Sumoylation of HMGA2: Selective Destabilization of Promyelocytic Leukemia Protein Via Proteasome

Total Page:16

File Type:pdf, Size:1020Kb

Sumoylation of HMGA2: Selective Destabilization of Promyelocytic Leukemia Protein Via Proteasome 923 SUMOylation of HMGA2: selective destabilization of promyelocytic leukemia protein via proteasome Xuefei Cao,1 Carlos Clavijo,1 Xu Li,1,2 H. Helen Lin,2 Collectively, our results unveil a previously unrecognized Yuan Chen,3 Hsiu-Ming Shih,4 and David K. Ann1,2 effect by HMGA2 on the modulation of PML protein level, providing a novel mechanism underlying HMGA2 function 1Department of Pharmacology and Pharmaceutical Sciences, and underscoring the molecular basis for oncogenic pro- University of Southern California, Los Angeles, California; gression by HMGA2. [Mol Cancer Ther 2008;7(4):923–34] Departments of 2Molecular and Clinical Pharmacology, and 3Immunology, City of Hope, Duarte National Medical Center, Duarte, California; and 4Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China Introduction Members of the high mobility group A (HMGA1a, Abstract HMGA1b, and HMGA2) family of architectural transcrip- tion factors are distinguished by three reiterated ‘‘AT The HMGA2 architectural protein functions in a variety hooks’’ of 10 to 12 residues in each DNA binding motif, of cellular processes, such as cell growth, transcription and they are critical for a variety of cellular processes, regulation, neoplastic transformation, and progression. including gene transcription, induction of neoplastic Up-regulation of HMGA2 protein is observed in many transformation, and promotion of metastatic progression tumors and is associated with advanced cancers with poor (1, 2). The expression level of HMGA2 is maximal during prognoses. Although the expression and biochemical early stages of fetal development but is low in terminally properties of HMGA2 protein are regulated by microRNA differentiated cells (1). A strong correlation has been and phosphorylation, it is unknown whether HMGA2 established between HMGA2 protein expression and the activity can also be regulated by SUMOylation, and that relevant oncogenic phenotypes. First, HMGA2 expression is what is investigated in this report. We identified HMGA2 is implicated in malignant phenotypes of mesenchymal as as a SUMOylation target and showed that the expression well as epithelial origin (3–5). Second, the evidence for its of wild-type HMGA2, but not SUMOylation-defective direct role in tumorigenesis came from transfection of an HMGA2(2K/R), selectively lowered the steady-state level antisense DNA against HMGA2 in the normal thyroid cells of PML protein. Consequently, the HMGA2-elicited PML that prevented the neoplastic transformation induced by down-regulation rendered a reduction in the average myeloproliferative sarcoma virus and Kristen murine number of PML nuclear bodies per cell and the volume sarcoma virus (6). In addition, the transgenic mice over- of PML assembled per PML nuclear body. Using small expressing HMGA2 developed pituitary adenomas (7). interfering RNA to suppress endogenous ubiquitin expres- Third, the expression of HMGA2 in oral squamous cell sion and proteasome inhibitor to repress ubiquitin-mediated carcinoma is associated with increased disease recurrence protein degradation, we showed that HMGA2 confers and metastasis, along with a reduced survival rate PML down-regulation through ubiquitin-proteasome– manifested by a facilitated epithelial-mesenchymal transi- dependent protein degradation. Importantly, arsenic triox- tion (8). Moreover, HMGA2 expression is associated with ide treatment stimulated HMGA2 SUMOylation, leading the poor prognosis and metastasis in patients with breast to the formation of HMGA2 nuclear foci surrounding PML cancer (9). nuclear bodies and the stimulation of PML degradation. Covalent attachment of ubiquitin and small ubiquitin- like modifier (SUMO) to proteins plays a major role in regulating cellular functions (10–12). Both modifications depend on similar, but distinct, enzyme cascades. Briefly, Received 8/7/07; revised 11/28/07; accepted 2/15/08. ubiquitin and SUMO are activated in an ATP-dependent Grant support: NIH research grants R01 DE 10742 and DE 14183 (D.K. manner by individual E1-activating enzymes, transferred to Ann), and CA 94595 (Y. Chen); and Taiwan National Health Research Institutes grant MG-092-PP-03 (H.M. Shih). The imaging studies