MENISPERMACEAE 防己科 Fang Ji Ke Luo Xianrui (罗献瑞 Lo Hsien-Shui)1, Chen Tao (陈涛)2; Michael G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Communities of Michigan: Classification and Description
Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council. -
Pharmacology of Sinomenine, an Anti-Rheumatic Alkaloid from Sinomenium Acutum
Acta Medica Okayama Volume 30, Issue 1 1976 Article 1 FEBRUARY 1976 Pharmacology of sinomenine, an anti-rheumatic alkaloid from Sinomenium acutum Hidemasa Yamasaki∗ ∗Okayama University, Copyright c 1999 OKAYAMA UNIVERSITY MEDICAL SCHOOL. All rights reserved. Pharmacology of sinomenine, an anti-rheumatic alkaloid from Sinomenium acutum∗ Hidemasa Yamasaki Abstract The root and stem decoctions of Sinomenium acutum Rehd. et Wils. (formerly Sinomenium diversifolius Diels, one type of Fang-chi (Chinese)) have been used as a folk remedy for neuralgia and rheumatoid arthritis in many areas of the Far East. In Japan and China various viny plants have been identified as Fang-chi (Boi in Japanese) since antiquity. This uncertain nomenclature has made it difficult to evaluate the efficacy of the Fang-chi described in the classic literature. Among traditional Fang-chi plants only Sinomeniumacutum has been demonstrated to contain the alkaloid sinomenine, which is now known to be effective in neuralgia and rheumatic diseases. Sinomenine is a unique plant alkaloid, as it potently releases histamine in association with degran- ulation of tissue mast cells in mammalian tissues. This action occurs preferentially in the skin and joint capsules. The released histamine is responsible for the dominant pharmacological actions of sinomenine, such as vasodilatation, increased vascular permeability, acceleration of the thoracic and peripheral lymph flow, contraction of plain muscles, increased peristalsis of the intestines, and stimulation of gastric acid secretion. At toxic doses of sinomenine, convulsive central excita- tion was observed in most laboratory animals. Clinical side effects encountered with high doses of injected sinomenine or of decocted Sinomenium acutum were: injection site flare, pruritus in the head and upper part of the body, edema around the lips and eyelids, and temporary cephalal- gia. -
Cocculus Laurifolius: a Rich Antimicrobial, Antioxidant and Phytochemical Source
Pak. J. Bot., 49(1): 337-344, 2017. COCCULUS LAURIFOLIUS: A RICH ANTIMICROBIAL, ANTIOXIDANT AND PHYTOCHEMICAL SOURCE MUHAMMAD AJAIB1*, ZUBARIA ASHRAF2 AND MUHAMMAD FAHEEM SIDDIQUI3 1Department of Botany (Bhimber Campus), Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan 2Department of Botany, GC University, Katchery Road, 54000, Lahore, Pakistan 3Department of Botany, University of Karachi, Karachi 75270, Pakistan *Corresponding author’s email: [email protected]; [email protected] Abstract The study was carried out to investigate the antimicrobial, antioxidant potential and the qualitative and quantitative phytochemical analysis of the bark and leaf of Cocculus laurifolius DC. by using polar and non-polar solvents, i.e. Petroleum ether, Chloroform, Methanol and distilled water. Chloroform bark extracts showed maximum % yield. Antimicrobial activity was determined by using 4 bacterial strains (2 gram-negative and 2 gram- positive) and 2 fungal strains. Leaf and bark extracts of C. laurifolius showed significant to average results against bacterial and fungal strain. Bark extracts of chloroform and methanol revealed a maximum zone of inhibition against S. aureus in agar-well diffusion method with values of 37±3.1mm and 37±2.2mm respectively and bark extract of methanol exhibited MIC value with 0.06±0.01 (at 0.9 mg/L) against E. coli. In antifungal activity, all extracts showed average results against fungal strains. Maximum result exhibited by bark extract of methanol with values 29±1.4 and 0.70±0.01 (at 1 mg/L) against F. solani in zone of inhibition and MIC analysis. Significant DPPH free radical scavenging activity of chloroform extracts of bark i.e. -
