Electrophysiology of Ventricular Inversion'

Total Page:16

File Type:pdf, Size:1020Kb

Electrophysiology of Ventricular Inversion' Br Heart J: first published as 10.1136/hrt.36.10.971 on 1 October 1974. Downloaded from British Heart journal, I974, 36, 97I-980. Electrophysiology of ventricular inversion' Paul C. Gillette, Milton J. Reitman, Charles E. Mullins, Robert L. Williams, John T. Dawson, Jr., and Dan G. McNamara From The Section of Cardiology, Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Texas, U.S.A. Electrophysiological studies were carried out in 7 subjects with angiographically proven ventricular inversion in order to determine if this technique could be used in the study of arrhythmias in such subjects. Three sub- jects with normal PR intervals on the electrocardiogram had normal low right atrium to His (LRA-H) and His to ventricle (HV) intervals at rest. With atrial pacing, I of these 3 with normal PR interval developed Mobitz II second-degree atrioventricular block. Of 2 subjects with first-degree atrioventricular block r was found to have prolonged LRA-H and HV intervals, and the other had only LRA-H prolongation. In both subjects with complete atrioventricular block, the block was below the His bundle recording site. One of these patients with complete A V block wasfound to be able to conduct through his A V conducting system during the supernormal period. This study found that useful information can be obtained by recording the His bundle potential in patients with ventricular inversion. Conduction abnormalities were found from the AV node through the His-Purkinje system. This technique may be useful in making clinical decisions in patients with ventricular inversion and complex arrhythmias. Ventricular inversion with a laevo-transposition of system as well as other anomalies in the structure http://heart.bmj.com/ the great arteries usually occurs with one or more and course of the AV node, His bundle, and bundle- intracardiac anomalies and in 30 to 6o per cent of branches (Lev, Licata, and May, I963; Hudson, the cases, an atrioventricular conduction disturb- I970). Wolff, Freed, and Ellison (1973) have reported ance is present at birth or develops later (Walker success in only 2 of 8 patients with ventricular in- et al., I958). Complete atrioventricular block, one version in whom they attempted to record His of the frequent arrhythmias (Walker et al., I958), bundle electrograms. may be a major factor in the morbidity and mor- The purpose of this study was to evaluate the tality in these patients, sometimes necessitat- technique of His bundle recording in the study of on September 27, 2021 by guest. Protected copyright. ing an artificial pacemaker. In evaluation of atrioventricular conduction in patients with ven- patients with atrioventricular conduction disturb- tricular inversion in sinus rhythm as well as with ances from several causes, the bundle of His electro- partial and complete AV block. gram has proved to be a helpful new technique (Scherlag et al., i969; Brodsky et al., I97I; Damato Subjects and methods et al., 1969; Roberts and Olley, I972). Since the The His bundle potential was recorded in 7 patients arrhythmias of patients with ventricular inversion with ventricular inversion during diagnostic cardiac are frequently complex, it seems likely that record- catheterization, using the percutaneous sheath femoral ings of His bundle potentials would be helpful in vein approach. The patients were sedated with meperi- their management. However, there is a theoretical dine, promethazine, and chlorpromazine. None was difficulty in recording and interpreting the His receiving digitalis or other cardioactive medications. Bi- bundle electrogram in patients with ventricular and tripolar electrode catheters were used with inter- inversion because of inversion of the conduction electrode distances of either 2 or IO mm. The technique was the same as that used in subjects with non-inverted Received 5 March 1974. ventricles. The tip of the catheter was positioned in the 1Supported in part by a grant from the National Institutes of apex of the right-sided morphological left ventricle and Health, United States Public Health Service, and by a withdrawn with clockwise rotation (Narula et al., I971). USPH Grant from the General Clinical Research Branch, During this withdrawal several potentials could be National Institutes of Health. sequentially recorded between the low right atrium and Br Heart J: first published as 10.1136/hrt.36.10.971 on 1 October 1974. Downloaded from 972 Gillette, Reitman, Mullins, Williams, Dawson, JYr., and McNamara ventricle potentials. As the catheter was withdrawn, the Results became closer to the low atrium middle potential right could be recorded in all 7 potential. The discrete sharp potential closest to the low The His bundle potential was the method right atrium potential was taken as the His bundle subjects in which it attempted by potential. Because of the difficulties of inserting multiple