in this the respective E2-conjugating enzymes and subsequently work were supported in part by NIH P30 DK48522 (Confocal Microscopy attached to the Lys acceptor sites of target proteins by Subcore, University of Southern California Center for Liver Diseases). distinct E3 ligases. Whereas ubiquitination generally The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked promotes protein degradation, SUMOylation largely serves advertisement in accordance with 18 U.S.C. Section 1734 solely to to regulate diverse cellular processes, including nuclear indicate this fact. transport, genome integrity, signal transduction, and trans- Note: X. Li and C. Clavijo contributed equally to this work. criptional regulation (10–12). The list of known SUMO Requests for reprints: David K. Ann, Department of Clinical and Molecular targets has grown substantially in recent years, and over Pharmacology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010. Phone: 626-359-8111, ext. 64967; Fax: 626-471-7204. half of the presently identified SUMO targets are transcrip- E-mail: [email protected] tion factors or coregulators, attenuating transcriptional Copyright C 2008 American Association for Cancer Research. activation (10–12). Additionally, SUMOylation has been doi:10.1158/1535-7163.MCT-07-0540 shown to affect the dynamic interaction between transcription Mol Cancer Ther 2008;7(4). April 2008 Downloaded from mct.aacrjournals.org on September 28, 2021. © 2008 American Association for Cancer Research. 924 HMGA2-Facilitated PML Degradation regulator(s) and promyelocytic leukemia (PML) protein resulting pCMV-Tag2A-SUMO-1 between HindIII and (13, 14). PML is essential for the formation of a nuclear XhoI. The sequences of derived constructs were verified matrix–associated multiprotein complex, namely the PML by DNA sequencing. The ubiquitin siRNA (h) was nuclear body (15). PML and PML nuclear bodies have purchased from Santa Cruz Biotechnology, Inc. The sense been implicated in governing a variety of cellular processes, and antisense oligonucleotides were individually dissolved including transcriptional regulation, tumor suppression, in RNase-free water at 100 Amol/L and subsequently cellular senescence, apoptosis, and immune responses annealed by heating at 90jC for 1 min, and incubating at (16–18). 37jC for 1 h at a concentration of 20 Amol/L. Transfection In searching for HMGA2-interacting proteins and possi- of siRNA was done with Lipofectamine 2000 (Invitrogen) ble molecular mechanisms by which HMGA2 functions according to the manufacturer’s instruction. as an oncogene, we identified SUMO E2 conjugase Ubc9 Rat deSUMOylase DAxam was cloned by reverse and SUMO-1 as such partners, suggesting HMGA2 as a transcription-PCR using total RNA extracted from rat potential target for SUMO conjugation. In this study, we parotid Pa-4 cells. Oligo-dT primer was used in the reverse show that the expression of HMGA2 resulted in the transcription reaction, whereas the deSUMOylase-specific SUMOylation-dependent down-regulation of PML, but primer pairs used in the PCR reactions were designed not RanGAP-1 and GR, protein level and a concordant according to rat DAxam sequence in Genbank(21). The reduction in the average size and number of PML nuclear resulting PCR products were first cloned into TA-cloning bodies. Moreover, the observed HMGA2-dependent PML vector pCR2.1-TOPO (Invitrogen) and subsequently into down-regulation was partially reversed by small interfering the FLAG-tagged expression vector pCMV-Tag3B (Strata- RNA (siRNA) against ubiquitin or proteasome inhibitor, gene). Expression of the resulting constructs was confirmed suggesting the involvement of ubiquitin-proteasome– by transient transfection into Pa-4 cells followed by dependent protein degradation. Together, these observa- Western analysis using anti-FLAG antibody. As compared tions led us to propose a novel function for HMGA2, with the mock-transfected control, a unique and intense which uses a SUMO-dependent mechanism(s) to selec- protein band at 60 kDa, corresponding to DAxam, was tively promote the degradation of PML protein, perturbing observed in total cell lysates prepared from transfected cell the dynamic networkand multiple functions associated lysates (data not shown). with PML. Cell Lysis and Western Analyses Cells were washed twice in ice-cold 1Â PBS and lysed in SDS sample loading buffer. Equal amounts of proteins from Materials