The Phytochemistry of Cherokee Aromatic Medicinal Plants
medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs. -
Semester Course Hours Cred It Subject CODE Marks III CC9 6 5 18KP3BO9 25+75=100
Semester Course Hours Cred Subject Marks it CODE III CC9 6 5 18KP3BO9 25+75=100 PLANT SYSTEMATICS AND ECONOMIC BOTANY UNIT II : Taxonomical studies of selected families and their economic importance and medicinal uses. Polypetalae : Menispermaceae, Carryophyllaceae, Portulacaceae, Rhamnaceae, Sapindaceae, Anacardiaceae, Combretaceae, Myrtaceae, Umbelliferae. UNIT IV : Taxonomical studies of selectd families and their economic importance and medicinal uses. Monochylamydeae: Chenopodiaceae, Aristolociaceae, Lorantheceae, Orchidaceae. Monocotyledons: Amarylidaceae, Commelineceae, Arecaceae and Cyperaceae UNIT V: Economic Botany: Cereals(Wheat,Maize), Pulses(Red Gram,Black gram),Vegetable oil(groundnut and oil palm), fibers(gossypium and corchorus),Nuts(cashew,walnut),Spices(pepper,clove), Wood(teak,pine) REFERENCES 1.Lawrence, G.H.M., 1955, The taxonomy of Vascular Plants, Central Book Ddepot, Mac Millan, New York. 2. Vashista, P.C., 1990, Taxonomy of angiosperms- S.Chand & co, New Delhi. 3.B.P.Pandey and Anitha., 1990, Economic Botany, S.Chand & Co, New Delhi 4.Sharma O.P., 2000, Economic Botany, Tata Mc Graw Hill Publications, New Delhi. Prepared by UNIT II : Dr.G.Subasri, Asst. Professor, Dept. of Botany, KNGAC, Thanjavur. UNIT IV & V: Dr.G.Santhi, Asst. Professor, Dept. of Botany, KNGAC, Thanjavur. UNIT II Menispermaceae: Distribution of Menispermaceae: It is commonly known as Moonseed family, includes 70 genera and 400 species, distributed largely throughout paleotropic regions and a few genera extend into the eastern Mediterranean region and eastern Asia Characters of Menispermaceae: Mostly woody vines – lianas, dioecious; flowers trimerous, unisexual; double whorls of sepals and petals; curved seed. Habit: Mostly twining, woody vines (lianas), rarely erect shrubs or small trees. Root – Tap and branched. -
Tempo-Spatial Pattern of Stepharine Accumulation in Stephania Glabra Morphogenic Tissues
International Journal of Molecular Sciences Article Tempo-Spatial Pattern of Stepharine Accumulation in Stephania Glabra Morphogenic Tissues Tatiana Y. Gorpenchenko 1,* , Valeria P. Grigorchuk 1, Dmitry V. Bulgakov 1, Galina K. Tchernoded 1 and Victor P. Bulgakov 1,2,* 1 Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia; [email protected] (V.P.G.); [email protected] (D.V.B.); [email protected] (G.K.T.) 2 Far Eastern Federal University, School of Biomedicine, 8 Sukhanova Str., 690950 Vladivostok, Russia * Correspondence: [email protected] (T.Y.G.); [email protected] (V.P.B.); Tel.: +7-423-231-0193 (T.Y.G.) Received: 25 December 2018; Accepted: 6 February 2019; Published: 13 February 2019 Abstract: Alkaloids attract great attention due to their valuable therapeutic properties. Stepharine, an aporphine alkaloid of Stephania glabra plants, exhibits anti-aging, anti-hypertensive, and anti-viral effects. The distribution of aporphine alkaloids in cell cultures, as well as whole plants is unknown, which hampers the development of bioengineering strategies toward enhancing their production. The spatial distribution of stepharine in cell culture models, plantlets, and mature micropropagated plants was investigated at the cellular and organ levels. Stepharine biosynthesis was found to be highly spatially and temporally regulated during plant development. We proposed that self-intoxication is the most likely reason for the failure of the induction of alkaloid biosynthesis in cell cultures. During somatic embryo development, the toxic load of alkaloids inside the cells increased. -