described above. No modifications in technique catheters in children, atrial placing was carried out only were necessary because of the ventricular inversion. once. His bundle pacing was not attempted. The cath- The intervals recorded for LRA-H, HV, and LB- eters were connected to a photographic recorder through V are found in the Table. an Electronics for Medicine junction box. Records were Three subjects were in sinus rhythm with normal made at I00 and 200 mm per second with 0o02 sec or I PR interval and normal QRS duration at the time of used were sec time lines. The frequency band widths electrophysiological study (Cases I, 5, and 7). In 40-50o Hz. Principles of electrical safety in the labora- them normal resting LRA-H and HV intervals tory were followed closely, since the electrode catheter re- creates a conduction of potential electrical hazard. were found (Fig. i). Case 5, who had recently All measurements were made from the first rapid covered from surgical complete atrioventricular deflection of one potential to the first rapid deflection block, was stressed by atrial pacing to a rate of 133. of the next. Three different intervals were searched for Repeatedly at this rate he developed Mobitz II and measured when possible: the low right atrium to second-degree block by suddenly dropping a beat. His (LRA-H), the His to ventricle (HV), and the mor- The block was between the His and left bundle- phological left (right-sided) bundle-branch to ventricle branch potential (Fig. 2). (LB-V). The left bundle-branch is defined as the first Two subjects in sinus rhythm showed first- division of the common bundle, which in ventricular in- version is found in the morphological left (right-sided) degree atrioventricular block at the time of study ventricle. (Cases 3 and 6). Case 3, whose surface electrocardio- Subjects ranged in age from 22 months to 29 years gram showed a complete bundle-branch block (Table). Ventricular inversion was identified by car- pattem (Fig. 3) demonstrated both LRA-H and diac catheterization and angiography, and each patient HV prolongation on his His bundle electrogram had the characteristic leftward initial deflection of the (Fig. 4). When the catheter was advanced slightly QRS complex on the transverse plane of the surface farther into the right-sided ventricle, the His electrocardiogram. Two of the subjects had congenital potential was much less well recorded, but a dis- atrioventricular block and the other were third-degree 5 crete potential could be seen after each ventricular in sinus rhythm at the time of the study. One of these 5 depolarization (Fig. 5). The second subject (Case 6) had only recently recovered from surgical third-degree http://heart.bmj.com/ atrioventricular block. Atrial pacing was carried out in with first-degree atrioventricular block had a normal this patient in order to elicit a potential atrioventricular QRS duration and showed only LRA-H prolonga- block. tion. TABLE Results of His bundle electrocardiogram study in patients with ventricular inversion Case Age Associated lesions Rhythm by QRS LRA-H HV LB-V No. (yr) electrocardiogram duration (msec) (msec) (msec) (msec) on September 27, 2021 by guest. Protected copyright. I 5 Pulmonary stenosis Sinus 8o 60 45 25 2 I ° Left-sided AV valve Complete atrio- regurgitation ventricular block go I50 Blocked 20 3 I8 Double inlet left ventricle, Sinus, first-degree pulmonary stenosis, post- atrioventricular operative Blalock-Taussig block I20 150 I00 Not shunt recorded 4 29 Ventricular septal defect, Complete atrio- pulmonary stenosis ventricular block go 120 Blocked Not recorded 5 9 Postoperative valve and Sinus subvalvar pulmonary stenosis 70 80 50 20 6 14 Ventricular septal defect, Sinus, first-degree valvar and subvalvar atrioventricular pulmonary stenosis block 8o I40 35 Not recorded 7 I3 Double inlet left ventricle, Sinus pulmonary stenosis 85 I00 50 30 Br Heart J: first published as 10.1136/hrt.36.10.971 on 1 October 1974. Downloaded from Electrophysiology of ventricular inversion 973 aVr t -"-,aI -%,--.Olp N. - 4. V HBE LRA LA te~~ < ~~~ M 't.%;Fw .W. .- . e-- ,-#w c8 0Omsoc FIG. I His bundle electrogram of Case I with simultaneous surface lead a VR showing normal LRA-H, HV, and LB-V intervals. During the tracing the catheter movedfarther into the ven- tricle, moving from the region of the His bundle to that of the right-sided 'left' bundle-branch. http://heart.bmj.com/ At the time of study, two subjects were felt to be mal and distal electrode pairs while the H1 was only in complete atrioventricular block (Cases 2 and 4). recorded by the proximal electrodes pair. Both had documentation of their complete atrio- ventricular block at the time of their first electro- cardiogram which was taken in the first year of life Discussion (Fig. 6). Neither had any history of Adams-Stokes His bundle studies have contributed to the funda- attacks. Both had incomplete bundle-branch block mental understanding of conduction disturbances on September 27, 2021 by guest.
