The Clay Mineralogy of the Shaly Portions of the Brassfield Limestone

Total Page:16

File Type:pdf, Size:1020Kb

The Clay Mineralogy of the Shaly Portions of the Brassfield Limestone THE CLAY MINERALOGY OF THE SHALY PORTIONS OF THE BRASSFIELD LIMESTONE ERNEST G. EHLERS AND KARL V. HOOVER Department of Mineralogy, The Ohio State University and Industrial Minerals Section, Ohio Division of Geological Survey, Columbus, Ohio INTRODUCTION The Brassfield limestone outcrops over a wide area in southwestern Ohio. It shows considerable variation in physical characteristics, laterally as well as vertically. The clay minerals associated with this formation have never been examined. It was hoped that a study of these minerals might provide additional information ^Brassfield Outcrop • Section * Core FIGURE 1. Locations of cores and stratigraphic sections. THE OHIO JOURNAL OF SCIENCE 61(4): 227, July, 1961 228 EHLERS AND HOOVER Vol. 61 on the variable lithology of this formation, and perhaps indicate distinctive differ- ences among the various units. REGIONAL GEOLOGY The Brassfield limestone is of Silurian age and is the only formation of the Albion group which outcrops in Ohio. The area of its surface exposure is limited to southwestern Ohio (fig. 1); the outcrop area trends northeastward from the vicinity of Fairhaven, in Preble County, to central Miami County, and thence southeastward to the Ohio River near Rome, in Adams County. The outcrop area of the Brassfield limestone is divided lithologically into northern and southern zones. The boundary between these zones is a covered area in southern Clinton County. The Brassfield formation is underlain by the Elkhorn formation, which usually consists of red and green shales, although locally it contains quartz or calcite-rich lenses. Stout (1941) reported that the Elkhorn generally contains the minerals sericite, biotite, celadonite, and hematite. Above the Brassfield lies the Dayton formation. This is commonly a bluish-gray silicious calcite-rich dolomite; locally it is a limestone. U. Brassfield Brassfield Belfast Elkhorn FIGURE 2. Typical Brassfield limestone section in the southern outcrop zone (locality 234). The Brassfield formation is divided into three stratigraphic units, the Belfast (which is a transitional zone with the Elkhorn), the Lower Brassfield, and Upper Brassfield. The Belfast unit is a greenish-gray, fine grained argillaceous dolomite or dolomitic limestone. These carbonate beds contain intercalated greenish-gray clay shales, which make up from 3 to 30 percent of the total thickness of 1 to 8 ft. Glauconite, either disseminated or in the form of pellets, is generally present. Sphalerite, pyrite, and chert are locally abundant as accessory minerals. The Belfast unit is considered to be limited to the eastern flank of the Cincinnati arch. In the western outcrop area the correlative bed is a dense limestone or argillaceous No. 4 BRASSFIELD LIMESTONE CLAY MINEROLOGY 229 dolomite (0.2 to 1.2 ft thick) which is occasionally present between typical Elkhorn and Lower Brassfield beds. The Upper and Lower Brassfield units are broken into northern and southern zones by a hiatus in outcrop pattern in southern Clinton County, as well as differ- ences in lithology. The northern zone of the Brassfield consists of two distinct units—the Lower Brassfield and Upper Brassfield. The Lower Brassfield is typically a light gray to white, fine to coarse-grained crystalline limestone. The crystalline texture is a result of recrystallization of fossil fragments. Green clay is locally present, TABLE 1 Analyses of the shaly portions of the Brassfield limestone Analyses (in percent) Newberry Section Sample Statigraphic unit CO3 loss MgCO3 Insoluble no. no. with acid material digestion Upper Brass field Dayton Upper Brass field Belfast Lower Brassfield Belfast Lower Brass field Upper Brassfield Lower Brassfield Dayton Upper Brassfield Lower Brassfield Belfast Elkhorn Lower Brassfield either in the disseminated state or as thin partings. Bedding varies from thin to massive, with crossbedding common. Field observations indicate that the Lower Brassfield limestone is extremely dolomitic in the Clark County area; the dolomite content decreases gradually in the direction of the Indiana border. In general, the dolomite content also decreases from the bottom to the top of the unit. Pyrite is a characteristic accessory, and sphalerite is locally present in minor quantities. 