Lepidoptera, Tortricidae) from Mt
Accepted Manuscript Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China Kyu-Tek Park, Bong-Woo Lee, Yang-Seop Bae, Hui-Lin Han, Bong-Kyu Byun PII: S2287-884X(14)00025-9 DOI: 10.1016/j.japb.2014.04.007 Reference: JAPB 19 To appear in: Journal of Asia-Pacific Biodiversity Received Date: 28 February 2014 Revised Date: 13 March 2014 Accepted Date: 4 April 2014 Please cite this article as: Park K-T, Lee B-W, Bae Y-S, Han H-L, Byun B-K, Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China, Journal of Asia-Pacific Biodiversity (2014), doi: 10.1016/ j.japb.2014.04.007. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT J. of Asia-Pacific Biodiversity Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China Kyu-Tek Park a, Bong-Woo Lee b, Yang-Seop Bae c, Hui-Lin Han d, Bong-Kyu Byun e* a The Korean Academy of Science and Technology, Seongnam, 463-808, Korea b Division of Forest Biodiversity, Korea National Arboretum, Sumokwokgil, Pocheon, 487-821, Korea c Division of Life Sciences, University of Incheon, 12-1 Songdo-dong, Yeonsu-gu, Incheon, 406-772, Korea dSchool of Forestry, Northeast Forestry University, Harbin, 150040, P.R. -
New Records and Rediscoveries of Plants in Singapore
Gardens' Bulletin Singapore 70 (1): 67–90. 2018 67 doi: 10.26492/gbs70(1).2018-08 New records and rediscoveries of plants in Singapore R.C.J. Lim1, S. Lindsay1, D.J. Middleton2, B.C. Ho2, P.K.F. Leong2, M.A. Niissalo2, P.C. van Welzen3, H.-J. Esser4, S.K. Ganesan2, H.K. Lua5, D.M. Johnson6, N.A. Murray6, J. Leong-Škorničková2, D.C. Thomas2 & Ali Ibrahim2 1Native Plant Centre, Horticulture and Community Gardening Division, National Parks Board, 100K Pasir Panjang Road, 118526, Singapore [email protected] 2Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore 3Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden 4Botanische Staatssammlung München, Menzinger Straße 67, München D-80638, Germany 5National Biodiversity Centre, National Parks Board, 1 Cluny Road, 259569, Singapore 6Department of Botany & Microbiology, Ohio Wesleyan University, Delaware, OH 43015, U.S.A. ABSTRACT. The city-state of Singapore continues to provide many new records and rediscoveries of plant species in its nature reserves, offshore islands and secondary forests. Eleven new records for Singapore and eight rediscoveries of species previously presumed nationally extinct are reported here along with national conservation assessments. The new records are Albertisia crassa Forman, Arcangelisia flava (L.) Merr., Chaetocarpus castanocarpus (Roxb.) Thwaites, Dendrokingstonia nervosa (Hook.f. & Thomson) Rauschert, Dipterocarpus chartaceus Symington, Haplopteris sessilifrons (Miyam. & H.Ohba) S.Linds., Hewittia malabarica (L.) Suresh, Phyllanthus reticulatus Poir., Spermacoce parviceps (Ridl.) I.M.Turner, Sphaeropteris trichodesma (Scort.) R.M.Tryon and Uvaria micrantha (A.DC.) Hook.f. & Thomson. The rediscoveries are Callerya dasyphylla (Miq.) Schot, Cocculus orbiculatus (L.) DC., Lecananthus erubescens Jack, Loeseneriella macrantha (Korth.) A.C.Sm., Mapania squamata (Kurz) C.B.Clarke, Plagiostachys lateralis (Ridl.) Ridl., Scolopia macrophylla (Wight & Arn.) Clos and Spatholobus maingayi Prain ex King. -
2012 PSNA Meeting London, ONT, Canada