Recommended publications
  • 4B. the Heart (Cor) 1
    Henry Gray (1821–1865). Anatomy of the Human Body. 1918. 4b. The Heart (Cor) 1 The heart is a hollow muscular organ of a somewhat conical form; it lies between the lungs in the middle mediastinum and is enclosed in the pericardium (Fig. 490). It is placed obliquely in the chest behind the body of the sternum and adjoining parts of the rib cartilages, and projects farther into the left than into the right half of the thoracic cavity, so that about one-third of it is situated on the right and two-thirds on the left of the median plane. Size.—The heart, in the adult, measures about 12 cm. in length, 8 to 9 cm. in breadth at the 2 broadest part, and 6 cm. in thickness. Its weight, in the male, varies from 280 to 340 grams; in the female, from 230 to 280 grams. The heart continues to increase in weight and size up to an advanced period of life; this increase is more marked in men than in women. Component Parts.—As has already been stated (page 497), the heart is subdivided by 3 septa into right and left halves, and a constriction subdivides each half of the organ into two cavities, the upper cavity being called the atrium, the lower the ventricle. The heart therefore consists of four chambers, viz., right and left atria, and right and left ventricles. The division of the heart into four cavities is indicated on its surface by grooves. The atria 4 are separated from the ventricles by the coronary sulcus (auriculoventricular groove); this contains the trunks of the nutrient vessels of the heart, and is deficient in front, where it is crossed by the root of the pulmonary artery.
    [Show full text]
  • Chapter 12 the Cardiovascular System: the Heart Pages
    CHAPTER 12 THE CARDIOVASCULAR SYSTEM: THE HEART PAGES 388 - 411 LOCATION & GENERAL FEATURES OF THE HEART TWO CIRCUIT CIRCULATORY SYSTEM DIVISIONS OF THE HEART FOUR CHAMBERS Right Atrium Left Atrium Receives blood from Receives blood from the systemic circuit the pulmonary circuit FOUR CHAMBERS Right Ventricle Left Ventricle Ejects blood into the Ejects blood into the pulmonary circuit systemic circuit FOUR VALVES –ATRIOVENTRICULAR VALVES Right Atrioventricular Left Atrioventricular Valve (AV) Valve (AV) Tricuspid Valve Bicuspid Valve and Mitral Valve FOUR VALVES –SEMILUNAR VALVES Pulmonary valve Aortic Valve Guards entrance to Guards entrance to the pulmonary trunk the aorta FLOW OF BLOOD MAJOR VEINS AND ARTERIES AROUND THE HEART • Arteries carry blood AWAY from the heart • Veins allow blood to VISIT the heart MAJOR VEINS AND ARTERIES ON THE HEART Coronary Circulation – Supplies blood to the muscle tissue of the heart ARTERIES Elastic artery: Large, resilient vessels. pulmonary trunk and aorta Muscular artery: Medium-sized arteries. They distribute blood to skeletal muscles and internal organs. external carotid artery of the neck Arteriole: Smallest of arteries. Lead into capillaries VEINS Large veins: Largest of the veins. Superior and Inferior Vena Cava Medium-sized veins: Medium sized veins. Pulmonary veins Venules: the smallest type of vein. Lead into capillaries CAPILLARIES Exchange of molecules between blood and interstitial fluid. FLOW OF BLOOD THROUGH HEART TISSUES OF THE HEART THE HEART WALL Pericardium Outermost layer Serous membrane Myocardium Middle layer Thick muscle layer Endocardium Inner lining of pumping chambers Continuous with endothelium CARDIAC MUSCLE Depend on oxygen to obtain energy Abundant in mitochondria In contact with several other cardiac muscles Intercalated disks – interlocking membranes of adjacent cells Desmosomes Gap junctions CONNECTIVE TISSUE Wrap around each cardiac muscle cell and tie together adjacent cells.
