Shortfin Mako Shark (Isurus Oxyrinchus) Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Shortfin Mako Shark (Isurus Oxyrinchus) Bibliography Shortfin Mako Shark (Isurus oxyrinchus) Bibliography Katie Rowley, Librarian, NOAA Central Library NCRL subject guide 2021-09 https://doi.org/10.25923/gr9x-vv55 June 2021 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background & Scope ................................................................................................................................. 2 Sources Reviewed ..................................................................................................................................... 3 Section I: Biology ....................................................................................................................................... 4 Section II: Ecology ................................................................................................................................... 49 Section III: Genetics ................................................................................................................................. 71 Section IV: Population Abundance and Trends ....................................................................................... 78 Section V: Threats ................................................................................................................................. 122 1 Background & Scope NMFS is conducting a status review of the shortfin mako shark (Isurus oxyrinchus) in response to a petition to list the species as threatened or endangered under the U.S. Endangered Species Act. The purpose of a status review is to synthesize the best available scientific and commercial information regarding the species’ status and evaluate extinction risk of the species to determine if listing is warranted. The information used in a status review includes the life history and ecology of the species, taxonomy, historical and current abundance, trends, population growth rate, distribution, population connectivity, genetic diversity, and threats facing the species. As NMFS has not conducted a review of the species’ status in the past, we are compiling the best available data from any year through the present, as opposed to a specific timeframe. The shortfin mako is a large pelagic shark that occurs across all temperate and tropical ocean waters. This bibliography focuses on shortfin mako literature from peer-reviewed journals, technical reports, memos, and Regional Fisheries Management Council reports. It is intended as a reference resource for ESA staff of the NOAA Fisheries Office of Protected Resources when compiling any relevant information on the status of the species. It is organized into five sections: Biology (life history), Ecology (interaction with the environment), Genetics, Population Abundance and Trends, and Threats. Section I – Biology Section one is intended to provide an overview of the life history of the shortfin mako shark. The research in this area includes information on physical attributes and characteristics, historical and current habitat and distribution, diet, lifespan, migration patterns, behavior, feeding, productivity, fecundity, growth and reproduction. If biology and life history varies by region (e.g. Atlantic Ocean vs. Pacific Ocean), this is important to note as well. Section II – Ecology Section two is intended to provide an overview of how the shortfin mako interacts with the environment. The research in this area includes information on feeding ecology, food resources, prey composition, competition and predation pressure, and how climate change affects the species. Section III – Genetics Section three is intended to review any information regarding the genetic variation among and between populations of shortfin makos, including genetic information that sheds light on population structure and that may inform NMFS’s application of the DPS policy for the species. Section IV – Population Abundance and Trends Section four is intended to provide an overview of historical and current population estimates and trends for the shortfin mako shark throughout its range. These data are often found in fisheries stock assessment reports. This section should also include any demographic features and trends that influence abundance, including birth and mortality rates, age structure, sex ratio, age at mortality, etc. Section IV – Threats A threat is defined as any factor that could represent an impediment to a species’ recovery. Section four is intended to provide an overview of any threats to the species, including incidental catch (bycatch) in commercial fisheries; directed/targeted commercial, artisanal and recreational fisheries; opportunistic retention when bycaught; domestic and international trade in shark