Phytochemical Society of North America Société Phytochimique de L’Amérique du Nord Sociedad Fitoquímica de América del Norte HO O O O st O N CH3 51 Annual Meeting H O HO of the O Phytochemical Society of North America August 11-15, 2012 The University of Western Ontario London, ON, Canada Program & Abstracts 51st Annual Meeting of the Phytochemical Society of North America August 11-15, 2012 Welcome to London Ontario, Western University and PSNA 2012! We are excited about the great line up of invited speakers we have assembled for the 51st Annual Meeting of the Phytochemical Society of North America. Five symposia that largely define the field of Phytochemistry have been organized, with each one led by presentations from internationally recognized leaders. These include symposia on Biosynthesis & Metabolism, with featured talks on vitamin C by Argelia Lorence, and enzyme specificity by Kevin Walker, Genomics & Bioinformatics, with featured talks on quantitative genomics by Daniel Klibenstein and metabolic diversity by Anne Osbourn, Botanicals & Medicinals, with featured talks on phytochemical complexity by Paula Brown and metabolic syndrome by Ilya Raskin, and Phytochemicals in the interaction between plansts and their environment, with featured talks on below ground terpene metabolism by Dorothea Tholl and steroidal glycoalkaloids by Jim Tokuhisa. A fifth symposium, Bioproducts From Canadian Forests: Production of Valued Attributes, will feature talks on bioproduct research & development in Canada by Tom Rosser, medicinal plants by John Arnason, bio-oil and bio-char by Franco Berruti, enzyme conversion of forest products into high value polymers by Emma Master and conifer triterpenes by Philipp Zerbe. -
Aristolochic Acid-Induced Nephrotoxicity: Molecular Mechanisms and Potential Protective Approaches
International Journal of Molecular Sciences Review Aristolochic Acid-Induced Nephrotoxicity: Molecular Mechanisms and Potential Protective Approaches Etienne Empweb Anger, Feng Yu and Ji Li * Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; [email protected] (E.E.A.); [email protected] (F.Y.) * Correspondence: [email protected]; Tel.: +86-139-5188-1242 Received: 25 November 2019; Accepted: 5 February 2020; Published: 10 February 2020 Abstract: Aristolochic acid (AA) is a generic term that describes a group of structurally related compounds found in the Aristolochiaceae plants family. These plants have been used for decades to treat various diseases. However, the consumption of products derived from plants containing AA has been associated with the development of nephropathy and carcinoma, mainly the upper urothelial carcinoma (UUC). AA has been identified as the causative agent of these pathologies. Several studies on mechanisms of action of AA nephrotoxicity have been conducted, but the comprehensive mechanisms of AA-induced nephrotoxicity and carcinogenesis have not yet fully been elucidated, and therapeutic measures are therefore limited. This review aimed to summarize the molecular mechanisms underlying AA-induced nephrotoxicity with an emphasis on its enzymatic bioactivation, and to discuss some agents and their modes of action to reduce AA nephrotoxicity. By addressing these two aspects, including mechanisms of action of AA nephrotoxicity and protective approaches against the latter, and especially by covering the whole range of these protective agents, this review provides an overview on AA nephrotoxicity. It also reports new knowledge on mechanisms of AA-mediated nephrotoxicity recently published in the literature and provides suggestions for future studies. -
Exploration of Antidiabetic Activity of Stephania Japonica Leaf Extract in Alloxan-Induced Swiss Albino Diabetic Mice