    [Show full text]
  • Arrhythmia Study Guide – 2 – Sinus and Atrial Rhythms
    Arrhythmia Study Guide – 2 – Sinus and Atrial Rhythms Review of Conduction System: SA Node initiates electrical impulses at a rate of 60 – 100 BPM and is the primary pacemaker of the heart. The AV node recieves the impulse from the SA Node through the internodal pathways. The AV Node then delays relay ofthe impulse to the Bundle of His to allow the atria to empty into the ventricles before the ventricular contraction starts. The Bundle of His relays the impulse to the right and left bundle branches. The bundle branches relay to the Purkinje Fibers and the Purkinje Fibers deliver the impulse to the ventricular myocardium to trigger the ventricular contraction. If the SA Node fails to fire, or fires at a much slower rate, the AV node may take over as pacemaker at a rate of 40 - 60 BPM. If the AV Node fails or fires at a much slower rate, the Perkinjie fibers may act as pacemaker at a rate of 20 – 40 BPM. The ECG is a graph of the electrical activity of the heart. Knowing how the heart conducts the electrical impulses provides a strong basis for understanding the ECG strip – and figuring out what is or is not working correctly. SINUS RHYTHMS Rhythms that originate from the SA Node are characterized by upright uniform P-waves followed by a QRS complex. The P-R interval is constant, and the atrial (P-waves) and ventricular (QRS Complex) rhythms are regular. A rate less than 60 is bradycardic, 60 to 100 is normal, over 100 is tachycardic.
    [Show full text]
  • Ventricular Anatomy for the Electrophysiologist (Part
    Ventricular Anatomy for the REVIEW Electrophysiologist (Part II) SPECIAL 서울대학교 의과대학 병리학교실 서정욱 이화여자대학교 의학전문대학원 김문영 ABSTRACT The conduction fibers and Purkinje network of the ventricular myocardium have their peculiar location and immuno-histochemical characteristics. The bundle of His is located at the inferior border of the membranous septum, where the single trunk ramifies into the left and right bundle branches. The left bundle branches are clearly visible at the surface. The right bundles are hidden in the septal myocardium and it is not easy to recognize them. The cellular characters of the conduction bundles are modified myocardial cells with less cytoplasmic filaments. Myoglobin is expressed at the contractile part, whereas CD56 is expressed at the intercalated disc. A fine meshwork of synaptophysin positive processes is noted particularly at the nodal tissue. C-kit positive cells are scattered, but their role is not well understood. Purkinje cells are a peripheral continuation of bundles seen at the immediate subendocardium of the left ventricle. Key words: ■ conduction system ■ Purkinje network ■ pathology ■ arrhythmia ■ electrophysiology Introduction human heart. In this brief review, the histological characteristics of conduction cells, stained by The functional assessment of abnormal cardiac conventional and immuno-histochemical staining, are 3 rhythm and a targeted treatment based on demonstrated in the second part of the review. electrophysiologic studies are successful advances in cardiology.1 Morphological assessment or confirmation The characteristic location of the ventricular of hearts with such abnormalities is rare, not only due conduction system to the limited availability of human hearts but also inherent technological limitations of existing The atrioventricular node is situated in its technology.2 Classical morphological approaches and subendocardial location at the triangle of Koch.
    [Show full text]
  • Congenitally Corrected Transposition Gonzalo a Wallis1*, Diane Debich-Spicer2,3 and Robert H Anderson4
    Wallis et al. Orphanet Journal of Rare Diseases 2011, 6:22 http://www.ojrd.com/content/6/1/22 REVIEW Open Access Congenitally corrected transposition Gonzalo A Wallis1*, Diane Debich-Spicer2,3 and Robert H Anderson4 Abstract Congenitally corrected transposition is a rare cardiac malformation characterized by the combination of discordant atrioventricular and ventriculo-arterial connections, usually accompanied by other cardiovascular malformations. Incidence has been reported to be around 1/33,000 live births, accounting for approximately 0.05% of congenital heart malformations. Associated malformations may include interventricular communications, obstructions of the outlet from the morphologically left ventricle, and anomalies of the tricuspid valve. The clinical picture and age of onset depend on the associated malformations, with bradycardia, a single loud second heart sound and a heart murmur being the most common manifestations. In the rare cases where there are no associated malformations, congenitally corrected transposition can lead to progressive atrioventricular valvar regurgitation and failure of the systemic ventricle. The diagnosis can also be made late in life when the patient presents with complete heart block or cardiac failure. The etiology of congenitally corrected transposition is currently unknown, and with an increase in incidence among families with previous cases of congenitally corrected transposition reported. Diagnosis can be made by fetal echocardiography, but is more commonly made postnatally with a combination of clinical signs and echocardiography. The anatomical delineation can be further assessed by magnetic resonance imaging and catheterization. The differential diagnosis is centred on the assessing if the patient is presenting with isolated malformations, or as part of a spectrum.