fins, meat and products; pollution; climate change; disease; habitat degradation; and any other threats that may be documented in the 2 literature. It should also include management, regulatory, or conservation programs for I. oxyrinchus, including mitigation measures related to any known or potential threats to the species throughout its range Sources Reviewed The following databases were used to identify sources: Clarivate Analytics’ Web of Science: Science Citation Index Expanded and Social Science Index; EBSCO Academic Search Complete and Environment Complete; ProQuest Aquatic Sciences and Fisheries Abstracts; NOAA Institutional Repository; BioDiversity Heritage Library; BioOne Complete; Dimensions; Lens; JSTOR and Google Scholar. The bibliography includes English, Spanish and Chinese language materials. 3 Section I: Biology Afroz, F., Lang, A., Habegger, M. L., Motta, P., & Hueter, R. (2016). Experimental Study of Laminar and Turbulent Boundary Layer Separation Control of Shark Skin. Bioinspiration & Biomimetics, 12(1), 016009 https://doi.org/10.1088/1748-3190/12/1/016009 The Shortfin Mako shark (Isurus oxyrinchus) is a fast swimmer and has incredible turning agility, and has flexible scales known to bristle up to 50 degrees in the flank regions. It is purported that this bristling capability of the scales may result in a unique pass flow control method to control flow separation and reduce drag. It appears that the scales have evolved to be only actuated when the flow over the body is reversed; thereby inducing a method of inhibiting flow reversal close to the surface. In addition, bristled scales form cavities which could induce boundary layer mixing and further assist in delaying flow separation. To substantiate the hypothesis, samples of skin from the flank region of the mako have been tested in a water tunnel facility under various strengths of adverse pressure gradient (APG). Laminar and turbulent separation over the skin was studied experimentally using time-resolved digital particle image velocimetry, where the APG was generated and varied using a rotating cylinder. Shark skin results were compared with that of a smooth plate data for a given amount of APG. Both the instantaneous and time-averaged results reveal that shark skin is capable of controlling laminar as well as turbulent separation. Under laminar conditions, the shark skin also induces an early transition to turbulence and reduces the degree of laminar separation. For turbulent separation, the presence of the shark skin reduces the amount of backflow and size of the separation region. Under both flow conditions, the shark skin also delayed the point of separation as compared to a smooth wall. Ardizzone, D., Cailliet, G. M., Natanson, L. J., Andrews, A. H., Kerr, L. A., & Brown, T. A. (2006). Application of Bomb Radiocarbon Chronologies to Shortfin Mako (Isurus oxyrinchus) Age Validation. Environmental Biology of Fishes, 77(3-4), 355-366 https://doi.org/10.1007/s10641- 006-9106-4 Age estimation is an issue for the shortfin mako, Isurus oxyrinchus, because of disagreement on vertebral band-pair deposition periodicity. In the 1950s-1960s, thermonuclear testing released large amounts of radiocarbon into the atmosphere, which diffused into the ocean through gas exchange. This influx created a time-specific marker that can be used in age validation. Annual band-pair deposition in the porbeagle, Lamna nasus, was validated in a previous study and indicated preliminary annual deposition in the shortfin mako, using four samples from one vertebra. In the present study, age estimates from 54 shortfin mako vertebrae collected in 1950-1984 ranged 1-31 years. Ageing error between readers was consistent, with 76% of the estimates ranging within 2 years. Twenty-one Delta C- 14 values from eight shortfin mako vertebrae (collected in the western North Atlantic in 1963-1984) ranged -154.8 parts per thousand to 86.8 parts per thousand. The resulting conformity with the Delta C- 14 timeline for the porbeagle supported annual band-pair deposition in vertebrae of the shortfin mako. Barker, M. J., & Schluessel, V. (2005). Managing Global Shark Fisheries: Suggestions for Prioritizing Management Strategies. Aquatic Conservation-Marine and Freshwater Ecosystems, 15(4), 325- 347 https://doi.org/10.1002/aqc.660 1. Over the past two decades the number of fisheries targeting shark resources has increased dramatically. A combination of factors, including relatively slow growth rate, low fecundity and late age 4 of maturity, result in low recovery rates from exploitation for most shark species. This, in turn, is reflected in the poor record of sustainability of shark fisheries. 2. One of the greatest challenges is to find a way to deal with the
Recommended publications
  • Combined!Effects!In!Europe's!Seas!