Journal of Pharmaceutical Research International 26(6): 1-12, 2019; Article no.JPRI.48311 ISSN: 2456-9119 (Past name: British Journal of Pharmaceutical Research, Past ISSN: 2231-2919, NLM ID: 101631759) Exploration of Antidiabetic Activity of Stephania japonica Leaf Extract in Alloxan-Induced Swiss Albino Diabetic Mice Md. Dobirul Islam1, Syeda Farida Akter1, Md. Amirul Islam1 and Md. Salim Uddin1* 1Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh. Authors’ contributions This work was carried out in collaboration among all authors. Author MDI designed the study, performed the statistical analysis and wrote the first draft of the manuscript. Author SFA managed the literature searches and carried out the tests. Authors MAI and MSU managed the analyses of the study and reviewed the manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JPRI/2019/v26i630154 Editor(s): (1) Dr. Jongwha Chang, University of Texas, College of Pharmacy, USA. Reviewers: (1) Rajibul Islam, Gono Bishwabidyalay, Bangladesh. (2) Dr. Dennis Amaechi, Veritas University Abuja, Nigeria. Complete Peer review History: http://www.sdiarticle3.com/review-history/48311 Received 24 January 2019 Accepted 07 April 2019 Original Research Article Published 20 April 2019 ABSTRACT Aims: Presently the medicinal world is rapidly turning more on the therapeutic health benefits of natural product and medicinal plants in the management of major crucial disease and their complications. Medicinal plant, Stephania japonica has been studied for exploring antidiabetic potentiality as an alternative source of medicine against the global threat of Diabetes mellitus (DM). Methods: The extraction of S. japonica leaf was carried out by acetone and ethanol. -
Angiospermic Flora of Gafargaon Upazila of Mymensingh District Focusing on Medicinally Important Species
Bangladesh J. Plant Taxon. 26(2): 269‒283, 2019 (December) © 2019 Bangladesh Association of Plant Taxonomists ANGIOSPERMIC FLORA OF GAFARGAON UPAZILA OF MYMENSINGH DISTRICT FOCUSING ON MEDICINALLY IMPORTANT SPECIES 1 M. OLIUR RAHMAN , NUSRAT JAHAN SAYMA AND MOMTAZ BEGUM Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh Keywords: Angiosperm; Taxonomy; Vegetation analysis; Medicinal Plants; Distribution; Conservation. Abstract Gafargaon upazila has been floristically explored to identify and assess the angiospermic flora that resulted in occurrence of 203 taxa under 174 genera and 75 families. Magnoliopsida is represented by 167 taxa under 140 genera and 62 families, while Liliopsida is constituted by 36 taxa belonging to 34 genera and 13 families. Vegetation analysis shows that herbs are represented by 106 taxa, shrubs 35, trees 54, and climbers by 8 species. In Magnoliopsida, Solanaceae is the largest family possessing 10 species, whereas in Liliopsida, Poaceae is the largest family with 12 species. The study has identified 45 medicinal plants which are used for treatment of over 40 diseases including diabetes, ulcer, diarrhoea, dysentery, fever, cold and cough, menstrual problems, blood pressure and urinary disorders by the local people. Some noticeable medicinal plants used in primary healthcare are Abroma augusta (L.) L.f., Coccinia grandis (L.) Voigt., Commelina benghalensis L., Cynodon dactylon (L.) Pers., Holarrhena antidysenterica Flem., Glycosmis pentaphylla (Retz.) A. DC., Mikania cordata (Burm. f.) Robinson, Ocimum tenuiflorum L. and Rauvolfia serpentina (L.) Benth. A few number of species are also employed in cultural festivals in the study area. Cardamine flexuosa With., Oxystelma secamone (L.) Karst., Phaulopsis imbricata (Forssk.) Sweet, Piper sylvaticum Roxb., Stephania japonica (Thunb.) Miers and Trema orientalis L.