    [Show full text]
  • Cardiology Self Learning Package
    Cardiology Self Learning Package Module 1: Anatomy and Physiology of the Module 1: Anatomy and Physiology of the Heart Heart. Page 1 Developed by Tony Curran (Clinical Nurse Educator) and Gill Sheppard (Clinical Nurse Specialist) Cardiology (October 2011) CONTENT Introduction…………………………………………………………………………………Page 3 How to use the ECG Self Learning package………………………………………….Page 4 Overview of the Heart…………………………………………………...…………..…….Page 5 Location, Size and Shape of the Heart…………………………………………………Page 5 The Chambers of the Heart…………….………………………………………..……….Page 7 The Circulation System……………………………………….………………..…………Page 8 The Heart Valve Anatomy………………………….…………………………..…………Page 9 Coronary Arteries…………………………………………….……………………..……Page 10 Coronary Veins…………………………………………………………………..……….Page 11 Cardiac Muscle Tissue……………………………………………………………..……Page 12 The Conduction System………………………………………………………………...Page 13 Cardiac Cycle……………………………………………………………………………..Page 15 References…………………………………………………………………………………Page 18 Module Questions………………………………………………………………………..Page 19 Module Evaluation Form………………………………………………………………..Page 22 [Module 1: Anatomy and Physiology of the Heart Page 2 Developed by Tony Curran (Clinical Nurse Educator) and Gill Sheppard (Clinical Nurse Specialist) Cardiology (October 2011) INTRODUCTION Welcome to Module 1: Anatomy and Physiology of the Heart. This self leaning package is designed to as tool to assist nurse in understanding the hearts structure and how the heart works. The goal of this module is to review: Location , size and shape of the heart The chambers of the heart The circulation system of the heart The heart’s valve anatomy Coronary arteries and veins Cardiac muscle tissue The conduction system The cardiac cycle This module will form the foundation of your cardiac knowledge and enable you to understand workings of the heart that will assist you in completing other modules. Learning outcomes form this module are: To state the position of the heart, the size and shape.
    [Show full text]
  • Subpulmonic Obstruction by Membranous Ventricular Septal Aneurysm in Congenitally Corrected Transposition of Great Arteries
    © 2013, Wiley Periodicals, Inc. DOI: 10.1111/echo.12279 Echocardiography The Windsock Syndrome: Subpulmonic Obstruction by Membranous Ventricular Septal Aneurysm in Congenitally Corrected Transposition of Great Arteries Louai Razzouk, M.D., M.P.H., Robert M. Applebaum, M.D., Charles Okamura, M.D., and Muhamed Saric, M.D., Ph.D. Leon H. Charney Division of Cardiology, New York University Langone Medical Center, New York, New York Anomalies of the membranous portion of the interventricular septum include perimembranous ventric- ular septal defect and/or membranous septal aneurysm (MSA). In congenitally corrected transposition of the great arteries (L-TGA in sinus solitus), the combination of ventricular inversion and arterial trans- position creates a unique anatomic substrate that fosters subpulmonic left ventricular outflow tract obstruction by an MSA. The combination of an L-TGA with subpulmonic obstruction by an MSA is referred to as the windsock syndrome. We report a case of windsock syndrome in a 25-year-old man which is to our knowledge the first three-dimensional echocardiographic description of this congenital entity. (Echocardiography 2013;30:E243-E248) Key words: congenitally corrected transposition of great arteries, L-TGA, obstruction, aneurysm, windsock Anomalies of the membranous portion of the (LV) into the lower pressure right ventricle (RV) interventricular septum include perimembranous rarely causes significant right ventricular outflow ventricular septal defect and/or membranous tract (RVOT) obstruction. This is because the septal aneurysm (MSA). Anatomically, MSA fre- MSA is located infracristal and distant from the quently resembles a windsock, a conical cloth pulmonic valve (PV).1 tube used to show wind direction. In congenitally corrected transposition of the In otherwise normal hearts, the protrusion of great arteries (TGA) (also referred to as L-TGA the MSA from the higher pressure left ventricle in situs solitus) the combination of ventricular Figure 1.