    OCP/EEA/NSS/18/002.ETC/ICM!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ETC/ICM!Technical!Report!4/2019! Multiple!pressures!and!their! combined!effects!in!Europe’s!seas! Prepared!by!/!compiled!by:!! Samuli!Korpinen,!Katja!Klančnik! Authors:!! Samuli Korpinen & Katja Klančnik (editors), Monika Peterlin, Marco Nurmi, Leena Laamanen, Gašper Zupančič, Ciarán Murray, Therese Harvey, Jesper H Andersen, Argyro Zenetos, Ulf Stein, Leonardo Tunesi, Katrina Abhold, GerJan Piet, Emilie Kallenbach, Sabrina Agnesi, Bas Bolman, David Vaughan, Johnny Reker & Eva Royo Gelabert ETC/ICM'Consortium'Partners:'' Helmholtz!Centre!for!Environmental!Research!(UFZ),!Fundación!AZTI,!Czech!Environmental! Information!Agency!(CENIA),!Ioannis!Zacharof&!Associates!Llp!Hydromon!Consulting! Engineers!(CoHI(Hydromon)),!Stichting!Deltares,!Ecologic!Institute,!International!Council!for! the!Exploration!of!the!Sea!(ICES),!Italian!National!Institute!for!Environmental!Protection!and! Research!(ISPRA),!Joint!Nature!Conservation!Committee!Support!Co!(JNCC),!Middle!East! Technical!University!(METU),!Norsk!Institutt!for!Vannforskning!(NIVA),!Finnish!Environment! Institute!(SYKE),!Thematic!Center!for!Water!Research,!Studies!and!Projects!development!! (TC!Vode),!Federal!Environment!Agency!(UBA),!University!Duisburg.Essen!(UDE)! ! ! ! Cover'photo! ©!Tihomir!Makovec,!Marine!biology!station!Piran,!Slovenia! ' Layout! F&U!confirm,!Leipzig! ! Legal'notice' The!contents!of!this!publication!do!not!necessarily!reflect!the!official!opinions!of!the!European!Commission!or!other!institutions!
    [Show full text]
  • Multiple!Pressures!And!Their! Combined!Effects!In!Europe's!Seas!
    OCP/EEA/NSS/18/002.ETC/ICM!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ETC/ICM!Technical!Report!4/2019! Multiple!pressures!and!their! combined!effects!in!Europe’s!seas! Prepared!by!/!compiled!by:!! Samuli!Korpinen,!Katja!Klančnik! Authors:!! Monika Peterlin, Marco Nurmi, Leena Laamanen, Gašper Zupančič, Andreja Popit, Ciarán Murray, Therese Harvey, Jesper H Andersen, Argyro Zenetos, Ulf Stein, Leonardo Tunesi, Katrina Abhold, GerJan Piet, Emilie Kallenbach, Sabrina Agnesi, Bas Bolman, David Vaughan, Johnny Reker & Eva Royo Gelabert ETC/ICM'Consortium'Partners:'' Helmholtz!Centre!for!Environmental!Research!(UFZ),!Fundación!AZTI,!Czech!Environmental! Information!Agency!(CENIA),!Ioannis!Zacharof&!Associates!Llp!Hydromon!Consulting! Engineers!(CoHI(Hydromon)),!Stichting!Deltares,!Ecologic!Institute,!International!Council!for! the!Exploration!of!the!Sea!(ICES),!Italian!National!Institute!for!Environmental!Protection!and! Research!(ISPRA),!Joint!Nature!Conservation!Committee!Support!Co!(JNCC),!Middle!East! Technical!University!(METU),!Norsk!Institutt!for!Vannforskning!(NIVA),!Finnish!Environment! Institute!(SYKE),!Thematic!Center!for!Water!Research,!Studies!and!Projects!development!! (TC!Vode),!Federal!Environment!Agency!(UBA),!University!Duisburg.Essen!(UDE)! ! ! ! Cover'photo! ©!Tihomir!Makovec,!Marine!biology!station!Piran,!Slovenia! ' Layout! F&U!confirm,!Leipzig! ! Legal'notice' The!contents!of!this!publication!do!not!necessarily!reflect!the!official!opinions!of!the!European!Commission!or!other!institutions! of!the!European!Union.!Neither!the!European!Environment!Agency,!the!European!Topic!Centre!on!Inland,!Coastal!and!Marine!
