes † representative of all major catfish lineages. • ACSI has contributed knowledge and exper- (2008). Creating such outlets regularly stim- research.calacademy.org/research/ichthyology/Catalog The relationships proposed by this new and tise to an effort by World Wildlife Fund and W. Eschmeyer et al. ulates the completion of ongoing studies. • Support and training for over 20 undergradu- comprehensive molecular data set provide ates, 12 graduate students and 4 postdocs at The Nature Conservancy to newly identify California Academy of Sciences new insights on the evolution of catfishes that and characterize the Earth’s freshwater eco- Helogenes mar US institutions. Tree of Life 100/57 Cetopsis coe 100,100 100/170 Cetopsidae 100,100 Cetopsis can + DOR ASP systems. Pterobunocephalus sp are being compared to traditional hypotheses 100/103 Hoplomyzon sex 100,100 100/139 Aspredinidae Web Project 100,100 Micromyzon aka 88/12 Centromochlus hec 100,100 100/22 Ageneiosus uca DOR www.tolweb.org/tree 100,100 99/16 Auchenipteridae based on morphological data. 100/26 100,100 Parauchenipterus gal • Training in the field and lab to dozens of stu- 100,100 Acanthodoras cat Global distribution 71/4 Anduzedoras oxy 79,88 100/69 Doradidae D. Maddison et al. 100,100 Leptodoras lin CLA CLA • Covering virtually all freshwater habitats, Heteropneustes fos 100/58 Heteropneustidae 100/49 Clarias bat dents abroad. Nematogenys ine 100,100 Clarias gab of catfishes ( fossils) Nematogenyidae 100,100 100/12 Clariidae University of Arizona † Trichomycterus gui 100,100 Heterobranchus lon 100/53 Gogo arc LORICARIOIDEI Anchariidae the Ecoregion Map, together with associated 100,100 Bullockia mal 100/38 Galeichthys per ARI 100/89 Trichomycteridae 100,100 100/25 Bagre mar 100,100 Henonemus pun 100/21 98/14 100/58 100,100 Sciades fel Ariidae 100,100 62/1 Cephalocassis bor 100,100 100,100 Ochmacanthus alt 59,62 100/16 species data, is an invaluable tool for under- Cypriniformes Tree of Life † 100,100 Ketengus sp Callichthys cal 100/76 100/18 Horabagrus bra • Museum exhibits at The Academy of Natural bio.slu.edu/mayden/cypriniformes/home.html 100,100 Corydoras tri Callichthyidae 100,100 Pseudeutropius bra Horabagridae 100/22 Olyra lon 55/3 Scoloplax dis 98,100 Batasio tig pinning global and regional conservation plan- 75,100 Scoloplacidae 89/7 100/78 Bagrichthys mac Astroblepus sp1 72,100 Sciences (ANSP) & National Mississippi River R. Mayden et al. 99/17 100/158 Leiocassis poe Global distribution ACSI participants & correspondents 100,100 Bagridae ASIA BIG 100/26 100/24 100,100 100,100 Astroblepus sp2 Astroblepidae Heterobagrus boc 100,100 100,100 100/47 68/1 Bagrus doc Liposarcus mul 100,100 99/10 ning efforts, for serving as a logical framework 61,90 100,100 Hemibagrus wyc St. Louis University 100/54 100/51 Loricaria sim 100/65 Ailia coi Museum & Aquarium. 100,100 Laides hex 100,100 100/34 Loricariidae 100,100 Lamontichthys sti 65/4 Acrochordonichthys rug DeepFin Project 100,100 98/11 --,-- Akysis sp Akysidae for large-scale conservation strategies. 