The Low-Mass Pre-Main-Sequence Population of Sco OB1 ? Francesco Damiani1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rosette Nebula and Monoceros Loop
Oshkosh Scholar Page 43 Studying Complex Star-Forming Fields: Rosette Nebula and Monoceros Loop Chris Hathaway and Anthony Kuchera, co-authors Dr. Nadia Kaltcheva, Physics and Astronomy, faculty adviser Christopher Hathaway obtained a B.S. in physics in 2007 and is currently pursuing his masters in physics education at UW Oshkosh. He collaborated with Dr. Nadia Kaltcheva on his senior research project and presented their findings at theAmerican Astronomical Society meeting (2008), the Celebration of Scholarship at UW Oshkosh (2009), and the National Conference on Undergraduate Research in La Crosse, Wisconsin (2009). Anthony Kuchera graduated from UW Oshkosh in May 2008 with a B.S. in physics. He collaborated with Dr. Kaltcheva from fall 2006 through graduation. He presented his astronomy-related research at Posters in the Rotunda (2007 and 2008), the Wisconsin Space Conference (2007), the UW System Symposium for Undergraduate Research and Creative Activity (2007 and 2008), and the American Astronomical Society’s 211th meeting (2008). In December 2009 he earned an M.S. in physics from Florida State University where he is currently working toward a Ph.D. in experimental nuclear physics. Dr. Nadia Kaltcheva is a professor of physics and astronomy. She received her Ph.D. from the University of Sofia in Bulgaria. She joined the UW Oshkosh Physics and Astronomy Department in 2001. Her research interests are in the field of stellar photometry and its application to the study of Galactic star-forming fields and the spiral structure of the Milky Way. Abstract An investigation that presents a new analysis of the structure of the Northern Monoceros field was recently completed at the Department of Physics andAstronomy at UW Oshkosh. -
Spatial and Kinematic Structure of Monoceros Star-Forming Region
MNRAS 476, 3160–3168 (2018) doi:10.1093/mnras/sty447 Advance Access publication 2018 February 22 Spatial and kinematic structure of Monoceros star-forming region M. T. Costado1‹ and E. J. Alfaro2 1Departamento de Didactica,´ Universidad de Cadiz,´ E-11519 Puerto Real, Cadiz,´ Spain. Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/3160/4898067 by Universidad de Granada - Biblioteca user on 13 April 2020 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo 3004, E-18080 Granada, Spain Accepted 2018 February 9. Received 2018 February 8; in original form 2017 December 14 ABSTRACT The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively. Key words: techniques: radial velocities – astronomical data bases: miscellaneous – parallaxes – stars: formation – stars: kinematics and dynamics – open clusters and associations: general. Hoogerwerf & De Bruijne 1999;Lee&Chen2005; Lombardi, 1 INTRODUCTION Alves & Lada 2011). -
How to Make $1000 with Your Telescope! – 4 Stargazers' Diary
Fort Worth Astronomical Society (Est. 1949) February 2010 : Astronomical League Member Club Calendar – 2 Opportunities & The Sky this Month – 3 How to Make $1000 with your Telescope! – 4 Astronaut Sally Ride to speak at UTA – 4 Aurgia the Charioteer – 5 Stargazers’ Diary – 6 Bode’s Galaxy by Steve Tuttle 1 February 2010 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 Algol at Minima Last Qtr Moon Æ 5:48 am 11:07 pm Top ten binocular deep-sky objects for February: M35, M41, M46, M47, M50, M93, NGC 2244, NGC 2264, NGC 2301, NGC 2360 Top ten deep-sky objects for February: M35, M41, M46, M47, M50, M93, NGC 2261, NGC 2362, NGC 2392, NGC 2403 7 8 9 10 11 12 13 Algol at Minima Morning sports a Moon at Apogee New Moon Æ super thin crescent (252,612 miles) 8:51 am 7:56 pm Moon 8:00 pm 3RF Star Party Make use of the New Moon Weekend for . better viewing at the Dark Sky Site See Notes Below New Moon New Moon Weekend Weekend 14 15 16 17 18 19 20 Presidents Day 3RF Star Party Valentine’s Day FWAS Traveler’s Guide Meeting to the Planets UTA’s Maverick Clyde Tombaugh Ranger 8 returns Normal Room premiers on Speakers Series discovered Pluto photographs and NatGeo 7pm Sally Ride “Fat Tuesday” Ash Wednesday 80 years ago. impacts Moon. 21 22 23 24 25 26 27 Algol at Minima First Qtr Moon Moon at Perigee Å (222,345 miles) 6:42 pm 12:52 am 4 pm {Low in the NW) Algol at Minima Æ 9:43 pm Challenge binary star for month: 15 Lyncis (Lynx) Challenge deep-sky object for month: IC 443 (Gemini) Notable carbon star for month: BL Orionis (Orion) 28 Notes: Full Moon Look for a very thin waning crescent moon perched just above and slightly right of tiny Mercury on the morning of 10:38 pm Feb. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Nebula in NGC 2264