    [Show full text]
  • Isolated Ventricular Inversion with Situs Solitus
    Br Heart J: first published as 10.1136/hrt.37.3.293 on 1 March 1975. Downloaded from British HeartJournal, I975$ 37, 293-304. Isolated ventricular inversion with situs solitus M. Quero-Jimenez and I. Raposo-Sonnenfeld From Servicio de Cardiologia Pediatrica, Clinica Infantil La Paz, Madrid, Spain The clinical and anatomicalfindings in two patients with isolated ventricular inversion and situs solitus are described. The other 4 previously published cases are reviewed. The 6 patients with this malformation, all without pulmonary stenosis, presented a clinical picture of cyanotic congenital heart disease, associated with increased pulmonary blood flow (hypoxaemia and cardiac failure). The importance of different diagnostic tests is discussed and it is concluded that angiocardiography is the only definitive means of establishing the diagnosis. Because the physiopathological disturbance is the same as in transposition of the great arteries, both malformations should be similarly considered vith respect to diagnosis and treatment. Never- theless, the high incidence ofcertain associated malformations in cases ofisolated ventricular inversion adds to difficulty in diagnosis, and makes a good result from the Mustard procedure less likely than in transposition of the great arteries. In I966 Van Praagh and Van Praagh described a conus, conal septum, and conal free wall, as used in malformation characterized by ventricular inversion this paper. with situs solitus of the viscera and atria and nor- When present, the subaortic and subpulmonary mally
    [Show full text]
  • Redalyc.Conduction System in the Swine Heart: Essential Landmarks
    Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Mingsakul, Thaworn; Surachon, Preeyaporn; Somana, Reon Conduction System in the Swine Heart: Essential Landmarks for Gross Dissection Acta Scientiae Veterinariae, vol. 42, núm. 1, enero, 2014, pp. 1-8 Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil Available in: http://www.redalyc.org/articulo.oa?id=289029240048 Acta Scientiae Veterinariae, ISSN (Printed Version): 1678-0345 [email protected] Universidade Federal do Rio Grande do Sul Brasil How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Acta Scientiae Veterinariae, 2014. 42: 1211. RESEARCH ARTICLE ISSN 1679-9216 Pub. 1211 Conduction System in the Swine Heart: Essential Landmarks for Gross Dissection Thaworn Mingsakul1, Preeyaporn Surachon1 & Reon Somana2 ABSTRACT Background: The components of the cardiac conduction system (CCS) were discovered almost two centuries and presented in the diagrammatic forms. This should be due to the diffi culty in distinguishing the CCS from the surrounding cardiac tissues and the lack of information concerning the precise landmarks for gross dissection. Furthermore the CCS in pig, the animal regarded as a suitable model for the assessment of catheter based intervention, has not been reported. The aims of the present study were to demonstrate the gross anatomic architecture of CCS in the swine heart, and to provide the valuable landmarks for the gross anatomic dissection of the CCS. Materials, Methods & Results: Twenty hearts of adult Large White pigs (Sus Scrofa domesticus) were used.
    [Show full text]
  • PHV Short.Indd
    Anatomy & physiology: The heart Cardiac electrical conductance A Sinoatrial (SA) node D Right bundle branch B Atrioventricular (AV) node E Left bundle branch A C Atrioventricular bundle of His F Purkinje fibres The sinoatrial (SA) node is the heart's natural pacemaker, B containing cells that generate electrical impulses which spread F through the atria, triggering contraction of the atria, forcing blood into the ventricles, and stimulating the atrioventricular A (AV) node. E The AV node is linked with the atrioventricular bundle of His C which transmits impulses to the left and right bundle branches and then to the Purkinje fibres which surround the ventricles. The electrical impulses travel through the Purkinje fibres D causing the ventricles to contract and blood forced out of the heart. F Electrocardiogram (ECG) Heart construction The heart is a muscular, cone-shaped organ located behind The ECG traces the course of the cardiac impulse by the sternum and is approximately the same size as the recording the change in electrical potential on the surface of patient's closed fist. the body. Various parts of the ECG are associated with the travel of electrical impulses though the heart. The heart walls are made up the three structures: the pericardium, myocardium and endocardium. The P wave represents atrial depolarisation which causes the atria to contract. The pericardium is a thick fibrous membrane which surrounds the heart. Its function is to anchor the heart and Q is when the impulses arrive at the atrioventricular (AV) prevents over distension (expanding too much). node. The myocardium is the central layer of the heart and is The QRS complex represents ventricular depolarisation and formed from cardiac muscle tissue, it is this muscle which atrial repolarisation (ventricles contract and atria relax and provides the force which pumps the blood around the body.