230 EHLERS AND HOOVER Vol. 51 The thickness of the unit varies from a minimum of 6 ft in Preble County to greater than 20 ft in Miami County. The Upper Brassfield of the northern zone is characteristically a pink, red, or gray, medium to coarse grained bioclastic limestone. Green clay, as partings, lenses, or disseminated material is much more abundant than in the Lower Brass- field. Hematite-rich oolites and fossil fragments are present in Clinton and Greene Counties; this zone grades into a red clay in the extreme northwestern portion of Greene County. Pyrite is present as a characteristic accessory. Glauconite is occasionally present in the upper portions of the unit. The thickness varies from 1 to 22 ft and shows rapid lateral variation. The dolomite content of the Upper Brassfield parallels that of the previously described Lower Brassfield. The Brassfield limestone of the southern zone has several features which are distinctly different from those of the northern zone. These are the following: lack of sharp lithologic differences between the upper and lower parts, a large I T II I ^——- FEE I N I E L ___-——^^^ 9 s FIGURE 3. Stratigraphic sections and sample locations of the Brassfield limestone. increase in the shale content, an increase in the number of chert nodules, and differences in many textural and structural features. Although the two rock types of the northern zone do not remain distinct in the southern zone, many of the distinguishing stratigraphic features persist, such as the ferruginous oolite zone, the basal brown limestone, and the course bioclastic texture of the Upper Brassfield. The most common rock type is a light to medium gray, fine to medium grained limestone. The interbedded green shale in some southern exposures constitutes the major portion of the unit (fig. 2), and as in the northern zone, the shale is more abundant in the upper portions. Chert, which occurs near the base, has no fixed stratigraphic position. Glauconite is fairly common throughout the unit, both as discrete beds as well as irregularly-distributed grains. Calcite is prevalent No. 4 BRASSFIELD LIMESTONE CLAY MINEROLOGY 231 throughout the unit, with the exception of the West Union area in Adams County, where a large proportion of dolomite is present. PROCEDURE Clay samples were collected from thin clay seams in limestone, from both drill cores and outcrops. The type of sample, its locality, and stratigraphic horizon are shown in figures 1 and 3. The carbonate minerals which occur in abundance within the clay seams were removed by treatment with dilute (1:3) glacial acetic acid; acetic acid treatment, in contrast to hydrochloric acid treatment, does not appreciably alter the clay- mineral assemblage. The samples were sieved with a 60-mesh screen, weighed, and placed in contact with acid for a minimum of 30 hr. The residue was filtered, given a triple washing with distilled water, evaporated, and reweighed. Newberry analyses for CaCO3, MgCO3, and insoluble material percentages were run on most of the samples. The results are given in table 1. Portions of each sample were mounted on glass slides for x-ray studies. Part of the sample was x-rayed by means of a Norelco low angle diffractometer. Copper radiation with a nickel filter was used. The speed was 2° 20 per min; critical reflections were run at 1° 20 per min. The area examined ranged from 2.31 to 22.07 A. All of the significant clay mineral peaks, as well as those of many common impurities fall within this range. A typical x-ray chart is shown in figure 4. The relative amounts of kaolinite and illite were determined on the basis of intensities of (001) reflections, as suggested by Murray (1953). This technique yields approximate differences in the form of a ratio, but the results are not quantitative. 232 EHLERS AND HOOVER Vol. 61 x'Ul of the samples were treated with ethylene glycol in order to determine the presence of montmorillonite, and to observe the nature of the mixed-layer struc- tures. In addition, all samples were rerun after being fired for one hr at 600° C in order to distinguish between chlorite and other clay minerals, as well as to observe effects on mixed-layer structures. The results of the x-ray analysis are given in table 2. DISCUSSION OF RESULTS Comparison of the Newberry analysis in table 1 with the sample locations clearly shows that the samples collected in the southern zone are richer in insoluble material (mainly clays) than those of the northern zone. It is also interesting to note, when comparing these analyses with the clay-mineral determinations, that y Intensit e Relativ 10 15 20 25 30 35 Degrees 2 6 FEGURE 4. Typical x-ray diffractometer pattern (Cu radiation) of a shaly portion of the Brassfield limestone. the composition of the clays is virtually the same, whether the sample was collected in a clay-rich band, or in a section with a high carbonate content. As can be noted from table 2, most of the samples collected in the southern part of the outcrop region contain illite and mixed-layer illite-chlorite as the predominant clay minerals, with lesser amounts of kaolinite, and occasional traces of chlorite. The more northern samples contain a similar suite, with the difference that the kaolinite is either absent or present in only trace amounts. These results are in agreement with similar clay-mineral studies by other investigators. Studies on the clay minerals associated with limestones and dolomites, such as those of Grim, Lamar, and Bradley (1937), Millot (1949), Grim (1951), and Robbins and Keller (1952), indicate that illite is the predominant clay mineral associated with carbonate rocks.