97,100 Farlowella nat 100/47 100/41 Amblyceps sp SIS 100,100 100,100 Amblycipitidae www.deepfin.org 55/2 59/1 Bagarius yar 55,69 100/49 89,100 Glyptothorax tri Sisoridae 100/111 Diplomystes mes Nangra vir 100,100 90/8 100,100 Diplomystidae Erethistes sp Diplomystes nah SILUROIDEI 97,100 100/86 G. Orti et al. SILUROIDEI Erethistidae 100,100 Hara sp • Workshops in Brazil, Singapore and South Rita rit 100/18 Plotosus lin 100/109 100,100 100/27 Neosilurus ate Plotosidae University of Nebraska 100,100 Porochilus ren 100/73 100,100 Chaca cha Africa. 100/130 100,100 100/73 100,100 Chaca sp Chacidae 100,100 Wallago sp 100/89 Pterocryptis ano 100,100 99/15 Hemisilurus moo 99,100 100/52 Micronema apo Siluridae Morphobank Project 83/4 100,100 Kryptopterus min ACSI’s Principal Investigators are Drs. 80,96 2008 Publication in BioScience Batrochoglanis ran 100/55 100/20 Pseudopimelodus buf Pseudopimelodidae ACSI explores new waters 100,100 Pseudopimelodus man www.morphobank.org 96/8 • Classes, talks, tours, tutorial videos and oth- N. America S. America Eurasia Africa Madagascar Marine 100,100 100,100 Phractocephalus hem 100/60 Hypophthalmus ede 100/13 PIM 99/11 100,100 Pimelodidae 100,100 Pimelodus orn M. O’Leary & S. Kaufman Lawrence Page 100,100 Conorhynchos con er public programs in collaboration with the Goeldiella equ 97/10 81/4 100/49 Pimelodella cri 100,100 80,98 Rhamdia sp Stony Brook University 100/81 100,100 100,100 Imparfinis st1 Heptapteridae Phylogeny or “tree” of catfishes based on 100/23 Imparfinis st2 ANSP Education Department • 51 field projects in 22 countries including 96/10 Carl Ferraris, Jr. 100,100 98,100 Imparfinis coc 100/35 Pangasianodon hyp Helicophagus waa 100,100 99/10 Pangasiidae DigiMorph DNA sequence data compiled by ACSI 100,100 Pangasius lar University of Florida major ACSI expeditions to Argentina, Brazil, 100/53 Atopochilus sav 99/15 100,100 Euchilichthys dyb Kyle Luckenbill Haploporid Monographs www.digimorph.org 100,100 100/44 Synodontis bat Mochokidae postdoc John Sullivan and collaborators. 99/11 100,100 Microsynodontis sp Cameroon, Central African Republic, Guyana, 99,100 100/82 Malapterurus ben Malapteruridae AFRICA BIG R. Overstreet et al. T. Rowe et al. 59/2 100,100 Malapterurus tan Zaireichthys sp teaching at ANSP Jonathan Armbruster --,-- 100/77 Amphilius jac 100,100 100/14 96/9 100,100 100/37 Belonoglanis ten Amphiliidae University of University of Texas Indonesia, Mexico, Mongolia, Papua New 99,100 100,100 Phractura lon 100/68 Auchenoglanis occ Auburn University 100/18 Anaspidoglanis mac 100,100 Auchenoglaninae 100,100 Parauchenoglanis bal Southern Mississippi At Austin 97/10 Guinea, Republic of Congo, Suriname, Tan- 93/8 Paralia sp 99,100 96,100 100/39 Pareutropius deb Schilbidae 67/3 100,100 Schilbe int 50,56 100/9 Chrysichthys sp John Friel 100/93 100,100 Rheoglanis den zania, Thailand, Venezuela and Zambia.