    [Show full text]
  • Cobia Database Articles Final Revision 2.0, 2-1-2017
    Revision 2.0 (2/1/2017) University of Miami Article TITLE DESCRIPTION AUTHORS SOURCE YEAR TOPICS Number Habitat 1 Gasterosteus canadus Linné [Latin] [No Abstract Available - First known description of cobia morphology in Carolina habitat by D. Garden.] Linnaeus, C. Systema Naturæ, ed. 12, vol. 1, 491 1766 Wild (Atlantic/Pacific) Ichthyologie, vol. 10, Iconibus ex 2 Scomber niger Bloch [No Abstract Available - Description and alternative nomenclature of cobia.] Bloch, M. E. 1793 Wild (Atlantic/Pacific) illustratum. Berlin. p . 48 The Fisheries and Fishery Industries of the Under this head was to be carried on the study of the useful aquatic animals and plants of the country, as well as of seals, whales, tmtles, fishes, lobsters, crabs, oysters, clams, etc., sponges, and marine plants aml inorganic products of U.S. Commission on Fisheries, Washington, 3 United States. Section 1: Natural history of Goode, G.B. 1884 Wild (Atlantic/Pacific) the sea with reference to (A) geographical distribution, (B) size, (C) abundance, (D) migrations and movements, (E) food and rate of growth, (F) mode of reproduction, (G) economic value and uses. D.C., 895 p. useful aquatic animals Notes on the occurrence of a young crab- Proceedings of the U.S. National Museum 4 eater (Elecate canada), from the lower [No Abstract Available - A description of cobia in the lower Hudson Eiver.] Fisher, A.K. 1891 Wild (Atlantic/Pacific) 13, 195 Hudson Valley, New York The nomenclature of Rachicentron or Proceedings of the U.S. National Museum Habitat 5 Elacate, a genus of acanthopterygian The universally accepted name Elucate must unfortunately be supplanted by one entirely unknown to fame, overlooked by all naturalists, and found in no nomenclator.
    [Show full text]
  • REVISED Marine Molluscs in Nearshore Habitats of the United
    1 REVISED 2 3 Marine Molluscs in Nearshore Habitats of the United Arab Emirates: 4 Decadal Changes and Species of Public Health Significance 5 6 Raymond E. Grizzle1*, V. Monica Bricelj2, Rashid M. AlShihi3, Krystin M. Ward1, and 7 Donald M. Anderson4 8 9 1Jackson Estuarine Laboratory 10 University of New Hampshire 11 Durham, NH 03824, U.S.A. 12 [email protected] 13 14 2Department of Marine and Coastal Sciences 15 Haskin Shellfish Laboratory, Rutgers University, NJ 08349, U.S.A. 16 17 3Ministry of Climate Change and Environment 18 Marine Environment Research Centre, Umm Al Quwain, U.A.E. 19 20 4Biology Department, Woods Hole Oceanographic Institution 21 Woods Hole, MA 02543, U.S.A. 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 LRH: Grizzle, Bricelj, AlShihi, Ward, Anderson 41 42 RRH: Marine Molluscs in the United Arab Emirates 43 44 45 46 1 47 ABSTRACT 48 49 This paper describes the results of three qualitative surveys of marine molluscs conducted in 50 December 2010 and May 2011 and 2012 in nearshore benthic habitats along the Arabian Gulf and 51 Gulf of Oman coasts of the United Arab Emirates. Findings are compared to historical studies, 52 focusing on extensive surveys from the 1960s and 1970s. Molluscan species of public health 53 significance are identified based on their potential as vectors of algal toxins in light of the recent 54 occurrence of harmful algal blooms (HABs) in the region. Habitats sampled included intertidal 55 sand or gravel beaches, rocks and jetties, sheltered soft-sediment flats and mangroves, and shallow 56 subtidal coral reefs.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • EU Shark Conservation
    EU Shark Conservation Recent Progress and Priorities for Action Species in the Spotlight European fishermen have a long history of catching a wide variety 01 of sharks and rays. Some beleaguered species finally have EU protection while others are the subject of new, unregulated fisheries. Here we profile some of Europe’s most heavily fished species. Spiny dogfish or ‘Spurdog’ Porbeagle shark Shortfin mako shark Squalus acanthias Lamna nasus Isurus oxyrinchus A changing profile The European Union (EU) remains a global shark fishing power, A slender, white-spotted shark that grows to A powerful, torpedo-shaped, highly migratory This wide-ranging shark, thought to be the world’s about 1 metre in length and travels in schools. shark closely related to great white sharks. fastest, cannot out-swim today’s vast fishing fleets. but its record on shark conservation is changing. The EU’s notorious Can live for many decades; remains pregnant for nearly two years. FOUND: Cool waters in both hemispheres, FOUND: Open-ocean waters around the world, not-so-distant past – characterised by severe population depletion, including offshore in northern Europe. including the Mediterranean Sea and the Atlantic unregulated fishing and exceptionally weak regulations – is now FOUND: Cool, coastal waters worldwide. DEMAND: Fins valuable and sold to Asia while Ocean. DEMAND: Smoked belly flaps popular in Germany. sought primarily for meat. DEMAND: Among the most highly sought of EU finally being balanced by recent, significant strides toward limiting Sold as ‘rock salmon’ in UK fish and chips shops. STATUS: Critically Endangered in the Northeast shark species, particularly by Spanish high seas EU shark fisheries and securing international protections for the Fins not considered high quality but still traded Atlantic and Mediterranean Sea; Vulnerable longline fishermen.