Recommended publications
  • Studies of Celadonite and Glauconite
    Studies of Celadonite and Glauconite GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F Studies of Celadonite and Glauconite By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-F A study of the compositional relations between celadonites and glauconites and an interpretation of the composition of glauconites UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HIGKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S- Government Printing Office Washington, D.C. 20402 - Price 40 cents (paper cover) CONTENTS Page Abstract.-_ ____-____-_--__-_-___--______-__-_______ Fl Interpretation of glauconite coniposition___-___________ F13 Introduction.______________________________________ 1 Relation between trivalent iron and octahedral aluminurn____________________________________ 13 Selection of analyses and calculation of atomic ratios___ 2 The Fe+3 :Fe+2 ratio_______________________ 13 Relation between the composition of celadonites and Relation between iron and potassium____________ 14 glauconites_ _ ___________________________________ 3 Fixation of potassium___________________________ 14 High potassium celadonites and glauconites-_______ 7 Deficiency in potassium content-_________________ 14 Relation between glauconite composition and geo­ Low potassium celadonites and glauconites_________ logic age_____________________________________ 15 Relation between Si, R+2 (VI), Al(VI), and R+3 (VI)_
    [Show full text]
  • Duration of Hydrothermal Activity at Steamboat Springs, Nevada, from Ages of Spatially Associated Volcanic Rocks
    Duration of Hydrothermal Activity at Steamboat Springs, Nevada, From Ages of Spatially Associated Volcanic Rocks GEOLOGIC AiL SURVEY PROFESSIONAL PAPER 458-D Duration of Hydrothermal Activity at Steamboat Springs, Nevada, From Ages of Spatially Associated Volcanic Rocks By M. L. SILBERMAN, D. E. WHITE, T. E. C. KEITH, and R. D. DOCKTER GEOLOGY AND GEOCHEMISTRY OF THE STEAMBOAT SPRINGS AREA, NEVADA GEOLOGICAL SURVEY PROFESSIONAL PAPER 458-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Main entry under title: Duration of hydrothermal activity at Steamboat Springs, Nevada, from ages of spatially associated volcanic rocks. (Geology and geochemistry of the Steamboat Springs area, Nevada) (United States. Geological Survey. Professional paper ; 45 8-D) Bibliography: p. D13-D14. 1. Geothermal resources-Nevada-Steamboat Springs. 2. Geology- Nevada Steamboat Springs. 3. Potassium-argon dating. I. Silberman, Miles L. II. Series. III. Series: United States. Geological Survey. Professional paper ; 45 8-D. QE75.P9no. 458-D [GB1199.7.N3] 557.3'08s [553] 79-16870 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03215-5 CONTENTS Page Abstract __________ _______.._____________ Dl Potassium-argon ages Continued Introduction ______________________________________________ 1 Rhyolite domes______________________
    [Show full text]
  • Experimental Data for High-Temperature Decomposition of Natural Celadonite from Banded Iron Formation
    Chin. J. Geochem. (2015) 34(4):507–514 DOI 10.1007/s11631-015-0066-2 ORIGINAL ARTICLE Experimental data for high-temperature decomposition of natural celadonite from banded iron formation 1 1 1 K. A. Savko • S. M. Piliugin • N. S. Bazikov Received: 5 March 2015 / Revised: 1 May 2015 / Accepted: 6 July 2015 / Published online: 17 July 2015 Ó Science Press, Institute of Geochemistry, CAS and Springer-Verlag Berlin Heidelberg 2015 Abstract Three experiments were set up to evaluate (KMA), Russia. Subalkaline BIF contains widespread conditions for the high-temperature decomposition of riebeckite, aegirine, celadonite, tetraferribiotite, and Al- celadonite from a banded iron formation in an alumina-free free chlorite instead of grunerite, stilpnomelane, minneso- system and identify its decomposition products. It was taite, and greenalite, which are the usual minerals in BIF estimated that at 650 and 750 °C, with a NiNiO buffer and elsewhere. At the KMA iron deposits, BIF with alkali pressure of 3 kbar, celadonite completely decomposes and amphibole were metamorphosed at 370–520 °C and 2–3 the decomposition products were tetraferribiotite, mag- kbar (Savko and Poskryakova 2003). netite and quartz. Under more oxidizing conditions (he- In the KMA, BIF green mica, which is responsible in matite-magnetite buffer instead of NiNiO), ferrous composition to the celadonite with the formula KFe3?(Mg, 2? potassium feldspar sanidine forms instead of magnetite. Fe ) = [Si4O10](OH)2, is quite abundant (Savko and During the celadonite decomposition in oxidizing condi- Poskryakova 2003). Celadonite forms emerald-green scales tions more magnesian and aluminous tetraferribiotite, sizing from a few tenths to 1.5–2 mm, composing up to along with ferrous sanidine, are formed than at reducing 30 %–40 % modal.