and Methods total cell extracts were fractionated by electrophoresis on Cell Culture SDS-PAGE and were electroblotted onto an Immobilon-P The rat parotid epithelial cell line Pa-4, also known as membrane (Millipore). The membrane was blocked with parotid C5 cells, was plated on Primaria culture dishes 5% nonfat milkand 0.1% Tween 20 in TBS for 1 h at (Falcon) in DMEM/Ham’s F-12 (1:1) medium supple- room temperature and incubated with the respective mented with 2.5% FCS, insulin (5 Ag/mL), transferrin primary antibodies, including anti-GR (Santa Cruz Bio- (5 Ag/mL), epidermal growth factor (25 ng/mL), hydro- technology), anti-HA (Covance), anti-PML (Santa Cruz cortisone (1.1 Amol/L), glutamine (5 mmol/L), and Biotechnology), anti-GMP (Zymed Laboratories, Inc.), anti- kanamycin monosulfate (60 Ag/mL) and maintained in
Recommended publications
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Identifying SUMO Protease Targets and Investigating E3 Ligase Interactions
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2014 Identifying SUMO Protease Targets and Investigating E3 Ligase Interactions Mark Guillotte College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Molecular Biology Commons Recommended Citation Guillotte, Mark, "Identifying SUMO Protease Targets and Investigating E3 Ligase Interactions" (2014). Dissertations, Theses, and Masters Projects. Paper 1539626956. https://dx.doi.org/doi:10.21220/s2-wrgj-tz43 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Identifying SUMO protease targets and investigating E3 ligase interactions Mark Guillotte Baton Rouge, Louisiana Bachelors of Science, Louisiana State University, 2010 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Department of Biology The College of William and Mary January 2014 APPROVAL PAGE This Thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Mark Guillotte Approved by^he Committee, January 2014 (be Chair Associate Professor Oliver Kerseher, Biology The College of William and Mary ' oVY wG ..G S l1m>. rofessor Lizabeth Allison, Biology The College of William and Mary Professor Diane Shakes, Biology The College of William and Mary ---------- Assistant Professor Shanta Hinton,Biology The College of William and Mary COMPLIANCE PAGE Research approved by Steve Kaattari Protocol number(s): IBC-2012-10-08-8156-opkers Date(s) of approval: 2013-11-02 ABSTRACT Posttranslational modification by the Small Ubiquitin-like Modifier (SUMO) is a pervasive mechanism for controlling protein function.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • UBA2 Activates Wnt/ Β-Catenin Signaling Pathway
    UBA2 Activates Wnt/ β-catenin Signaling Pathway during Protection of R28 Retinal Precursor Cells from Hypoxia by Extracellular Vesicles derived from Placental Mesenchymal Stem Cells Kyungmin Koh CHA University Mira Park CHA University Eun Soo Bae CHA University Van-An Duong Gachon University Jong-Moon Park Gachon University Hookeun Lee Gachon University Helen Lew ( [email protected] ) CHA university https://orcid.org/0000-0003-0121-3000 Research Keywords: Exosome, hPMSCs, Optic nerve injury, Retinal precursor cells, UBA2, Wnt/β-catenin DOI: https://doi.org/10.21203/rs.3.rs-33694/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background: Stem cell transplantation has been proposed as an alternative treatment for intractable optic nerve disorders characterized by irrecoverable loss of cells. Mesenchymal stem cells, with varying tissue regeneration and recovery capabilities, are being considered for potential cell therapies. To overcome the limitations of cell therapy, we isolated exosomes from human placenta–derived mesenchymal stem cells (hPMSCs), and investigated their therapeutic effects in R28 cells (retinal precursor cells) exposed to CoCl2. Method: After nine hours of exposure to CoCl2, the hypoxic damaged R28 cells were divided into non treatment group (CoCl2+R28 cells) and treatment group (CoCl2+R28 cells treated with exosome). Immunoblot analysis was performed for Pcna, Hif-1α, Vegf, Vimentin, Thy-1, Gap43, Ermn, Neuro≈ament, Wnt3a, β-catenin, phospo-GSK3β, Lef-1, UBA2, Skp1, βTrcp, and ubiquitin. The proteomes of each group were analyzed by liquid chromatography/tandem mass (LC-MS/MS) spectrometry. Differentially expressed proteins (DEPs) were detected by label-free quantiƒcation and the interactions of the proteins were examined through signal transduction pathway and gene ontology analysis.