Recommended publications
  • Family-Bagridae-Overview-PDF.Pdf
    FAMILY Bagridae Bleeker, 1858 - naked catfishes, bagrid catfishes [=Bagri, Bagrichthyoidei, Ritae, Bagrichthyes, Porcinae, Mystidae, Mystini, Bagroidinae, Pelteobagrini, Batasinae] GENUS Bagrichthys Bleeker, 1857 - bagrid catfishes [=Pseudobagrichthys] Species Bagrichthys hypselopterus (Bleeker, 1852) - blacklancer catfish Species Bagrichthys macracanthus (Bleeker, 1854) - Lamatang blacklancer catfish Species Bagrichthys macropterus (Bleeker, 1854) - false blacklancer Species Bagrichthys majusculus Ng, 2002 - Mun blacklancer Species Bagrichthys micranodus Roberts, 1989 - Kapuas blacklancer Species Bagrichthys obscurus Ng, 1999 - obscure blacklancer Species Bagrichthys vaillantii (Popta, 1906) - Vaillant's blacklancer [=macropterus] GENUS Bagroides Bleeker, 1851 - bagrid catfishes Species Bagroides melapterus Bleeker, 1851 - Bornean bagroides [=melanopterus] GENUS Bagrus Bosc, 1816 - bagrid catfishes Species Bagrus bajad (Forsskal, 1775) - bayad [=macropterus] Species Bagrus caeruleus Roberts & Stewart, 1976 - Lower Congo bagrus Species Bagrus degeni Boulenger, 1906 - Victoria bagrus Species Bagrus docmak (Forsskal, 1775) - semutundu [=koenigi, niger] Species Bagrus filamentosus Pellegrin, 1924 - Niger bagrus Species Bagrus lubosicus Lonnberg, 1924 - Lubosi bagrus Species Bagrus meridionalis Gunther, 1894 - kampango, kampoyo Species Bagrus orientalis Boulenger, 1902 - Pangani bagrus Species Bagrus tucumanus Burmeister, 1861- Tucuman bagrus Species Bagrus ubangensis Boulenger, 1902 - Ubangi bagrus Species Bagrus urostigma Vinciguerra, 1895
    [Show full text]
  • Amazon Alive: a Decade of Discoveries 1999-2009
    Amazon Alive! A decade of discovery 1999-2009 The Amazon is the planet’s largest rainforest and river basin. It supports countless thousands of species, as well as 30 million people. © Brent Stirton / Getty Images / WWF-UK © Brent Stirton / Getty Images The Amazon is the largest rainforest on Earth. It’s famed for its unrivalled biological diversity, with wildlife that includes jaguars, river dolphins, manatees, giant otters, capybaras, harpy eagles, anacondas and piranhas. The many unique habitats in this globally significant region conceal a wealth of hidden species, which scientists continue to discover at an incredible rate. Between 1999 and 2009, at least 1,200 new species of plants and vertebrates have been discovered in the Amazon biome (see page 6 for a map showing the extent of the region that this spans). The new species include 637 plants, 257 fish, 216 amphibians, 55 reptiles, 16 birds and 39 mammals. In addition, thousands of new invertebrate species have been uncovered. Owing to the sheer number of the latter, these are not covered in detail by this report. This report has tried to be comprehensive in its listing of new plants and vertebrates described from the Amazon biome in the last decade. But for the largest groups of life on Earth, such as invertebrates, such lists do not exist – so the number of new species presented here is no doubt an underestimate. Cover image: Ranitomeya benedicta, new poison frog species © Evan Twomey amazon alive! i a decade of discovery 1999-2009 1 Ahmed Djoghlaf, Executive Secretary, Foreword Convention on Biological Diversity The vital importance of the Amazon rainforest is very basic work on the natural history of the well known.
    [Show full text]
  • Schistura Udomritthiruji, a New Loach from Southern Thailand (Cypriniformes: Nemacheilidae)
    319 Ichthyol. Explor. Freshwaters, Vol. 20, No. 4, pp. 319-324, 5 figs., 1 tab., December 2009 © 2009 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Schistura udomritthiruji, a new loach from southern Thailand (Cypriniformes: Nemacheilidae) Jörg Bohlen* and Vendula Šlechtová* Schistura udomritthiruji, new species, is described from streams draining to the Andaman Sea in southern Thailand between Takua Pa and Ranong. It is distinguished from congeners by the following characters: dark bars on the body much thinner in the anterior half of the body than in the posterior half; 9+8 branched rays in the caudal fin; males with suborbital flap; lateral line ends above base of anal fin; caudal fin hyaline and dark bars on posterior half of body more than twice as wide as interspaces. Introduction Material and methods The genus Schistura is the largest genus within The specimens were either fixed in 4 % formal- the family Nemacheilidae, containing at present dehyde and later transferred into 70 % ethanol about 190 nominal species. They are typically for storage (ZRC 51724, ZRC 51725) or fixed and found amongst stones in moderately to fast flow- stored in 96 % pure ethanol (IAPG A2546-2552, ing streams and rivers in foothill to mountainous A2455-2459, A1129-1131, A1780, CMK 21704, habitats. The distribution area of the genus CMK 21705). All measurements and counts follow stretches from the Near East through the Indian Kottelat (1990). Measurements were made point- subcontinent until Vietnam and southern China to-point with dial callipers to the nearest 0.1 mm. (Bânârescu, 1991). Except S. maculiceps from the Drawings were done using a camera lucida on Kapuas basin on Borneo, the southern margin of an Olympus SZX7 stereomicroscope.