    [Show full text]
  • Factors Responsible for Crystal Chemical Variations in The
    American Mineralogist, Volume 95, pages 348–361, 2010 Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite VICTOR A. DRITS ,1 BELL A B. ZV I A GIN A ,1 DOUGL A S K. MCCA RTY,2,* A N D ALFRE D L. SA LYN 1 1Geological Institute of the Russian Academy of Science, Pyzhevsky per. 7, 119017 Moscow, Russia 2Chevron ETC, 3901 Briarpark, Houston, Texas 77063, U.S.A. AB STR A CT Several finely dispersed low-temperature dioctahedral micas and micaceous minerals that form solid solutions from (Mg,Fe)-free illite to aluminoceladonite via Mg-rich illite, and from Fe3+-rich glauconite to celadonite have been studied by X-ray diffraction and chemical analysis. The samples have 1M and 1Md structures. The transitions from illite to aluminoceladonite and from glauconite to celadonite are accompanied by a consistent decrease in the mica structural-unit thickness (2:1 layer + interlayer) or csinβ. In the first sample series csinβ decreases from 10.024 to 9.898 Å, and in the second from 10.002 to 9.961 Å. To reveal the basic factors responsible for these regularities, struc- tural modeling was carried out to deduce atomic coordinates for 1M dioctahedral mica based on the unit-cell parameters and cation composition. For each sample series, the relationships among csinβ, maximum and mean thicknesses of octahedral and tetrahedral sheets and of the 2:1 layer, interlayer distance, and variations of the tetrahedral rotation angle, α, and the degree of basal surface corruga- tion, ∆Z, have been analyzed in detail.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Minerals of Rockbridge County, Virginia
    VOL. 40 FEBRUARYJMAY 1994 NO. 1 &2 MINERALS OF ROCKBRIDGE COUNTY, VIRGINIA D. Allen Penick, Jr. INTRODUCTION RockbridgeCountyhas agreatdiversityofrocksandminerals.Rocks withinthecountyrangeingeologic agehmPmxnbrianthroughDevonian (01desttoyoungest)covexingatimespanofatleast 1OOOmilIion years. The county liesmostlywithintheVdeyandRiagePhysi~hich~~ 1). Thisprovinceis underlainbysedimentaryrochcomposedof dolostone, limestone, sandstone, andshale. TheexlMlceastempartofRockbridge County is withintheBlueRidge PhysiowhicPro. This areaisrepre sentedbyallthreemajorrocktypes: sedirnentary,igneous, andmetarnorphic. Theseinclu&Qlostone,qdta,inta~s~neandshale,granite, pmdiorite, andunakite. Ingeneral, theol&strocksarefoundin theeastem portion with youngerrocks outcropping in the westernpart of thecounty o%w2). Mininghasplaydan~tpaainthehistoryofRockbridgeCounty. Indians probably were thefirstco1lectorsof localqu~andquartzitefrom which they shapedprojectilepoints. Important deposits of ironore were mined in the 1800s near the towns of Buena Vista, Goshen, Vesuvius, and in Amoldvalley. Other early minesin thecounty -&manganese, waver- tine-marl, tin, niter (saltpeter), lithographiclimestone, silicasand, andcave orryx Thecounty has been prospected for barite, gibbsite (alumina), gold, silver, limonik(ocher),beryl, Ghalerite (zinc), andilmeniteandmtile(tita- nium), but no production has beenreported for t.Quarriesare still producing dolostone.lirnestone, andquartzitefor constructionaggregate andshale forbrickmanufacture. This report describes 102mineralsandnativeelements