    [Show full text]
  • Pilgrim 1985.Pdf (1.219Mb)
    MAURI ORA, 1985, 12: 13-53 13 PARASITIC COPEPODA FROM MARINE COASTAL FISHES IN THE KAIKOURA-BANKS PENINSULA REGION, SOUTH ISLAND, NEW ZEALAND. WITH A KEY FOR THEIR IDENTIFICATION R.L.C. PILGRIM Department of Zoology, University of Canterbury, Christchurch 1, New Zealand. ABSTRACT An introductory account of parasitic Copepoda in New Zealand waters is given, together with suggestions for collecting, examining, preserving and disposal of specimens. A key is presented for identifying all known forms from the fishes which are known to occur in the Kaikoura-Banks Peninsula region. Nine species/ subspecies ( + 2 spp.indet.) have been taken from elasmobranch fishes, 13 ( + 7 spp.indet.) from teleost fishes in the region; a further 6 from elasmobranchs and 27 ( + 1 indet.) from teleosts are known in New Zealand waters but so far not taken from these hosts in the region. A host-parasite list is given of known records'from the region. KEYWORDS: New Zealand, marine, fish, parasitic Copepoda, keys. INTRODUCTION Fishes represent a very significant proportion of the macrofauna of the coastal waters from Kaikoura to Banks Peninsula, and as such are commonly studiecl by staff and students from the Department of Zoology, University of Canterbury. Even a cursory examination of most specimens will reveal the presence of sometimes numerous parasites clinging to the outer surface or, more frequently, to the linings of the several cavities exposed to the outside sea water. The mouth and gill chambers are 14 particularly liable to contain numbers of large or small, but generally macroscopic, animals attached to these surfaces. Many are readily identified as segmented, articulated, chitinised animals and are clearly Arthropoda.
    [Show full text]
  • Have Chondracanthid Copepods Co-Speciated with Their Teleost Hosts?
    Systematic Parasitology 44: 79–85, 1999. 79 © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Have chondracanthid copepods co-speciated with their teleost hosts? Adrian M. Paterson1 & Robert Poulin2 1Ecology and Entomology Group, Lincoln University, PO Box 84, Lincoln, New Zealand 2Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand Accepted for publication 26th October, 1998 Abstract Chondracanthid copepods parasitise many teleost species and have a mobile larval stage. It has been suggested that copepod parasites, with free-living infective stages that infect hosts by attaching to their external surfaces, will have co-evolved with their hosts. We examined copepods from the genus Chondracanthus and their teleost hosts for evidence of a close co-evolutionary association by comparing host and parasite phylogenies using TreeMap analysis. In general, significant co-speciation was observed and instances of host switching were rare. The preva- lence of intra-host speciation events was high relative to other such studies and may relate to the large geographical distances over which hosts are spread. Introduction known from the Pacific, and 17 species from the Atlantic (2 species occur in both oceans; none are About one-third of known copepod species are par- reported from the Indian Ocean). asitic on invertebrates or fish (Humes, 1994). The Parasites with direct life-cycles, as well as para- general biology of copepods parasitic on fish is much sites with free-living infective stages that infect hosts better known than that of copepods parasitic on in- by attaching to their external surfaces, are often said to vertebrates (Kabata, 1981).