    [Show full text]
  • Insights Into the Role and Mechanism of the AAA+ Adaptor Clps
    Insights into the role and mechanism of the AAA+ adaptor ClpS by Jennifer Yuan Hou Sc.B. Biochemistry Brown University, 2002 SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2009 © 2009 Jennifer Yuan Hou. All Rights Reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author:_______________________________________________________ Department of Biology May 22, 2009 Certified by:_____________________________________________________________ Tania A. Baker E. C. Whitehead Professor of Biology Thesis Supervisor Accepted by:_____________________________________________________________ Stephen P. Bell Professor of Biology Co-Chair, Graduate Committee 1 2 Insights into the role and mechanism of the AAA+ adaptor ClpS by Jennifer Yuan Hou Submitted to the Department of Biology on May 22, 2009 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT Protein degradation is a vital process in cells for quality control and participation in regulatory pathways. Intracellular ATP-dependent proteases are responsible for regulated degradation and are highly controlled in their function, especially with respect to substrate selectivity. Adaptor proteins that can associate with the proteases add an additional layer of control to substrate selection. Thus, understanding the mechanism and role of adaptor proteins is a critical component to understanding how proteases choose their substrates. In this thesis, I examine the role of the intracellular protease ClpAP and its adaptor ClpS in Escherichia coli.
    [Show full text]
  • UBA2 Promotes Proliferation of Colorectal Cancer
    5552 MOLECULAR MEDICINE REPORTS 18: 5552-5562, 2018 UBA2 promotes proliferation of colorectal cancer PING HE1, XUN SUN2, HONG-JING CHENG1, YA‑BIN ZOU2, QUAN WANG3, CHANG‑LI ZHOU1, WAN-QI LIU1, YUE-MING HAO1 and XIANG-WEI MENG1 Departments of 1Gastroenterology, 2Pathology and 3Gastrointestinal Surgery, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China Received December 18, 2017; Accepted August 13, 2018 DOI: 10.3892/mmr.2018.9613 Abstract. Small ubiquitin‑like modifier proteins are involved Introduction in tumorigenesis; however, the potential effects and func- tions of the family member ubiquitin‑like modifier‑activating Colorectal cancer is the third most common cancer world- enzyme 2 (UBA2) on colorectal cancer are not clear. The wide (1); the lifetime risk of developing colorectal cancer is present study aimed to examine the effects of UBA2 on the 4.7% for men and 4.4% for women. Although the mortality proliferation of colorectal cancer cells in vitro and in vivo. The rate from colorectal cancer has been declining for several mRNA and protein expression levels of UBA2 in patients with decades owing to the early diagnosis and improved treatment, colorectal cancer were measured by reverse transcription‑quan- >1 million novel cases are diagnosed each year. Therefore, it titative polymerase chain reaction and immunohistochemistry, is crucial to identify novel biomarkers and therapeutic targets respectively. UBA2 expression levels in colorectal cancer for colorectal cancer to improve the prognosis of the disease. tissues were significantly increased compared with the para- Sumoylation is a transient post‑translational modifica- cancerous normal tissues. The expression of UBA2 was also tion process that is highly regulated by the balance between associated with higher stage colorectal cancer and poor prog- enzyme‑mediated conjugating and deconjugating activities.
    [Show full text]
  • Ab139470 Sumoylation Assay Kit
    ab139470 SUMOylation Assay Kit Instructions for Use For the generation and detection of SUMOylated proteins in vitro. This product is for research use only and is not intended for diagnostic use. Version 3 Last Updated 19 July 2019 1 Table of Contents 1. Background 3 2. Principle of the Assay 5 3. Protocol Summary 7 4. Materials Supplied 8 5. Storage and Stability 9 6. Materials Required, Not Supplied 10 7. Assay Protocol 11 8. Data Analysis 17 2 1. Background Small ubiquitin-related modifier (SUMO) is a member of a family of ubiquitin-like proteins that regulates cellular function of a variety of proteins. Four members of the SUMO family have been described in vertebrates: SUMO1, the close homologues SUMO2 and SUMO-3 with some 50% homology between SUMO1 and SUMO2/3 and SUMO4. Tissue-specific SUMO4, identified in human kidney, bears homology to SUMO2/3 and variants of SUMO4 may be associated with susceptibility to Type I diabetes. Although having fairly low amino acid sequence identity with ubiquitin, the SUMO enzymes exhibit similar tertiary structures. The mechanism for SUMO conjugation is analogous to that of the ubiquitin system, relying upon utilization of E1, E2 and (potentially) E3 cascade enzymes. Unlike ubiquitinylation, which leads, inter alia, to a degradative pathway, SUMO modification of target proteins is involved in nuclear protein targeting, formation of sub-nuclear complexes, regulation of transcriptional activities, and control of protein stability. For example, SUMO modification of p53 represents an additional regulator of p53 tumour repressor protein stability and may contribute to activation of the p53 response.