    [Show full text]
  • The Journal of the Catfish Study Group (UK)
    The Journal of the Catfish Study Group (UK) Planet's srnallest ~· tiSh · Js found! ,,. \nto wa\\ets · n\tor f\sh 5 "'n students turn la Microg/anis v. anegatus E· Jgenmann & H enn Volume 7 Issue Number 1 March 2006 CONTENTS 1 Committee 2 From The Chair 3 Louis Agassiz (1807- 1873) by A w Taylor. 4 Planet's smallest fish is found! 5 Breeding Scleromystax prionotus by A w Taylor 6 Meet Stuart Brown the Membership Secretary 7 Students turn janitor fish skin into wallets 7 Meet the Member 9 'What's New' March 2006 by Mark Waiters 1 0 Microglanis variegatus by Steven Grant 13 lt Seemed Mostly Normal To Me by Lee Finley 17 Map of new meeting venue - Darwen The Committee and I apologise for the late delivery of this journal but due to the lack of articles, there would have only been the advertisements to send to you. Without your information, photos or articles, there is no Cat Chat. Thank you to those of you who did contribute. Articles for publication in Cat Chat should be sent to: Bill Hurst 18 Three Pools Crossens South port PR98RA England Or bye-mail to: [email protected] with the subject Cat Chat so that I don't treat it as spam mail and delete it without opening it. car cttar March 2006 Vol 7 No 1 HONORARY COMMITTEE FOR THE CAJf,IJSIJ SlffiJIIF CltOfiJ, ffiJ•I 2005 PRESIDENT FUNCTIONS MANAGER Trevor (JT) Morris Trevor Morris trevorjtcat@aol. eo m VICE PRESIDENT Or Peter Burgess SOCIAL SECRETARY [email protected] Terry Ward [email protected] CHAIRMAN lan Fuller WEB SITE MANAGER [email protected] [email protected] VICE CHAIRMAN/TREASURER COMMITIEE MEMBER Danny Blundell Peter Liptrot [email protected] [email protected] SECRETARY SOUTHERN REP Adrian Taylor Steve Pritchard [email protected] S.
    [Show full text]
  • AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER
    AN ECOLOGICAL AND SYSTEMATIC SURVEY OF FISHES IN THE RAPIDS OF THE LOWER ZA.fRE OR CONGO RIVER TYSON R. ROBERTS1 and DONALD J. STEWART2 CONTENTS the rapids habitats, and the adaptations and mode of reproduction of the fishes discussed. Abstract ______________ ----------------------------------------------- 239 Nineteen new species are described from the Acknowledgments ----------------------------------- 240 Lower Zaire rapids, belonging to the genera Introduction _______________________________________________ 240 Mormyrus, Alestes, Labeo, Bagrus, Chrysichthys, Limnology ---------------------------------------------------------- 242 Notoglanidium, Gymnallabes, Chiloglanis, Lampro­ Collecting Methods and Localities __________________ 244 logus, Nanochromis, Steatocranus, Teleogramma, Tabulation of species ---------------------------------------- 249 and Mastacembelus, most of them with obvious Systematics -------------------------------------------------------- 249 modifications for life in the rapids. Caecomasta­ Campylomormyrus _______________ 255 cembelus is placed in the synonymy of Mastacem­ M ormyrus ____ --------------------------------- _______________ 268 belus, and morphologically intermediate hybrids Alestes __________________ _________________ 270 reported between blind, depigmented Mastacem­ Bryconaethiops -------------------------------------------- 271 belus brichardi and normally eyed, darkly pig­ Labeo ---------------------------------------------------- _______ 274 mented M astacembelus brachyrhinus. The genera Bagrus
    [Show full text]
  • Zootaxa, Akysis Longifilis, a New Species of Catfish (Teleostei
    Zootaxa 1150: 19–30 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1150 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Akysis longifilis, a new species of catfish (Teleostei: Akysidae) from Myanmar HEOK HEE NG Fish Division, Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan 48109- 1079, USA. E-mail: [email protected] Abstract Akysis longifilis, new species, is described from the Sittang River drainage in Myanmar. It is a member of the A. variegatus species group and can be distinguished from congeners in the group (except for A. brachybarbatus, A. fuliginatus, A. pictus, A. prashadi, A. variegatus, A. varius and A. vespa) in having a smooth (vs. serrated) posterior edge of the pectoral spine. It is distinguished from A. brachybarbatus, A. fuliginatus, A. pictus, A. prashadi, A. variegatus, A. varius and A. vespa in having a unique combination of: length of adipose-fin base 25.7–31.1% SL, body depth at anus 9.7–13.6% SL, caudal peduncle length 18.3–23.2% SL, caudal peduncle depth 5.6–7.2% SL, head width 21.1–24.7% SL, nasal barbel length 67.4–96.4% HL, maxillary barbel length 123.2–159.6% HL, vertebrae 33–35, body with light saddle-shaped spots, and caudal fin forked. Key words: Siluriformes, Sisoroidea, Sittang River, South Asia Introduction Members of the akysid catfish genus Akysis are small catfishes with tuberculate skin and a color pattern generally consisting of yellow patches or bands on a brown body. They are diagnosed by the anterior margin of the pectoral spine with a notch visible dorsally and the nasals with expansions beyond the canal-bearing region (de Pinna, 1996), and are found in fast-flowing streams and rivers in Southeast Asia [more specifically in the area bordered by the Irrawaddy River drainage to the west, the Barito River drainage to the east, the Lancanjiang (upper Mekong) drainage to the north and the Citarum River drainage to the south].