Durham E-Theses The polarisation of the cone(IRN) Nebula in NGC 2264 Hill, Marianne C.M. How to cite: Hill, Marianne C.M. (1991) The polarisation of the cone(IRN) Nebula in NGC 2264, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6098/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk THE POLARISATION OF THE CONE(IRN) NEBULA IN NGC 2264 MARIANNE C. M. HILL A Thesis submitted to the University of Durham for the degree of Master of Science. The copyright of this thesis rests with the author. No quotation from it should be published without prior consent and information derived from it should be acknowledged. Department of Physics. September 1991 The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. -
List of Bright Nebulae Primary I.D. Alternate I.D. Nickname
List of Bright Nebulae Alternate Primary I.D. Nickname I.D. NGC 281 IC 1590 Pac Man Neb LBN 619 Sh 2-183 IC 59, IC 63 Sh2-285 Gamma Cas Nebula Sh 2-185 NGC 896 LBN 645 IC 1795, IC 1805 Melotte 15 Heart Nebula IC 848 Soul Nebula/Baby Nebula vdB14 BD+59 660 NGC 1333 Embryo Neb vdB15 BD+58 607 GK-N1901 MCG+7-8-22 Nova Persei 1901 DG 19 IC 348 LBN 758 vdB 20 Electra Neb. vdB21 BD+23 516 Maia Nebula vdB22 BD+23 522 Merope Neb. vdB23 BD+23 541 Alcyone Neb. IC 353 NGC 1499 California Nebula NGC 1491 Fossil Footprint Neb IC 360 LBN 786 NGC 1554-55 Hind’s Nebula -Struve’s Lost Nebula LBN 896 Sh 2-210 NGC 1579 Northern Trifid Nebula NGC 1624 G156.2+05.7 G160.9+02.6 IC 2118 Witch Head Nebula LBN 991 LBN 945 IC 405 Caldwell 31 Flaming Star Nebula NGC 1931 LBN 1001 NGC 1952 M 1 Crab Nebula Sh 2-264 Lambda Orionis N NGC 1973, 1975, Running Man Nebula 1977 NGC 1976, 1982 M 42, M 43 Orion Nebula NGC 1990 Epsilon Orionis Neb NGC 1999 Rubber Stamp Neb NGC 2070 Caldwell 103 Tarantula Nebula Sh2-240 Simeis 147 IC 425 IC 434 Horsehead Nebula (surrounds dark nebula) Sh 2-218 LBN 962 NGC 2023-24 Flame Nebula LBN 1010 NGC 2068, 2071 M 78 SH 2 276 Barnard’s Loop NGC 2149 NGC 2174 Monkey Head Nebula IC 2162 Ced 72 IC 443 LBN 844 Jellyfish Nebula Sh2-249 IC 2169 Ced 78 NGC Caldwell 49 Rosette Nebula 2237,38,39,2246 LBN 943 Sh 2-280 SNR205.6- G205.5+00.5 Monoceros Nebula 00.1 NGC 2261 Caldwell 46 Hubble’s Var. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
The Monitor Project: Searching for Occultations in Young Open Clusters
Mon. Not. R. Astron. Soc. 000, 1–26 (2002) Printed 26 June 2018 (MN LATEX style file v2.2) The Monitor project: Searching for occultations in young open clusters S. Aigrain1⋆, S. Hodgkin1, J. Irwin1, L. Hebb2, M. Irwin1, F. Favata3, E. Moraux4, F. Pont5 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, United Kingdom 2School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland 3ESA/ESTEC, Keplerlaan 1, PO Box 299, 2200 AG Noordwijk, The Netherlands 4Laboratoire d’Astrophysique, Observatoire de Grenoble, BP 53, F-38041 Grenoble C´edex 9, France 5Observatoire Astronomique de l’Universit´ede Gen`eve, 51, chemin des Maillettes, CH-1290 Sauverny, Switzerland Accepted . Received . ; in original form . ABSTRACT The Monitor project is a photometric monitoring survey of nine young (1–200Myr) clus- ters in the solar neighbourhoodto search for eclipses by very low mass stars and brown dwarfs and for planetarytransits in the light curves of cluster members.It beganin the autumnof 2004 and uses several 2 to 4m telescopes worldwide. We aim to calibrate the relation between age, mass, radius and where possible luminosity, from the K-dwarf to the planet regime, in an age range where constraints on evolutionary models are currently very scarce. Any detection of an exoplanet in one of our youngest targets (. 10Myr) would also provide important constraints on planet formation and migration timescales and their relation to proto-planetary disc life- times. Finally, we will use the light curves of cluster members to study rotation and flaring in low-mass pre-main sequence stars. -
SAA 100 Club