    [Show full text]
  • Oxidative Stress-Induced P53 Activity Is Enhanced by a Redox-Sensitive TP53INP1 Sumoylation
    Cell Death and Differentiation (2014) 21, 1107–1118 & 2014 Macmillan Publishers Limited All rights reserved 1350-9047/14 www.nature.com/cdd Oxidative stress-induced p53 activity is enhanced by a redox-sensitive TP53INP1 SUMOylation S Peuget1,2, T Bonacci1,2, P Soubeyran1, J Iovanna1 and NJ Dusetti*,1 Tumor Protein p53-Induced Nuclear Protein 1 (TP53INP1) is a tumor suppressor that modulates the p53 response to stress. TP53INP1 is one of the key mediators of p53 antioxidant function by promoting the p53 transcriptional activity on its target genes. TP53INP1 expression is deregulated in many types of cancers including pancreatic ductal adenocarcinoma in which its decrease occurs early during the preneoplastic development. In this work, we report that redox-dependent induction of p53 transcriptional activity is enhanced by the oxidative stress-induced SUMOylation of TP53INP1 at lysine 113. This SUMOylation is mediated by PIAS3 and CBX4, two SUMO ligases especially related to the p53 activation upon DNA damage. Importantly, this modification is reversed by three SUMO1-specific proteases SENP1, 2 and 6. Moreover, TP53INP1 SUMOylation induces its binding to p53 in the nucleus under oxidative stress conditions. TP53INP1 mutation at lysine 113 prevents the pro-apoptotic, antiproliferative and antioxidant effects of TP53INP1 by impairing the p53 response on its target genes p21, Bax and PUMA. We conclude that TP53INP1 SUMOylation is essential for the regulation of p53 activity induced by oxidative stress. Cell Death and Differentiation (2014) 21, 1107–1118; doi:10.1038/cdd.2014.28; published online 7 March 2014 Maintaining homeostasis in response to the broad range of stress is strictly dependent on p53, and TP53INP1-deficient intrinsic and extrinsic aggressions is a challenge for cells.
    [Show full text]
  • Biochemical and Cell Biological Characterisation of Sumo E1 Activating Enzyme Aos1/Uba2
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Biochemical and cell biological characterisation of the SUMO E1 activating enzyme Aos1/Uba2 Katarzyna Chmielarska aus Kielce, Polen 2005 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Frauke Melchior and Prof. Dr. Patrick Cramer betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, 6.10.2005 Katarzyna Chmielarska Dissertation eingereicht am 6.10.2005 1. Gutachter: Prof. Dr. Patrick Cramer 2. Gutachter: Prof. Dr. Alexander Pfeifer Mündliche Prüfung am 20.12.2005 TABLE OF CONTENTS LIST OF ABBREVIATIONS 1 1 SUMMARY 4 2 INTRODUCTION 4 2.1 Overview 4 2.2 Molecular mechanism of Sumoylation 9 2.2.1 Enzymes mediating the SUMO pathway 9 2.2.2 SUMO-Activating Enzyme (E1) 10 2.2.3 SUMO-Conjugating Enzyme (E2) 13 2.2.4 E3 ligases 14 2.2.5 SUMO processing and deconjugation 18 2.3 Function of SUMO modifications 19 2.3.1 Molecular consequences of sumoylation 20 2.3.2 Pathways in which SUMO was found 21 3 MATERIALS AND METHODS 24 3.1 Materials 24 3.1.1 Chemicals and materials 24 3.1.2 Reagents and reaction kits 25 3.1.3 Buffers and solutions 26 3.1.4 Cell culture 28 3.1.5 Antibodies 29 3.1.6 Recombinant proteins 31 3.1.7 Plasmids 31 3.1.8 Important oligonucleotides 32 3.1.9 Bacterial strains 33 3.2 Molecular biology methods 34 3.2.1 Plasmid DNA purification (miniprep) 34 3.2.2 Plasmid DNA (midi, maxiprep) 34 3.2.3 Preparation of chemically competent cells 34 3.2.4 Estimation of DNA concentration 35 3.2.5 Digestion of plasmid DNA with restriction endonucleases 35 3.2.6 DNA purification 36 3.2.7 Ligation of DNA insert into vector DNA 36 3.2.8 Transformation into DH5 α 36 3.2.9 Polymerase Chain Reaction (PCR) 37 3.2.10 Mutagenesis 37 3.2.11 Sequencing 40 3.2.12 Organ extracts 40 3.2.13 RNA isolation 40 3.2.14 RT-PCR 41 3.3 Cell biology methods 41 3.3.1 Cell lines 41 3.3.2.