    [Show full text]
  • Sequence Analyses of the 16S Rrna of Epigean and Hypogean Diplurans in the Jumandi Cave Area, Ecuador
    Espinasa, Christoforides & Morfessis Sequence analyses of the 16S rRNA of epigean and hypogean diplurans in the Jumandi Cave area, Ecuador Luis Espinasa1,2, Sara Christoforides1 & Stella E. Morfessis1 1 School of Science, Marist College, 3399 North Rd, Poughkeepsie, New York 12601, USA 2 [email protected] (corresponding author) Key Words: Diplura, Jumandi Cave, Ecuador, troglophile, troglobite, Arthropoda, Insecta, surface, cave, depigmentation, eyeless, Nicoletiidae. One of the most visited caves in Ecuador is Jumandi Cave (0o 52.5028’ S, 77o 47.5587’ W). Jumandi Cave is 660 meters above sea level, 4 kilometers north of the village of Archidona, and 14 km north of the town of Tena in the Napo Province (Peck 1985). The cave is a single stream passage with side corridors. For a full description of the cave and a map see Peck (1985). Temperature inside the cave is 22 °C (Peck 1985). Bats and bat guano is scarce throughout the cave. A stream takes up most of the cave floor and brings in considerable plant debris that may be the food source for the aquatic invertebrate and vertebrate community. The most distinguished inhabitant of this cave is the endemic cave-adapted catfish, Astroblepus pholeter (Collette, 1962) (Collette 1962; Haspel et al. 2012). Stewart Peck, professor and entomologist at the University of Carleton, visited Jumandi Cave in 1984 and conducted a bioinventory. He reported the presence of 22 species of invertebrates as well as the Astroblepus catfish (Peck 1985). According to Peck, 19 species of the invertebrates were troglophiles and three were trogloxenes. The only reported troglobiont was Astroblepus pholeter (Peck 1985).
    [Show full text]
  • Multilocus Molecular Phylogeny of the Suckermouth Armored Catfishes
    Molecular Phylogenetics and Evolution xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae ⇑ Nathan K. Lujan a,b, , Jonathan W. Armbruster c, Nathan R. Lovejoy d, Hernán López-Fernández a,b a Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada b Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada c Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA d Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada article info abstract Article history: The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with Received 4 July 2014 over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and eco- Revised 15 August 2014 morphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reap- Accepted 20 August 2014 praisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two Available online xxxx mitochondrial and three nuclear loci (4293 bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based Keywords: on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe- Neotropics level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the ‘Pseudancistrus’ Guiana Shield Andes Mountains Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade.
    [Show full text]
  • Amazon Alive!