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. Compositional groups, typical sample numbers and location with their bulk compositional, mineralogical and petrographic characteristics at different metamorphic grades. Sample #s, Mineral assemblage, Compositio N/E Traverse, Texture Metamorphic Bulk Chemical mode nal GPS and grade Characteristics and Group coordinates other comments mineral chemistry Ms-Chl-Qtz-Ilm-Mag-Gr ± Kfs ± Pl Mode: (Qtz 35-42%, Ms 30 - 33%, Chl 25 - 30%, Pl 5-7%). #1/00, E, Lithology: Chlorite quartz phyllite (minor white 27 o11.268, mica), white mica quartz phyllite (minor chlorite) /88 o38.581 Two compositional and chlorite bearing quartzite. Millimeter to centimeter groups (one richer in scale banding into M- Al 2O3 ~25 wt.%, Muscovite: domain (mica + chlorite Chlorite Normal #187/01, another ~20 Wt.%). rich), grain size 2 - 20 m 187/3, Rocks richer in Paragonite 5%, Pyrophyllite 19%, Celadonite 12%, and Q - domain (quartz - 187/3/ CHAKRA Al 2O3 are relatively Fe-celadonite 13%. feldspar rich), grain size 10 , N, GPS not less ferruginous (see - 50 µm. known Fig 3). Chlorite: XMg (Mg/(Mg+Fe(tot)) = 0.37 - 0.41. Plagioclase: XAn = 0.03 #ID/00,E, Ms-Chl-Qtz-Bt - Pl ± Ilm ± Tur ± Gr 27 o11.268, /88 o38.581 Chl - Qtz - Ms - Ilm -Gr - Tur - Bt - Pl #2/00, E, Two subgroups - 27 o11.465, high Al, low Fe (18 o /88 38.650 - 24 wt% Al 2O3, - Mode: (Qtz 35-42%, Ms 30 - 33%, Bt 15 - 18%, Chl 4.5-5 wt% Fe 2O3) 10 - 12%, Pl 5-7%). Pervasive foliation defined #3/00, E, and low Al, high Fe by biotite, white mica, o 27 11.465, (14.5 - 17 wt% chlorite and occasional o /88 38.692 Al 2O3, 6.0 - 8.0 wt% Muscovite: ilmenite (S 2) almost parallel Fe 2O3).
    [Show full text]
  • Glauconite and Celadonite" Two Separate Mineral Species
    MINERALOGICAL MAGAZINE, SEPTEMBER I978, VOL. 42, PP. 373-82 Glauconite and celadonite" two separate mineral species H. A. BUCKLEY, J. C. BEVAN, K. M. BROWN, AND L. R. JOHNSON Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 58D AND V. C. FARMER The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2QJ SU M M A RY. Analyseso f glauconites and celadonites from records the analyses of both minerals using X-ray continental sedimentary rocks and sea-floor basalts using diffraction (XRD), infra-red spectrometry (IR), X-ray diffraction, electron probe microanalysis, infra-red electron probe microanalysis (EPMA), and X-ray spectroscopy, and X-ray fluorescence spectroscopy are fluorescence (XRF). Modern XRD and IR tech- reported. The minerals are shown to be distinct species; each an isomorphous replacement series, glauconite hav- niques analyse a relatiyely large sample compared ing an average half unit cell of Ko.85(Fe3+, A13+)x.34 with EPMA; they do, however, distinguish and (Mg 2+, Fe2+)o.66(Si3.76Alo.z4)Olo(OH)2 whereas cela- identify most of the minerals present. Since the donite approaches the ideal half unit cell of K(Fe 3+, areas of individual analysis by EPMA approach I A13+)(Mg2+, Fe2+)Si4Oxo(OH)2. Considerable Fe 3+- pm in diameter, most impurities can be avoided by AIvl interchangeability occurs in the octahedral layer in using this technique. The external morphology of both minerals and considerable substitution of alum- selected samples was determined using a Cam- inium in the tetrahedral layer of glauconites results in the bridge Instruments' 6oo Stereoscan.