    [Show full text]
  • Cardiovascular Unit PPT
    Cardiovascular Unit PPT Careers Bell ringer: Turn to careers section in Unit packet (last page) fill in Career guided notes • Take a minute and go to each of the 4 Career stations around the room. 1. Read through the pamphlet 2. Fill in Career chart (on last page of unit packet) 3. Read about the career litigation suit on the back of the pamphlet. 4. Move on to another station Heart Anatomy: Flashcards: •You will need to: •Cut •Hole punch •Get 1 color Review Heart Anatomy •Quizlet.live Video segment “The Matter of the Heart”: Watch the first time then take notes Video on teacher website Blood flow coloring: • When finished fill out the questions to the right of coloring in packet. • Try without book, then book Path of Blood: blood flow 3. Right atrium 4. Tricuspid valve 5. Right ventricle 2. superior/inferior vena cava 6. Pulmonary arteries 1. All parts of the body 7. lungs 12. aorta 8.Pulmonary veins 11. Left ventricle 10. bicuspid/mitral 9. Left atrium valve Blood flow: a little more realistically Review Heart Anatomy: Using Heart Models •You and a partner will need a wet pen, cloth eraser, heart model, dry erase pen/eraser •PLEASE: •Label the heart model •Write 4 directional term sentences comparing 2 structures of the heart. Quick Quiz: Make a new Quizlet set: Cardiovascular ADL meds medication am Morning MI Myocardial infarction BLS Basic life support NPO bpm OR B/P, BP preop Before surgery CCU postop After surgery CHD RR CHF CXR DOB Dx ECG/ EKG Etiol Keep quizlet open Shiny desk: Medical abbreviations practice 1.
    [Show full text]
  • Juxtaposition of the Atrial Appendages* a Sign of Severe Cyanotic Congenital Heart Disease BARBARA P
    Brit. Heart 7., 1968, 30, 269. Juxtaposition of the Atrial Appendages* A Sign of Severe Cyanotic Congenital Heart Disease BARBARA P. P. MELHUISH AND RICHARD VAN PRAAGHt From the Congenital Heart Disease Research and Training Center, Hektoen Institute for Medical Research, and the Department ofPediatrics, Northwestern University School of Medicine, Chicago, Illinois, U.S.A. Juxtaposition of the atrial appendages is an The previously published 21 post-mortem cases of apparently rare congenital cardiac anomaly in which juxtaposition of the atrial appendages were carefully the atrial appendages lie side by side, both to the reassessed (Table III). left or to the right of the great arteries, known as In view of the high incidence of transposition of the great arteries (92%) in these 42 cases ofjuxtaposition left or right juxtaposition of the atrial appendages, of the atrial appendages (Tables I-IV), they were com- respectively (Dixon, 1954). pared with a control group of 100 post-mortem cases of This abnormality now may readily be diagnosed transposition of the great arteries that were randomly by angiocardiography (Ellis and Jameson, 1963), selected, exceptthat juxtaposition ofthe atrial appendages and it is widely regarded as an ominous sign of was not present (Table V) (from Paul, Van Praagh, and severe cyanotic congenital heart disease. Beyond Van Praagh, 1968). This control study was undertaken this general impression, however, the specific types in an effort to discover the difference between trans- of cardiac malformation likely to be associated with position with and without juxtaposed atrial appendages. juxtaposition of the atrial appendages, and the rela- Sections of human embryos from Horizons 2 to 23 (Streeter, 1942, 1945, 1948) were studied histologically tive frequencies of each, remain far from clear.
    [Show full text]