S.A.A. 100 Observing Club Raleigh Astronomy Club Version 1.2 07-AUG-2005 Introduction Welcome to the S.A.A. 100 Observing Club! This list started on the USENET newsgroup sci.astro.amateur when someone asked about everyone’s favorite, non-Messier objects for medium sized telescopes (8-12”). The members of the group nominated objects and voted for their favorites. The top 100 objects, by number of votes, were collected and ranked into a list that was published. This list is a good next step for someone who has observed all the objects on the Messier list. Since it includes objects in both the Northern and Southern Hemispheres (DEC +72 to -72), the award has two different levels to accommodate those observers who aren't able to travel. The first level, the Silver SAA 100 award requires 88 objects (all visible from North Carolina). The Gold SAA 100 Award requires all 100 objects to be observed. One further note, many of these objects are on other observing lists, especially Patrick Moore's Caldwell list. For convenience, there is a table mapping various SAA100 objects with their Caldwell counterparts. This will facilitate observers who are working or have worked on these lists of objects. We hope you enjoy looking at all the great objects recommended by other avid astronomers! Rules In order to earn the Silver certificate for the program, the applicant must meet the following qualifications: 1. Be a member in good standing of the Raleigh Astronomy Club. 2. Observe 80 Silver observations. 3. Record the time and date of each observation. -
Photometry and Membership for Low Mass Stars in the Young Open Cluster NGC 2516
A&A 375, 863–889 (2001) Astronomy DOI: 10.1051/0004-6361:20010918 & c ESO 2001 Astrophysics Photometry and membership for low mass stars in the young open cluster NGC 2516 R. D. Jeffries1,?,M.R.Thurston2, and N. C. Hambly3 1 Department of Physics, Keele University, Keele, Staffordshire ST5 5BG, UK 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3 Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK Received 15 May 2001 / Accepted 26 June 2001 Abstract. We present the results of a 0.86 square degree CCD photometric survey of the open cluster NGC 2516, which has an age of about 150 Myr and may have a much lower metallicity than the similarly-aged Pleiades. Our BVIc survey of cluster members is complete to V ' 20 and is used to select a preliminary catalogue of 1254 low mass (0.2 <M<2.0 M ) cluster candidates, of which about 70–80 percent are expected to be genuine. After applying corrections for contamination by non-members and adding data for higher mass stars from the literature, we investigate the cluster binarity, luminosity and mass function, mass segregation and total mass. We find a binary fraction of 26 5 percent, for A to M-type systems with mass ratios between 0.6 and 1, which is very similar to the Pleiades. The mass function is metallicity and evolutionary-model dependent, but consistent with a Salpeter-like law (dN/dlogM ∝ M −α, α =+1.47 0.11 or α =+1.67 0.11 for the solar and half-solar metallicity models of Siess et al. -
Caldwell Catalogue - Wikipedia, the Free Encyclopedia
Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers. -
Characterising Open Clusters in the Solar Neighbourhood with the Tycho-Gaia Astrometric Solution? T
A&A 615, A49 (2018) Astronomy https://doi.org/10.1051/0004-6361/201731251 & © ESO 2018 Astrophysics Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution? T. Cantat-Gaudin1, A. Vallenari1, R. Sordo1, F. Pensabene1,2, A. Krone-Martins3, A. Moitinho3, C. Jordi4, L. Casamiquela4, L. Balaguer-Núnez4, C. Soubiran5, and N. Brouillet5 1 INAF-Osservatorio Astronomico di Padova, vicolo Osservatorio 5, 35122 Padova, Italy e-mail: [email protected] 2 Dipartimento di Fisica e Astronomia, Università di Padova, vicolo Osservatorio 3, 35122 Padova, Italy 3 SIM, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal 4 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain 5 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, UMR 5804, 33615 Pessac, France Received 26 May 2017 / Accepted 29 January 2018 ABSTRACT Context. The Tycho-Gaia Astrometric Solution (TGAS) subset of the first Gaia catalogue contains an unprecedented sample of proper motions and parallaxes for two million stars brighter than G 12 mag. Aims. We take advantage of the full astrometric solution available∼ for those stars to identify the members of known open clusters and compute mean cluster parameters using either TGAS or the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions, and TGAS parallaxes. Methods. We apply an unsupervised membership assignment procedure to select high probability cluster members, we use a Bayesian/Markov Chain Monte Carlo technique to fit stellar isochrones to the observed 2MASS JHKS magnitudes of the member stars and derive cluster parameters (age, metallicity, extinction, distance modulus), and we combine TGAS data with spectroscopic radial velocities to compute full Galactic orbits.