    [Show full text]
  • MUSCOVITE Which Grades Into “Sericite” at Depth (Klein, 1939)
    1939). 4. Arcadian mine (Klein, 1939). 5. Kearsarge lode: Generally found with “adularia,” MUSCOVITE which grades into “sericite” at depth (Klein, 1939). KAl2AlSi3O10(OH)2 6. Wolverine mine, Kearsarge: Variety “sericite” A widespread and abundant mica. It occurs in (Morris, 1983). 7. Quincy mine: Dark green, igneous rocks (granites and granitic pegmatites), waxy, barrel-shaped pseudohexagonal crystals up metamorphic rocks (slates, phyllites, mica schists, to 1 cm (pseudomorphous after chlorite?) occurred and micaceous gneisses), sediments and in a large pocket of calcite crystals associated with sedimentary rocks (chiefly sands and some native copper on the 7th level, approximately 100 sandstones), wall rocks of various ore deposits, and meters NE from the Number 2 Shaft. as a replacement of various primary silicates Iron County: Iron River district: As the 2M1 (plagioclase, andalusite, etc.) as the variety type in oxidized iron formation (Bailey and Tyler, “sericite.” 1960). Muscovite is widespread in the Portage Lake Keweenaw County: 1. Central mine: “Sericite” Volcanics of the Keweenaw (often referred to as forms tan, velvety coatings on calcite. 2. “sericite”) in a variety of parageneses (Livnat, Northeast of Gay: In Jacobsville Sandstone in 1983). While the varietal name “sericite” has been section 16, T56N, R30W; contains 1.5 to 4% used for any fine-grained muscovite, it is best Cr2O3 and ~1% V2O3 (L. L. Babcock, personal applied to secondary fine-grained muscovite that communication). 3. Dan’s Point, section 27, has replaced other pre-existing silicates by low- T59N, R27W: A very fine-grained vanadian temperature potassium metasomatism. “Phengite” muscovite occurs with calcite in veinlets less than 1 defines a series of potassium micas with mm thick on the faces of bleached joints in a silty compositions intermediate between muscovite and Keweenawan sandstone.
    [Show full text]
  • Gems and Placers—A Genetic Relationship Par Excellence
    Article Gems and Placers—A Genetic Relationship Par Excellence Dill Harald G. Mineralogical Department, Gottfried-Wilhelm-Leibniz University, Welfengarten 1, D-30167 Hannover, Germany; [email protected] Received: 30 August 2018; Accepted: 15 October 2018; Published: 19 October 2018 Abstract: Gemstones form in metamorphic, magmatic, and sedimentary rocks. In sedimentary units, these minerals were emplaced by organic and inorganic chemical processes and also found in clastic deposits as a result of weathering, erosion, transport, and deposition leading to what is called the formation of placer deposits. Of the approximately 150 gemstones, roughly 40 can be recovered from placer deposits for a profit after having passed through the “natural processing plant” encompassing the aforementioned stages in an aquatic and aeolian regime. It is mainly the group of heavy minerals that plays the major part among the placer-type gemstones (almandine, apatite, (chrome) diopside, (chrome) tourmaline, chrysoberyl, demantoid, diamond, enstatite, hessonite, hiddenite, kornerupine, kunzite, kyanite, peridote, pyrope, rhodolite, spessartine, (chrome) titanite, spinel, ruby, sapphire, padparaja, tanzanite, zoisite, topaz, tsavorite, and zircon). Silica and beryl, both light minerals by definition (minerals with a density less than 2.8–2.9 g/cm3, minerals with a density greater than this are called heavy minerals, also sometimes abbreviated to “heavies”. This technical term has no connotation as to the presence or absence of heavy metals), can also appear in some placers and won for a profit (agate, amethyst, citrine, emerald, quartz, rose quartz, smoky quartz, morganite, and aquamarine, beryl). This is also true for the fossilized tree resin, which has a density similar to the light minerals.