    [Show full text]
  • Congressional Record—House H8792
    H8792 CONGRESSIONAL RECORD — HOUSE December 21, 2010 The Shark Conservation Act would end the The SPEAKER pro tempore. The revolving loans, as determined by the Adminis- practice of shark finning in U.S. waters. question is on the motion offered by trator, on a competitive basis, to eligible entities, However, domestic protections alone will not the gentlewoman from Guam (Ms. including through contracts entered into under save sharks. subsection (e) of this section,’’; and BORDALLO) that the House suspend the (B) in paragraph (1), by striking ‘‘tons of’’; We need further safeguards to keep marine rules and concur in the Senate amend- (3) in subsection (b)— ecosystems and top predator populations ment to the bill, H.R. 81. (A) by striking paragraph (2); healthy. The Shark Conservation Act will bol- The question was taken; and (two- (B) by redesignating paragraph (3) as para- ster the U.S.’s position when negotiating for thirds being in the affirmative) the graph (2); and increased international fishery protections. rules were suspended and the Senate (C) in paragraph (2) (as so redesignated)— (i) in subparagraph (A), in the matter pre- Healthy shark populations in our waters can amendment was concurred in. help drive our economy and make our seas ceding clause (i), by striking ‘‘90’’ and inserting A motion to reconsider was laid on ‘‘95’’; thrive. the table. This bill is not just about preserving a spe- (ii) in subparagraph (B)(i), by striking ‘‘10 f percent’’ and inserting ‘‘5 percent’’; and cies, but about preserving an ecosystem, an (iii) in subparagraph (B)(ii), by striking ‘‘the economy, and a sustainable future.
    [Show full text]
  • A Review of the Biology for Pacific Saury, Cololabis Saira in the North
    North Pacific Fisheries Commission NPFC-2019-SSC PSSA05-WP13 (Rev. 1) A review of the biology for Pacific saury, Cololabis saira in the North Pacific Ocean Taiki Fuji1*, Satoshi Suyama2, Shin-ichiro Nakayama3, Midori Hashimoto1, Kazuhiro Oshima1 1National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency 2Tohoku national Fisheries Research Institute, Japan Fisheries Research and Education Agency 3National Research Institute of Fisheries Science, Fisheries Research and Education Agency *Corresponding author’s email address: [email protected] Contents 1. Introduction…………………………………………………………………………………………2 2. Stock identity……………………………………………………………………………………….2 3. Early life history……………………………………………………………………………………2 3-1. Spawning ground………………………………………………………………………………2 3-2. Larval transportation……………………………………………………………………………3 3-3. Recruitment variability………………………………………………………………………….4 4. Feeding habits and predators…………………………………………………………………………4 5. Growth………………………………………………………………………………………………..5 6. Maturation…………………………………………………………………………………………….5 6-1. Spawning pattern, fecundity and spawning duration…………………………………………….5 6-2. Seasonal change of maturity size………………………………...................................................6 6-3. Maturation schedule for each seasonal cohort considering growth and maturation size…………6 6-4. Maturation and environmental factors……………………………………………………………7 6-5. Percentage of matured fish………………………………………………………………………..7 7. Distribution and migration…………………………………………………………………………….7 8. Natural mortality………………………………………………………………………………………9
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • NOAA Testimony
    WRITTEN TESTIMONY BY ALAN RISENHOOVER, DIRECTOR OF THE OFFICE OF SUSTAINABLE FISHERIES, NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE HEARING ON LEGISLATION ON SHARK FIN AND BILLFISH SALES BEFORE THE COMMITTEE ON NATURAL RESOURCES SUBCOMMITTEE ON WATER, POWER AND OCEANS U.S. HOUSE OF REPRESENTATIVES April 17, 2018 Introduction Good afternoon, Chairman Lamborn, Ranking Member Huffman, and Members of the Subcommittee. My name is Alan Risenhoover and I am the Director of the Office of Sustainable Fisheries within the National Oceanic and Atmospheric Administration’s (NOAA) National Marine Fisheries Service (NMFS) in the Department of Commerce. Shark and billfish species are important contributors to the nation’s valuable commercial and recreational fisheries as well as serving an important role in our ocean ecosystem. I appreciate the opportunity to speak with you today about the work by NMFS to conserve and manage sharks and billfish and to provide our perspective on the main bills being discussed. Shark Conservation and Management Almost two decades ago Congress prohibited shark finning—which is removing shark fins at sea and discarding the rest of the shark—when it amended the Magnuson-Stevens Fishery Conservation and Management Act by enacting the Shark Finning Prohibition Act of 2000. The law prohibits any person under U.S. jurisdiction from engaging in the finning of sharks, possessing shark fins aboard a fishing vessel without the corresponding carcass, and landing shark fins without the corresponding carcass. In 2008, NOAA implemented even more stringent regulations to require all Atlantic sharks to be landed with all fins naturally attached to facilitate species identification and reporting and improve the enforceability of existing shark management measures, including the finning ban.
    [Show full text]