    [Show full text]
  • Delineation of the SUMO-Modified Proteome Reveals Regulatory Functions Throughout Meiosis Authors
    bioRxiv preprint doi: https://doi.org/10.1101/828442; this version posted November 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Delineation of the SUMO-Modified Proteome Reveals Regulatory Functions Throughout Meiosis Authors: Nikhil Bhagwat1,2, Shannon Owens2, Masaru Ito1,2, Jay Boinapalli2, Philip Poa2, Alexander Ditzel2, Srujan Kopparapu2, Meghan Mahalawat2, Owen R. Davies3, Sean R. Collins2, Jeffrey R. Johnson4, Nevan J. Krogan4 and Neil Hunter1,2,5,6* Affiliations: 1Howard Hughes Medical Institute, University of California Davis, Davis, California, USA. 2Department of Microbiology & Molecular Genetics, University of California Davis, Davis, California, USA. 3Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom. 4Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA. 5Department of Molecular & Cellular Biology, University of California Davis, Davis, California, USA. 6Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California, USA. * Correspondence to lead contact: Neil Hunter, E-mail: [email protected] Running title: The SUMO-modified meiotic proteome bioRxiv preprint doi: https://doi.org/10.1101/828442; this version posted November 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes.
    [Show full text]
  • Genome-Wide Investigation of Cellular Functions for Trna Nucleus
    Genome-wide Investigation of Cellular Functions for tRNA Nucleus- Cytoplasm Trafficking in the Yeast Saccharomyces cerevisiae DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Yi Chu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Dissertation Committee: Anita K. Hopper, Advisor Stephen Osmani Kurt Fredrick Jane Jackman Copyright by Hui-Yi Chu 2012 Abstract In eukaryotic cells tRNAs are transcribed in the nucleus and exported to the cytoplasm for their essential role in protein synthesis. This export event was thought to be unidirectional. Surprisingly, several lines of evidence showed that mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and their distribution is nutrient-dependent. This newly discovered tRNA retrograde process is conserved from yeast to vertebrates. Although how exactly the tRNA nuclear-cytoplasmic trafficking is regulated is still under investigation, previous studies identified several transporters involved in tRNA subcellular dynamics. At least three members of the β-importin family function in tRNA nuclear-cytoplasmic intracellular movement: (1) Los1 functions in both the tRNA primary export and re-export processes; (2) Mtr10, directly or indirectly, is responsible for the constitutive retrograde import of cytoplasmic tRNA to the nucleus; (3) Msn5 functions solely in the re-export process. In this thesis I focus on the physiological role(s) of the tRNA nuclear retrograde pathway. One possibility is that nuclear accumulation of cytoplasmic tRNA serves to modulate translation of particular transcripts. To test this hypothesis, I compared expression profiles from non-translating mRNAs and polyribosome-bound translating mRNAs collected from msn5Δ and mtr10Δ mutants and wild-type cells, in fed or acute amino acid starvation conditions.
    [Show full text]
  • Anti-UBA2 / SAE2 Antibody (ARG59243)
    Product datasheet [email protected] ARG59243 Package: 100 μl anti-UBA2 / SAE2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes UBA2 / SAE2 Tested Reactivity Hu Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name UBA2 / SAE2 Antigen Species Human Immunogen Synthetic peptide derived from Human UBA2 / SAE2. Conjugation Un-conjugated Alternate Names EC 6.3.2.-; Anthracycline-associated resistance ARX; ARX; SUMO-activating enzyme subunit 2; SAE2; Ubiquitin-like modifier-activating enzyme 2; Ubiquitin-like 1-activating enzyme E1B; HRIHFB2115 Application Instructions Application table Application Dilution WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 71 kDa Observed Size ~ 88 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.4), 150mM NaCl, 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol UBA2 Gene Full Name ubiquitin-like modifier activating enzyme 2 Background Posttranslational modification of proteins by the addition of the small protein SUMO (see SUMO1; MIM 601912), or sumoylation, regulates protein structure and intracellular localization.
    [Show full text]