    Amazon Alive! A decade of discovery 1999-2009 The Amazon is the planet’s largest rainforest and river basin. It supports countless thousands of species, as well as 30 million people. © Brent Stirton / Getty Images / WWF-UK © Brent Stirton / Getty Images The Amazon is the largest rainforest on Earth. It’s famed for its unrivalled biological diversity, with wildlife that includes jaguars, river dolphins, manatees, giant otters, capybaras, harpy eagles, anacondas and piranhas. The many unique habitats in this globally significant region conceal a wealth of hidden species, which scientists continue to discover at an incredible rate. Between 1999 and 2009, at least 1,200 new species of plants and vertebrates have been discovered in the Amazon biome (see page 6 for a map showing the extent of the region that this spans). The new species include 637 plants, 257 fish, 216 amphibians, 55 reptiles, 16 birds and 39 mammals. In addition, thousands of new invertebrate species have been uncovered. Owing to the sheer number of the latter, these are not covered in detail by this report. This report has tried to be comprehensive in its listing of new plants and vertebrates described from the Amazon biome in the last decade. But for the largest groups of life on Earth, such as invertebrates, such lists do not exist – so the number of new species presented here is no doubt an underestimate. Cover image: Ranitomeya benedicta, new poison frog species © Evan Twomey amazon alive! i a decade of discovery 1999-2009 1 Ahmed Djoghlaf, Executive Secretary, Foreword Convention on Biological Diversity The vital importance of the Amazon rainforest is very basic work on the natural history of the well known.
    [Show full text]
  • A Guide to the Parasites of African Freshwater Fishes
    A Guide to the Parasites of African Freshwater Fishes Edited by T. Scholz, M.P.M. Vanhove, N. Smit, Z. Jayasundera & M. Gelnar Volume 18 (2018) Chapter 2.1. FISH DIVERSITY AND ECOLOGY Martin REICHARD Diversity of fshes in Africa Fishes are the most taxonomically diverse group of vertebrates and Africa shares a large portion of this diversity. This is due to its rich geological history – being a part of Gondwana, it shares taxa with the Neotropical region, whereas recent close geographical affnity to Eurasia permitted faunal exchange with European and Asian taxa. At the same time, relative isolation and the complex climatic and geological history of Africa enabled major diversifcation within the continent. The taxonomic diversity of African freshwater fshes is associated with functional and ecological diversity. While freshwater habitats form a tiny fraction of the total surface of aquatic habitats compared with the marine environment, most teleost fsh diversity occurs in fresh waters. There are over 3,200 freshwater fsh species in Africa and it is likely several hundreds of species remain undescribed (Snoeks et al. 2011). This high diversity and endemism is likely mirrored in diversity and endemism of their parasites. African fsh diversity includes an ancient group of air-breathing lungfshes (Protopterus spp.). Other taxa are capable of breathing air and tolerate poor water quality, including several clariid catfshes (e.g., Clarias spp.; Fig. 2.1.1D) and anabantids (Ctenopoma spp.). Africa is also home to several bichir species (Polypterus spp.; Fig. 2.1.1A), an ancient fsh group endemic to Africa, and bonytongue Heterotis niloticus (Cuvier, 1829) (Osteoglossidae), a basal actinopterygian fsh.
    [Show full text]
  • A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)
    Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha. Keywords: Biogeography, Osteoglossidae, Paleontology, Phylogeny, Taxonomy. Os peixes da Superordem Osteoglossomorpha têm sido foco de inúmeros estudos sobre a morfologia, sistemática e evo- lução, particularmente devido à sua posição basal dentre os peixes teleósteos.
    [Show full text]
  • Dahunsi Ebook.Pdf
    ! " # $% ! "# $"#%&'() (*(+& , ! - . ! ! & - - / ! / , / 0 1 2 3 ! 2 1 1 & ' !" # !" # $ %$ ! " # $ !% ! & $ ' ' ($ ' # % % ) %* %' $ ' + " % & ' ! # $, ( $ - . ! "- ( % . % % % % $ $ $ - - - - // $$$ 0 1"1"#23." "0" )*4/ +) * !5 !& 6!7%66898& % ) - 2 : ! * & $&'()*+,+*-./+,*/0+- ; "-< %/ = -%> -%9?8@ /- A9?8@"0" )*4/ +) "3 " & 9?8@ DEDICATION To the one who brought me joy, happiness, fulfillment and makes me feel being a real man, Beulah Oluwagbemisola. 1 AKNOWLEDGEMENT I sincerely appreciate God the giver of life, by whose power and will I have achieved this feat. May all glory and honour be to His name forever. I want to use this medium to appreciate my biological father; Pastor Stephen Olaolu Olawuyi Dahunsi for his tremendous contribution to my life and academic pursuit up till this extent. He has and is still labouring so incensantly both
    [Show full text]