    [Show full text]
  • Nomenclature of the Micas
    Mineralogical Magazine, April 1999, Vol. 63(2), pp. 267-279 Nomenclature of the micas M. RIEDER (CHAIRMAN) Department of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, 12843 Praha 2, Czech Republic G. CAVAZZINI Dipartimento di Mineralogia e Petrologia, Universith di Padova, Corso Garibaldi, 37, 1-35122 Padova, Italy Yu. S. D'YAKONOV VSEGEI, Srednii pr., 74, 199 026 Sankt-Peterburg, Russia W. m. FRANK-KAMENETSKII* G. GOTTARDIt S. GUGGENHEIM Department of Geological Sciences, University of Illinois at Chicago, 845 West Taylor St., Chicago, IL 60607-7059, USA P. V. KOVAL' Institut geokhimii SO AN Rossii, ul. Favorskogo la, Irkutsk - 33, Russia 664 033 G. MOLLER Institut fiir Mineralogie und Mineralische Rohstoffe, Technische Universit/it Clausthal, Postfach 1253, D-38670 Clausthal-Zellerfeld, Germany A. M, R. NEIVA Departamento de Ci6ncias da Terra, Universidade de Coimbra, Apartado 3014, 3049 Coimbra CODEX, Portugal E. W. RADOSLOVICH$ J.-L. ROBERT Centre de Recherche sur la Synth6se et la Chimie des Min6raux, C.N.R.S., 1A, Rue de la F6rollerie, 45071 Od6ans CEDEX 2, France F. P. SASSI Dipartimento di Mineralogia e Petrologia, Universit~t di Padova, Corso Garibaldi, 37, 1-35122 Padova, Italy H. TAKEDA Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino City, Chiba 275, Japan Z. WEISS Central Analytical Laboratory, Technical University of Mining and Metallurgy, T/'. 17.1istopadu, 708 33 Ostrava- Poruba, Czech Republic AND D. R. WONESw * Russia; died 1994 t Italy; died 1988 * Australia; resigned 1986 wUSA; died 1984 1999 The Mineralogical Society M. RIEDER ETAL. ABSTRACT I I End-members and species defined with permissible ranges of composition are presented for the true micas, the brittle micas, and the interlayer-deficient micas.
    [Show full text]
  • Distinguishing Features and Identification Criteria for K
    minerals Article Distinguishing Features and Identification Criteria for K-Dioctahedral 1M Micas (Illite-Aluminoceladonite and Illite-Glauconite-Celadonite Series) from Middle-Infrared Spectroscopy Data Bella B. Zviagina 1, Victor A. Drits 1 and Olga V. Dorzhieva 2,* 1 Geological Institute, Russian Academy of Science (GIN RAS), 7 Pyzhevsky per., 119017 Moscow, Russia; [email protected] (B.B.Z.); [email protected] (V.A.D.) 2 Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Science (IGEM RAS), 119017 Moscow, Russia * Correspondence: [email protected] Received: 12 December 2019; Accepted: 5 February 2020; Published: 11 February 2020 Abstract: A representative collection of K-dioctahedral 1M micas ranging in composition from (Mg, Fe)-poor illites to aluminoceladonites through Mg-rich illites (Fe-poor varieties) and from Fe-bearing, Mg-rich illites to celadonites through Fe-illites, Al-glauconites and glauconites (Fe-bearing varieties) was studied by Fourier-transform infrared (FTIR) spectroscopy in the middle-infrared region. Analysis and comparison of the relationships between the band positions and cation compositions of Fe-poor and Fe-bearing K-dioctahedral micas provided a generalized set of FTIR identification criteria that include the band positions and profiles in the regions of Si–O bending, Si–O stretching, and OH-stretching vibrations. FTIR data allow unambiguous identification of illites, aluminoceladonites, and celadonites, as well as distinction between Fe-illites and illites proper, as well as between Al-glauconites and glauconites. Specifically, a sharp maximum from the AlOHMg stretching vibration 1 1 at ~3600 cm− , the presence of a MgOHMg stretching vibration at 3583–3585 cm− , as well as 1 characteristic band positions in the Si–O bending (435–439, 468–472 and 509–520 cm− ) and stretching 1 regions (985–1012 and 1090–1112 cm− ) are clearly indicative of aluminoceladonite.
    [Show full text]